second commit model
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 277.65 +/- 18.91
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a2a127160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a2a1271f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a2a127280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a2a127310>", "_build": "<function ActorCriticPolicy._build at 0x7f9a2a1273a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9a2a127430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9a2a1274c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a2a127550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9a2a1275e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a2a127670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a2a127700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a2a127790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9a2a121900>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678185615366686995, "learning_rate": 0.003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/aJN0vGp++oWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKYmuD4Be4o/JZTRPQXMML15XAU8KvkduwAAAAAAAAAA2mcrvlWLBz64yRs8RXqVvQwimLvxRKK7AAAAAAAAAABmgSs/AeheP8PudD4ZsgG+C/y3PFZzsrsAAAAAAAAAANGYNL/5ewk/4V8dvqLHJ71Kq7+79p6auwAAAAAAAAAAlecDP+O/TD/wyma8YfZIu2KLHDt2SWA7AAAAAAAAAABmQZ8975mHP2Lhyr1B3UC9alrPOo7iiTsAAAAAAAAAABZfgz5qnZQ/T28MPk2rZL3m/JQ8g54TvQAAAAAAAAAAkDf+PvHtMj9CbEy91BMvPCmUcjsuMY48AAAAAAAAAABN/mo9SFutP44r2D6E3FO+Y49PPG48qD0AAAAAAAAAAB0Bqj7nAXI/T4ygPnIjLb727uc8pekWvQAAAAAAAAAAO0YXPx9aVD+qT2c+vL/AvewIbTyGbgy9AAAAAAAAAACOzVG/OgjZPqDsk72cDkm9/4hFPOb4wjwAAAAAAAAAALMTGz0I+Lg/8hasPrA/tTvo1Zw8HtJ1PQAAAAAAAAAAr4cGv/gXSz/QqHy9j6K9vOz9Mjszy5k7AAAAAAAAAAAf9m6/zqiwPgsQzb2QCJ+9As0au35PTDwAAAAAAAAAAF0NUj+A5SI/H7+qPmovwL0uHqU8rwYAvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIl8gFZ/ABW8CUhpRSlIwBbJRNcQGMAXSUR0Co1M5Ec81XdX2UKGgGaAloD0MIHERrRZtPWsCUhpRSlGgVTacBaBZHQKjU6Y8dPtV1fZQoaAZoCWgPQwh/MVuyKgNUwJSGlFKUaBVLnmgWR0Co1kOzyBkJdX2UKGgGaAloD0MIlZ7pJcY/WsCUhpRSlGgVTVgBaBZHQKjXqWE9Mbp1fZQoaAZoCWgPQwhCQ/8EF79RwJSGlFKUaBVNGQFoFkdAqNh/dbgTAXV9lChoBmgJaA9DCIlCy7p/sFTAlIaUUpRoFU3oA2gWR0Co2uX2dupCdX2UKGgGaAloD0MIveKpRxrTWsCUhpRSlGgVTRkBaBZHQKjgG7Dl5nl1fZQoaAZoCWgPQwgTRN0HIF1VwJSGlFKUaBVN6ANoFkdAqOTiCWeHz3V9lChoBmgJaA9DCGMOgo5WGlLAlIaUUpRoFU0gAWgWR0Co5e56+nIidX2UKGgGaAloD0MIWFUvv9MnYsCUhpRSlGgVTWkCaBZHQKjnQAAAAAB1fZQoaAZoCWgPQwgib7n6sftgwJSGlFKUaBVNagJoFkdAqR83vhIe5nV9lChoBmgJaA9DCBmsONVaz2HAlIaUUpRoFU1/AmgWR0CpIntuDSPVdX2UKGgGaAloD0MIH0dzZCXycsCUhpRSlGgVTdgDaBZHQKkp4yP+4sp1fZQoaAZoCWgPQwjSViWRfWgnQJSGlFKUaBVN6ANoFkdAqSrDY7JXAHV9lChoBmgJaA9DCBEZVvFGhF/AlIaUUpRoFU3oA2gWR0CpK9RoIv8JdX2UKGgGaAloD0MIJsPxfIbmZcCUhpRSlGgVTdQCaBZHQKktQszVMEl1fZQoaAZoCWgPQwgMIHwo0fFVwJSGlFKUaBVNnQFoFkdAqS8QCCBf8nV9lChoBmgJaA9DCBTq6SPwvzBAlIaUUpRoFU3oA2gWR0CpME2xhUiqdX2UKGgGaAloD0MIkxgEVo6oZ8CUhpRSlGgVTYUDaBZHQKkyYqn3ta91fZQoaAZoCWgPQwjX2ZB/5ttkwJSGlFKUaBVN6ANoFkdAqTJ1PnB+F3V9lChoBmgJaA9DCG+5+rHJ9WnAlIaUUpRoFU17A2gWR0CpNeOwgTysdX2UKGgGaAloD0MIvady2lOrVsCUhpRSlGgVTegDaBZHQKk15clgMMJ1fZQoaAZoCWgPQwgEx2Xc1IBXwJSGlFKUaBVN9gFoFkdAqTg3cHnln3V9lChoBmgJaA9DCJqXw+47rmnAlIaUUpRoFU1cA2gWR0CpPREa2nbZdX2UKGgGaAloD0MIZd8Vwf/2WcCUhpRSlGgVTegDaBZHQKk+LCiyprF1fZQoaAZoCWgPQwifA8sRMsRSwJSGlFKUaBVNLAFoFkdAqUFwbbUPQXV9lChoBmgJaA9DCNI2/kRl+FnAlIaUUpRoFU3oA2gWR0CpRPaol2NedX2UKGgGaAloD0MIeoocIm6XUMCUhpRSlGgVTegDaBZHQKlHjNu+AVh1fZQoaAZoCWgPQwgNcEG2LClQwJSGlFKUaBVN6ANoFkdAqUgwTGo73nV9lChoBmgJaA9DCDYhrTHoR2HAlIaUUpRoFU03AmgWR0CpSJmBe5WjdX2UKGgGaAloD0MI0lRP5h/YWcCUhpRSlGgVTWMBaBZHQKmBEO3DvVp1fZQoaAZoCWgPQwgkQ46tZ+1YwJSGlFKUaBVNUAFoFkdAqYFzdP+GXXV9lChoBmgJaA9DCD48S5ARRlPAlIaUUpRoFU3oA2gWR0CpiIbulXRxdX2UKGgGaAloD0MI5sx2hT45W8CUhpRSlGgVTegDaBZHQKmJUsGPgel1fZQoaAZoCWgPQwh4t7JEZ31HwJSGlFKUaBVN6ANoFkdAqYotQbdadXV9lChoBmgJaA9DCKkUOxqHnkfAlIaUUpRoFU3oA2gWR0Cpi1wtrbg1dX2UKGgGaAloD0MIhzYAGxCPWsCUhpRSlGgVTToBaBZHQKmLWuCf6Gh1fZQoaAZoCWgPQwgTRUjdzvREwJSGlFKUaBVN6ANoFkdAqY0AGbCrLnV9lChoBmgJaA9DCC4bnfNT42rAlIaUUpRoFU2XA2gWR0CpjTMBIWgwdX2UKGgGaAloD0MIyjMvh11RYMCUhpRSlGgVTc4BaBZHQKmN6FGG21F1fZQoaAZoCWgPQwgZ48PsZfdRwJSGlFKUaBVN6ANoFkdAqY5iDh99dHV9lChoBmgJaA9DCPpFCfoLPT3AlIaUUpRoFU3oA2gWR0CplGkpI+W4dX2UKGgGaAloD0MIyEW1iCg0TsCUhpRSlGgVTegDaBZHQKmXLKQq7RR1fZQoaAZoCWgPQwjDZoALshJZwJSGlFKUaBVNvwFoFkdAqZxDkwN9Y3V9lChoBmgJaA9DCHZvRWKCeF7AlIaUUpRoFU3AAmgWR0CpnOvSMLncdX2UKGgGaAloD0MINxjqsMJ0WcCUhpRSlGgVS/hoFkdAqZ3gQcxTKnV9lChoBmgJaA9DCDtvY7MjAlnAlIaUUpRoFU2sAWgWR0CpnnMKkVN6dX2UKGgGaAloD0MIHR1XIzvMZsCUhpRSlGgVTUYDaBZHQKmfqbDuSfV1fZQoaAZoCWgPQwiVtrjGZ7ZMwJSGlFKUaBVN6ANoFkdAqZ/CGJvYOHV9lChoBmgJaA9DCGr3qwBfIGjAlIaUUpRoFU0SA2gWR0CpoEBWgezVdX2UKGgGaAloD0MIz9iXbDzYXsCUhpRSlGgVTcQBaBZHQKmgbHHWBjF1fZQoaAZoCWgPQwhq+BbWDYtjwJSGlFKUaBVNlQJoFkdAqaHuXPZ7HHV9lChoBmgJaA9DCKX2ItqOM1HAlIaUUpRoFUu8aBZHQKmiTDaXa8J1fZQoaAZoCWgPQwjGT+Pe/J9RwJSGlFKUaBVN6ANoFkdAqaTwo5PuX3V9lChoBmgJaA9DCBvYKsHiSWfAlIaUUpRoFU26AmgWR0Cp3ZpokAxSdX2UKGgGaAloD0MIMXpuoatoZsCUhpRSlGgVTTEDaBZHQKnd+Mtsen11fZQoaAZoCWgPQwg41zBD4w9LwJSGlFKUaBVNKgFoFkdAqd49w71ZknV9lChoBmgJaA9DCLrXSX1Zf2DAlIaUUpRoFU0+AmgWR0Cp4BRIz3yqdX2UKGgGaAloD0MIH9YbtcJFUsCUhpRSlGgVTegDaBZHQKnlnctXgcd1fZQoaAZoCWgPQwiz7Elgc9JKwJSGlFKUaBVN6ANoFkdAqeWejdpItnV9lChoBmgJaA9DCJOpglFJ21/AlIaUUpRoFU0BAmgWR0Cp58kQXhwVdX2UKGgGaAloD0MIWOTXD7FFRMCUhpRSlGgVTegDaBZHQKno/Ijnmq51fZQoaAZoCWgPQwjCTNu/slBmwJSGlFKUaBVNgwJoFkdAqe10GC7K73V9lChoBmgJaA9DCBE4Emiw2lvAlIaUUpRoFU1bAWgWR0Cp9vVQyhzvdX2UKGgGaAloD0MIsfhNYaWkTMCUhpRSlGgVTegDaBZHQKn7qvJzT4N1fZQoaAZoCWgPQwietHBZhQJgwJSGlFKUaBVN6ANoFkdAqf0n18LKFXV9lChoBmgJaA9DCBLcSNmiKmPAlIaUUpRoFU0NA2gWR0Cp/h9ovi97dX2UKGgGaAloD0MIcVZETfQVSsCUhpRSlGgVTegDaBZHQKn/ukZaV2R1fZQoaAZoCWgPQwiKOnMPCXtXwJSGlFKUaBVN6ANoFkdAqgBbu+h4+3V9lChoBmgJaA9DCNqSVRHuB2DAlIaUUpRoFU2/AmgWR0CqARnAZbY9dX2UKGgGaAloD0MInu+nxkuFRMCUhpRSlGgVTegDaBZHQKoCx7el9Bt1fZQoaAZoCWgPQwgmGTkLeyJZwJSGlFKUaBVN6ANoFkdAqgNDUAksz3V9lChoBmgJaA9DCHTPukbLq1jAlIaUUpRoFU3oA2gWR0CqClpUYKpldX2UKGgGaAloD0MIH2easP1hUsCUhpRSlGgVTegDaBZHQKpBJWq94/x1fZQoaAZoCWgPQwgVb2Qe+SNSwJSGlFKUaBVN6ANoFkdAqkGmdkJ8fHV9lChoBmgJaA9DCMNIL2r3xFHAlIaUUpRoFU0sAWgWR0CqRODFqBVddX2UKGgGaAloD0MIb/PGSeHkYsCUhpRSlGgVTTEDaBZHQKpGuYpDu0F1fZQoaAZoCWgPQwghPxu5btZGwJSGlFKUaBVN6ANoFkdAqkufJq7AcnV9lChoBmgJaA9DCOC+DpwzoiTAlIaUUpRoFU3oA2gWR0CqTUC3XqZ/dX2UKGgGaAloD0MIWKg1zbtYYMCUhpRSlGgVTTkCaBZHQKpNW97ngYR1fZQoaAZoCWgPQwhoWmJlNDdiwJSGlFKUaBVNjQJoFkdAqk+4Y51eSnV9lChoBmgJaA9DCPZBlgUTQlPAlIaUUpRoFU1rAWgWR0CqUKZTIeYEdX2UKGgGaAloD0MITimvldBUXsCUhpRSlGgVTegDaBZHQKpRNrdFfAt1fZQoaAZoCWgPQwhF2safqPRVwJSGlFKUaBVNSwFoFkdAqlIXvhIe5nV9lChoBmgJaA9DCKsHzEOmaE/AlIaUUpRoFUu3aBZHQKpXsFNcnmd1fZQoaAZoCWgPQwgxfa8hOOxSwJSGlFKUaBVNKAFoFkdAqliZMlC1JHV9lChoBmgJaA9DCA4sR8hAJV/AlIaUUpRoFU3oA2gWR0CqWOkcsDnvdX2UKGgGaAloD0MI3/sbtFcAUcCUhpRSlGgVS+loFkdAqlp0kt29tnV9lChoBmgJaA9DCHzxRXu8qlbAlIaUUpRoFU1SAWgWR0CqWoBRyfcvdX2UKGgGaAloD0MIJ0wYzcoYYUCUhpRSlGgVTXUDaBZHQKpa8dXko4N1fZQoaAZoCWgPQwjK/KNv0lBUwJSGlFKUaBVN6ANoFkdAqlxXA6+36XV9lChoBmgJaA9DCInQCDauWFfAlIaUUpRoFU3oA2gWR0CqYWrdWQwLdX2UKGgGaAloD0MI5NcPsUFlbMCUhpRSlGgVTSYDaBZHQKpjEraM72d1fZQoaAZoCWgPQwgPt0PDYmBZwJSGlFKUaBVNhgFoFkdAqmOpRVIZqHV9lChoBmgJaA9DCCBCXDl77VLAlIaUUpRoFU3oA2gWR0CqZNIjOcDsdX2UKGgGaAloD0MIjgWFQZm6UcCUhpRSlGgVTegDaBZHQKplhcgQpWp1fZQoaAZoCWgPQwj6KvnYXQBmwJSGlFKUaBVNcAJoFkdAqmZ4fOlfq3V9lChoBmgJaA9DCHpW0opvMGfAlIaUUpRoFU07AmgWR0CqaDgk9lmOdX2UKGgGaAloD0MIrp6T3jeuT8CUhpRSlGgVTegDaBZHQKpqumDUVi51fZQoaAZoCWgPQwgYQznRrp5UwJSGlFKUaBVL7mgWR0CqasjyFwkxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.95, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a2a127160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a2a1271f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a2a127280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a2a127310>", "_build": "<function ActorCriticPolicy._build at 0x7f9a2a1273a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9a2a127430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9a2a1274c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a2a127550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9a2a1275e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a2a127670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a2a127700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a2a127790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9a2a121900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678189244897920238, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBx1T16kbg/A/XgPt+BIr538BM+YnuBPgAAAAAAAAAAAODDO9JivDw6Wye97qVxvntTlb0+43K9AAAAAAAAAABzpsU9s527P8pyBz8de4+9+9VjPXZuUz4AAAAAAAAAAPr8JT62sy4/2hJlPQND5r7vGV8+2tcEvAAAAAAAAAAADTKKvt/kPD82MuU9DuXmvjrp477QEWg+AAAAAAAAAABmTqo7lPa0P9QZkjxngG++fUgtPDw+QD0AAAAAAAAAAJpzn7y4rbO7S4AEPIMthjzYrgI9dXtkvQAAgD8AAIA/ml8XPcOZfbqlJ9S6cZOItZCPDjoWqvc5AACAPwAAgD9azsy9femmPvqwMT7ebLy+gWYsPY0bij0AAAAAAAAAAIBmF74j1Co/+w4KPod83L7em8y92P/RPQAAAAAAAAAAIBRxPlcgjD/VKZ8+bRX8vgQaqD5baas9AAAAAAAAAACaO14931LfPDrPebwNToi+FMhzvSPp2TwAAAAAAAAAAOBeXj6RhSg/yBzgva+rz756DnQ+RoRXvQAAAAAAAAAAZiLOvLN6jT+eTVe8Z0oVv1j+xbwny5M8AAAAAAAAAADNi6Y8KY4fvObRpzuZCUs8h1+LPZTVK70AAIA/AACAP82667x7oIq60Q0vt8nUC7Jh6RI7jbNLNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOpZ31cMpckCUhpRSlIwBbJRL9IwBdJRHQLX5DTrVvuR1fZQoaAZoCWgPQwjYf52bdqlwQJSGlFKUaBVNGgFoFkdAtflXFHavinV9lChoBmgJaA9DCMiYu5aQ7nFAlIaUUpRoFUvCaBZHQLX5WyGzru91fZQoaAZoCWgPQwgpQX+hx3htQJSGlFKUaBVL5GgWR0C1+WsOwxFidX2UKGgGaAloD0MIFF/tKI7ucECUhpRSlGgVS+loFkdAtflqgGr0a3V9lChoBmgJaA9DCDroEg49E3JAlIaUUpRoFUvMaBZHQLX5nnKnvUl1fZQoaAZoCWgPQwg+XkiHB5NxQJSGlFKUaBVL3GgWR0C1+aqRQrMDdX2UKGgGaAloD0MIAtaqXdPMckCUhpRSlGgVS99oFkdAtfm0FlkH2XV9lChoBmgJaA9DCPlp3JtfLHBAlIaUUpRoFUvQaBZHQLX5uaFVT751fZQoaAZoCWgPQwjbi2g7pmBIQJSGlFKUaBVLuWgWR0C1+hGVAzHkdX2UKGgGaAloD0MI4fHtXYODc0CUhpRSlGgVS+toFkdAtfojxoZhrnV9lChoBmgJaA9DCJs8ZTUdNXJAlIaUUpRoFUvraBZHQLX6bkZrHlx1fZQoaAZoCWgPQwj9vRQe9PxxQJSGlFKUaBVL/WgWR0C1+nPbKzRhdX2UKGgGaAloD0MISPlJtc+UcECUhpRSlGgVS+xoFkdAtfqM5n13+3V9lChoBmgJaA9DCKX3ja+9vnFAlIaUUpRoFUv/aBZHQLX6jl0YCQt1fZQoaAZoCWgPQwhtkElGjhFzQJSGlFKUaBVL8GgWR0C1+p7Ou7pWdX2UKGgGaAloD0MIrOKNzKMjckCUhpRSlGgVS9hoFkdAtfrWGUOd5XV9lChoBmgJaA9DCGlSCrq9I3FAlIaUUpRoFUvdaBZHQLX64FwDNhV1fZQoaAZoCWgPQwjZeoZwjIhxQJSGlFKUaBVL6mgWR0C1+uNJjDsMdX2UKGgGaAloD0MIdcqjG2FkcUCUhpRSlGgVS/toFkdAtfsDmgam43V9lChoBmgJaA9DCPiMRGgE8XBAlIaUUpRoFUvOaBZHQLX7E+BYmsx1fZQoaAZoCWgPQwgHexNDcv5wQJSGlFKUaBVL2WgWR0C1+xttqHoHdX2UKGgGaAloD0MIacU3FH4qc0CUhpRSlGgVS+9oFkdAtfszvhIe5nV9lChoBmgJaA9DCI7pCUu8D3FAlIaUUpRoFUvlaBZHQLX7Pw8GLUF1fZQoaAZoCWgPQwheglMfSC1zQJSGlFKUaBVLx2gWR0C1+3hIe5nUdX2UKGgGaAloD0MIpp2ay81mckCUhpRSlGgVS/1oFkdAtfvHUutfX3V9lChoBmgJaA9DCIocIm5Oqm9AlIaUUpRoFUvTaBZHQLX8DjH4oJB1fZQoaAZoCWgPQwiUMqmhjQ5xQJSGlFKUaBVL4WgWR0C1/BUlNUOvdX2UKGgGaAloD0MITifZ6nIrbkCUhpRSlGgVS/1oFkdAtfw2KBNEgHV9lChoBmgJaA9DCPSJPEl6kXBAlIaUUpRoFUv/aBZHQLX8NSDRMOB1fZQoaAZoCWgPQwg+IxEaQQNyQJSGlFKUaBVL12gWR0C1/Ffh/Aj6dX2UKGgGaAloD0MIgZICC6D0ckCUhpRSlGgVS9RoFkdAtgrdcUuct3V9lChoBmgJaA9DCOCD1y7tc3JAlIaUUpRoFUvZaBZHQLYK/Ty8SPF1fZQoaAZoCWgPQwhdpFAWvstwQJSGlFKUaBVNDAFoFkdAtgsmhPCVKXV9lChoBmgJaA9DCAe139oJPW9AlIaUUpRoFU1CAWgWR0C2CzfAfuCxdX2UKGgGaAloD0MIr3lVZ3UYcUCUhpRSlGgVS/VoFkdAtgtCJyhi9nV9lChoBmgJaA9DCGmn5nKDLHJAlIaUUpRoFU0dAWgWR0C2C0zQeFL4dX2UKGgGaAloD0MIM1TFVPo8ckCUhpRSlGgVS+xoFkdAtgtX4i5d4XV9lChoBmgJaA9DCAO0rWadaXBAlIaUUpRoFUv7aBZHQLYLZEtNBWx1fZQoaAZoCWgPQwhZvi7DP4NyQJSGlFKUaBVL0mgWR0C2DBq3mV7hdX2UKGgGaAloD0MIHch6anUjcUCUhpRSlGgVTQwBaBZHQLYMJ/JeVs11fZQoaAZoCWgPQwhlUdhFUdpxQJSGlFKUaBVL3GgWR0C2DDMJ2MbWdX2UKGgGaAloD0MIPwCpTZzabkCUhpRSlGgVS9hoFkdAtgxN3FDOT3V9lChoBmgJaA9DCKT9D7CWy3FAlIaUUpRoFU0BAWgWR0C2DFm6PKdQdX2UKGgGaAloD0MIjq89s+RdckCUhpRSlGgVS8VoFkdAtgxyQ1aW5nV9lChoBmgJaA9DCGDMlqwKz3BAlIaUUpRoFU0PAWgWR0C2DHpbdJrddX2UKGgGaAloD0MISDFAosn6cUCUhpRSlGgVTXkBaBZHQLYMpQ9RrJt1fZQoaAZoCWgPQwhEFJM3gCdyQJSGlFKUaBVNAQFoFkdAtgzEWrOqvXV9lChoBmgJaA9DCJfhP91AbXJAlIaUUpRoFUvgaBZHQLYM9SYPXkJ1fZQoaAZoCWgPQwjmJJS+UP1xQJSGlFKUaBVL8GgWR0C2DPOjM3ZPdX2UKGgGaAloD0MI+z+H+bJjcUCUhpRSlGgVTQABaBZHQLYNAZi/fwZ1fZQoaAZoCWgPQwjQK556pNRxQJSGlFKUaBVL8WgWR0C2DQc7U5MldX2UKGgGaAloD0MIOgX52YgYckCUhpRSlGgVS/loFkdAtg0LAeq7y3V9lChoBmgJaA9DCIkLQKP0knJAlIaUUpRoFUv5aBZHQLYNKp+c6Nl1fZQoaAZoCWgPQwhqoWRy6t5kQJSGlFKUaBVN6ANoFkdAtg2oCFK02XV9lChoBmgJaA9DCGxc/65P9mxAlIaUUpRoFUvZaBZHQLYNsUt7KJV1fZQoaAZoCWgPQwiNXaJ6K4lxQJSGlFKUaBVL12gWR0C2DbZ8neBQdX2UKGgGaAloD0MI1GTG2wpqcECUhpRSlGgVS/toFkdAtg3h9fCyhXV9lChoBmgJaA9DCFk0nZ2MUHJAlIaUUpRoFUvwaBZHQLYOApNbkfd1fZQoaAZoCWgPQwgLJZNTO9FvQJSGlFKUaBVL6WgWR0C2Dg0X1rZbdX2UKGgGaAloD0MIrp6T3rd2cUCUhpRSlGgVTQoBaBZHQLYOJCpm29d1fZQoaAZoCWgPQwgEPdS24XRtQJSGlFKUaBVL4mgWR0C2Di5qh11XdX2UKGgGaAloD0MIJgD/lCrAb0CUhpRSlGgVTQ4BaBZHQLYOVAJswcp1fZQoaAZoCWgPQwik4ZS5uS1wQJSGlFKUaBVL7WgWR0C2DmEJv5xjdX2UKGgGaAloD0MIGoaPiKmAckCUhpRSlGgVS99oFkdAtg50dZJTVHV9lChoBmgJaA9DCAq5Us8CU3NAlIaUUpRoFUvtaBZHQLYOjnZCfHx1fZQoaAZoCWgPQwjaq4+H/oJwQJSGlFKUaBVL22gWR0C2Dqe23KB/dX2UKGgGaAloD0MII57sZsaab0CUhpRSlGgVS/1oFkdAtg66WGATZnV9lChoBmgJaA9DCDSGOUEbtnNAlIaUUpRoFU0WAWgWR0C2DuizcAR1dX2UKGgGaAloD0MINC4cCMktU0CUhpRSlGgVS4poFkdAtg7sBgeA/nV9lChoBmgJaA9DCJQvaCFBmnBAlIaUUpRoFU0kAWgWR0C2DvZxiobXdX2UKGgGaAloD0MIv0aSIBxzc0CUhpRSlGgVS9RoFkdAtg8UdzXBg3V9lChoBmgJaA9DCP5fdeRIt1VAlIaUUpRoFUuLaBZHQLYPNtMPBi11fZQoaAZoCWgPQwhsIchBCbxtQJSGlFKUaBVL+2gWR0C2D0uKTB69dX2UKGgGaAloD0MIT62+uqoKc0CUhpRSlGgVS89oFkdAtg95a/yoXXV9lChoBmgJaA9DCEVlw5qKXnFAlIaUUpRoFU0aAWgWR0C2D4yd4FA3dX2UKGgGaAloD0MIWixF8lWtcUCUhpRSlGgVTQUBaBZHQLYPlWkrPMV1fZQoaAZoCWgPQwgIrBxa5BduQJSGlFKUaBVNAAFoFkdAtg+09RrJsHV9lChoBmgJaA9DCMvW+iLhPXBAlIaUUpRoFUvwaBZHQLYPuophF3J1fZQoaAZoCWgPQwjAQubKoG9wQJSGlFKUaBVL0mgWR0C2D8tRR/EwdX2UKGgGaAloD0MINJ4I4jxMc0CUhpRSlGgVS+ZoFkdAtg/YoMKCx3V9lChoBmgJaA9DCGqIKvxZZ3NAlIaUUpRoFUvWaBZHQLYP6QWepXJ1fZQoaAZoCWgPQwhkc9U8h3ZzQJSGlFKUaBVL9GgWR0C2EDY8ZDRddX2UKGgGaAloD0MICp+tg4Ohb0CUhpRSlGgVS8doFkdAthA72Xb/O3V9lChoBmgJaA9DCGO4OgDidm9AlIaUUpRoFUvVaBZHQLYQUDGtITZ1fZQoaAZoCWgPQwjerpemyJ9yQJSGlFKUaBVL9GgWR0C2EFV+y7f6dX2UKGgGaAloD0MIFf4MbxZMc0CUhpRSlGgVS+poFkdAthB6pBHCoHV9lChoBmgJaA9DCLfxJyqbEHJAlIaUUpRoFUvVaBZHQLYQjPGhmGx1fZQoaAZoCWgPQwiZ9WIoJwBUQJSGlFKUaBVLkGgWR0C2EJ7RrrPddX2UKGgGaAloD0MInplgOJcicUCUhpRSlGgVS/FoFkdAthD1Huqm0nV9lChoBmgJaA9DCFCLwcO0qnBAlIaUUpRoFUvpaBZHQLYQ/7gKnel1fZQoaAZoCWgPQwiu9UVC29JxQJSGlFKUaBVL6GgWR0C2EVX3YcvNdX2UKGgGaAloD0MIhPI+jmYfckCUhpRSlGgVTQYBaBZHQLYRhphWo3t1fZQoaAZoCWgPQwgHeT2YFMhwQJSGlFKUaBVL6WgWR0C2EZSb+cYqdX2UKGgGaAloD0MIrMd9q7V+ckCUhpRSlGgVS+toFkdAthGkP6KtP3V9lChoBmgJaA9DCH0E/vBzJHJAlIaUUpRoFUvQaBZHQLYRq0bLlmx1fZQoaAZoCWgPQwgEjZlE/UBwQJSGlFKUaBVL7WgWR0C2EcGx6fJ4dX2UKGgGaAloD0MIzJvDtZohckCUhpRSlGgVS8doFkdAthH+mqHXVnV9lChoBmgJaA9DCISB595DsXFAlIaUUpRoFU0EAWgWR0C2EgXv6TGHdX2UKGgGaAloD0MIGsOcoA1YcUCUhpRSlGgVS85oFkdAthILK+zt1XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cdf58a2f65f8fb2fe4a5c995f02806d8b85b03dc74e98870b5b598f6e9a71ab
|
3 |
+
size 147321
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a2a127160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a2a1271f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a2a127280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a2a127310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9a2a1273a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9a2a127430>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9a2a1274c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a2a127550>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9a2a1275e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a2a127670>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a2a127700>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a2a127790>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f9a2a121900>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678189244897920238,
|
52 |
+
"learning_rate": 0.0005,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBx1T16kbg/A/XgPt+BIr538BM+YnuBPgAAAAAAAAAAAODDO9JivDw6Wye97qVxvntTlb0+43K9AAAAAAAAAABzpsU9s527P8pyBz8de4+9+9VjPXZuUz4AAAAAAAAAAPr8JT62sy4/2hJlPQND5r7vGV8+2tcEvAAAAAAAAAAADTKKvt/kPD82MuU9DuXmvjrp477QEWg+AAAAAAAAAABmTqo7lPa0P9QZkjxngG++fUgtPDw+QD0AAAAAAAAAAJpzn7y4rbO7S4AEPIMthjzYrgI9dXtkvQAAgD8AAIA/ml8XPcOZfbqlJ9S6cZOItZCPDjoWqvc5AACAPwAAgD9azsy9femmPvqwMT7ebLy+gWYsPY0bij0AAAAAAAAAAIBmF74j1Co/+w4KPod83L7em8y92P/RPQAAAAAAAAAAIBRxPlcgjD/VKZ8+bRX8vgQaqD5baas9AAAAAAAAAACaO14931LfPDrPebwNToi+FMhzvSPp2TwAAAAAAAAAAOBeXj6RhSg/yBzgva+rz756DnQ+RoRXvQAAAAAAAAAAZiLOvLN6jT+eTVe8Z0oVv1j+xbwny5M8AAAAAAAAAADNi6Y8KY4fvObRpzuZCUs8h1+LPZTVK70AAIA/AACAP82667x7oIq60Q0vt8nUC7Jh6RI7jbNLNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOpZ31cMpckCUhpRSlIwBbJRL9IwBdJRHQLX5DTrVvuR1fZQoaAZoCWgPQwjYf52bdqlwQJSGlFKUaBVNGgFoFkdAtflXFHavinV9lChoBmgJaA9DCMiYu5aQ7nFAlIaUUpRoFUvCaBZHQLX5WyGzru91fZQoaAZoCWgPQwgpQX+hx3htQJSGlFKUaBVL5GgWR0C1+WsOwxFidX2UKGgGaAloD0MIFF/tKI7ucECUhpRSlGgVS+loFkdAtflqgGr0a3V9lChoBmgJaA9DCDroEg49E3JAlIaUUpRoFUvMaBZHQLX5nnKnvUl1fZQoaAZoCWgPQwg+XkiHB5NxQJSGlFKUaBVL3GgWR0C1+aqRQrMDdX2UKGgGaAloD0MIAtaqXdPMckCUhpRSlGgVS99oFkdAtfm0FlkH2XV9lChoBmgJaA9DCPlp3JtfLHBAlIaUUpRoFUvQaBZHQLX5uaFVT751fZQoaAZoCWgPQwjbi2g7pmBIQJSGlFKUaBVLuWgWR0C1+hGVAzHkdX2UKGgGaAloD0MI4fHtXYODc0CUhpRSlGgVS+toFkdAtfojxoZhrnV9lChoBmgJaA9DCJs8ZTUdNXJAlIaUUpRoFUvraBZHQLX6bkZrHlx1fZQoaAZoCWgPQwj9vRQe9PxxQJSGlFKUaBVL/WgWR0C1+nPbKzRhdX2UKGgGaAloD0MISPlJtc+UcECUhpRSlGgVS+xoFkdAtfqM5n13+3V9lChoBmgJaA9DCKX3ja+9vnFAlIaUUpRoFUv/aBZHQLX6jl0YCQt1fZQoaAZoCWgPQwhtkElGjhFzQJSGlFKUaBVL8GgWR0C1+p7Ou7pWdX2UKGgGaAloD0MIrOKNzKMjckCUhpRSlGgVS9hoFkdAtfrWGUOd5XV9lChoBmgJaA9DCGlSCrq9I3FAlIaUUpRoFUvdaBZHQLX64FwDNhV1fZQoaAZoCWgPQwjZeoZwjIhxQJSGlFKUaBVL6mgWR0C1+uNJjDsMdX2UKGgGaAloD0MIdcqjG2FkcUCUhpRSlGgVS/toFkdAtfsDmgam43V9lChoBmgJaA9DCPiMRGgE8XBAlIaUUpRoFUvOaBZHQLX7E+BYmsx1fZQoaAZoCWgPQwgHexNDcv5wQJSGlFKUaBVL2WgWR0C1+xttqHoHdX2UKGgGaAloD0MIacU3FH4qc0CUhpRSlGgVS+9oFkdAtfszvhIe5nV9lChoBmgJaA9DCI7pCUu8D3FAlIaUUpRoFUvlaBZHQLX7Pw8GLUF1fZQoaAZoCWgPQwheglMfSC1zQJSGlFKUaBVLx2gWR0C1+3hIe5nUdX2UKGgGaAloD0MIpp2ay81mckCUhpRSlGgVS/1oFkdAtfvHUutfX3V9lChoBmgJaA9DCIocIm5Oqm9AlIaUUpRoFUvTaBZHQLX8DjH4oJB1fZQoaAZoCWgPQwiUMqmhjQ5xQJSGlFKUaBVL4WgWR0C1/BUlNUOvdX2UKGgGaAloD0MITifZ6nIrbkCUhpRSlGgVS/1oFkdAtfw2KBNEgHV9lChoBmgJaA9DCPSJPEl6kXBAlIaUUpRoFUv/aBZHQLX8NSDRMOB1fZQoaAZoCWgPQwg+IxEaQQNyQJSGlFKUaBVL12gWR0C1/Ffh/Aj6dX2UKGgGaAloD0MIgZICC6D0ckCUhpRSlGgVS9RoFkdAtgrdcUuct3V9lChoBmgJaA9DCOCD1y7tc3JAlIaUUpRoFUvZaBZHQLYK/Ty8SPF1fZQoaAZoCWgPQwhdpFAWvstwQJSGlFKUaBVNDAFoFkdAtgsmhPCVKXV9lChoBmgJaA9DCAe139oJPW9AlIaUUpRoFU1CAWgWR0C2CzfAfuCxdX2UKGgGaAloD0MIr3lVZ3UYcUCUhpRSlGgVS/VoFkdAtgtCJyhi9nV9lChoBmgJaA9DCGmn5nKDLHJAlIaUUpRoFU0dAWgWR0C2C0zQeFL4dX2UKGgGaAloD0MIM1TFVPo8ckCUhpRSlGgVS+xoFkdAtgtX4i5d4XV9lChoBmgJaA9DCAO0rWadaXBAlIaUUpRoFUv7aBZHQLYLZEtNBWx1fZQoaAZoCWgPQwhZvi7DP4NyQJSGlFKUaBVL0mgWR0C2DBq3mV7hdX2UKGgGaAloD0MIHch6anUjcUCUhpRSlGgVTQwBaBZHQLYMJ/JeVs11fZQoaAZoCWgPQwhlUdhFUdpxQJSGlFKUaBVL3GgWR0C2DDMJ2MbWdX2UKGgGaAloD0MIPwCpTZzabkCUhpRSlGgVS9hoFkdAtgxN3FDOT3V9lChoBmgJaA9DCKT9D7CWy3FAlIaUUpRoFU0BAWgWR0C2DFm6PKdQdX2UKGgGaAloD0MIjq89s+RdckCUhpRSlGgVS8VoFkdAtgxyQ1aW5nV9lChoBmgJaA9DCGDMlqwKz3BAlIaUUpRoFU0PAWgWR0C2DHpbdJrddX2UKGgGaAloD0MISDFAosn6cUCUhpRSlGgVTXkBaBZHQLYMpQ9RrJt1fZQoaAZoCWgPQwhEFJM3gCdyQJSGlFKUaBVNAQFoFkdAtgzEWrOqvXV9lChoBmgJaA9DCJfhP91AbXJAlIaUUpRoFUvgaBZHQLYM9SYPXkJ1fZQoaAZoCWgPQwjmJJS+UP1xQJSGlFKUaBVL8GgWR0C2DPOjM3ZPdX2UKGgGaAloD0MI+z+H+bJjcUCUhpRSlGgVTQABaBZHQLYNAZi/fwZ1fZQoaAZoCWgPQwjQK556pNRxQJSGlFKUaBVL8WgWR0C2DQc7U5MldX2UKGgGaAloD0MIOgX52YgYckCUhpRSlGgVS/loFkdAtg0LAeq7y3V9lChoBmgJaA9DCIkLQKP0knJAlIaUUpRoFUv5aBZHQLYNKp+c6Nl1fZQoaAZoCWgPQwhqoWRy6t5kQJSGlFKUaBVN6ANoFkdAtg2oCFK02XV9lChoBmgJaA9DCGxc/65P9mxAlIaUUpRoFUvZaBZHQLYNsUt7KJV1fZQoaAZoCWgPQwiNXaJ6K4lxQJSGlFKUaBVL12gWR0C2DbZ8neBQdX2UKGgGaAloD0MI1GTG2wpqcECUhpRSlGgVS/toFkdAtg3h9fCyhXV9lChoBmgJaA9DCFk0nZ2MUHJAlIaUUpRoFUvwaBZHQLYOApNbkfd1fZQoaAZoCWgPQwgLJZNTO9FvQJSGlFKUaBVL6WgWR0C2Dg0X1rZbdX2UKGgGaAloD0MIrp6T3rd2cUCUhpRSlGgVTQoBaBZHQLYOJCpm29d1fZQoaAZoCWgPQwgEPdS24XRtQJSGlFKUaBVL4mgWR0C2Di5qh11XdX2UKGgGaAloD0MIJgD/lCrAb0CUhpRSlGgVTQ4BaBZHQLYOVAJswcp1fZQoaAZoCWgPQwik4ZS5uS1wQJSGlFKUaBVL7WgWR0C2DmEJv5xjdX2UKGgGaAloD0MIGoaPiKmAckCUhpRSlGgVS99oFkdAtg50dZJTVHV9lChoBmgJaA9DCAq5Us8CU3NAlIaUUpRoFUvtaBZHQLYOjnZCfHx1fZQoaAZoCWgPQwjaq4+H/oJwQJSGlFKUaBVL22gWR0C2Dqe23KB/dX2UKGgGaAloD0MII57sZsaab0CUhpRSlGgVS/1oFkdAtg66WGATZnV9lChoBmgJaA9DCDSGOUEbtnNAlIaUUpRoFU0WAWgWR0C2DuizcAR1dX2UKGgGaAloD0MINC4cCMktU0CUhpRSlGgVS4poFkdAtg7sBgeA/nV9lChoBmgJaA9DCJQvaCFBmnBAlIaUUpRoFU0kAWgWR0C2DvZxiobXdX2UKGgGaAloD0MIv0aSIBxzc0CUhpRSlGgVS9RoFkdAtg8UdzXBg3V9lChoBmgJaA9DCP5fdeRIt1VAlIaUUpRoFUuLaBZHQLYPNtMPBi11fZQoaAZoCWgPQwhsIchBCbxtQJSGlFKUaBVL+2gWR0C2D0uKTB69dX2UKGgGaAloD0MIT62+uqoKc0CUhpRSlGgVS89oFkdAtg95a/yoXXV9lChoBmgJaA9DCEVlw5qKXnFAlIaUUpRoFU0aAWgWR0C2D4yd4FA3dX2UKGgGaAloD0MIWixF8lWtcUCUhpRSlGgVTQUBaBZHQLYPlWkrPMV1fZQoaAZoCWgPQwgIrBxa5BduQJSGlFKUaBVNAAFoFkdAtg+09RrJsHV9lChoBmgJaA9DCMvW+iLhPXBAlIaUUpRoFUvwaBZHQLYPuophF3J1fZQoaAZoCWgPQwjAQubKoG9wQJSGlFKUaBVL0mgWR0C2D8tRR/EwdX2UKGgGaAloD0MINJ4I4jxMc0CUhpRSlGgVS+ZoFkdAtg/YoMKCx3V9lChoBmgJaA9DCGqIKvxZZ3NAlIaUUpRoFUvWaBZHQLYP6QWepXJ1fZQoaAZoCWgPQwhkc9U8h3ZzQJSGlFKUaBVL9GgWR0C2EDY8ZDRddX2UKGgGaAloD0MICp+tg4Ohb0CUhpRSlGgVS8doFkdAthA72Xb/O3V9lChoBmgJaA9DCGO4OgDidm9AlIaUUpRoFUvVaBZHQLYQUDGtITZ1fZQoaAZoCWgPQwjerpemyJ9yQJSGlFKUaBVL9GgWR0C2EFV+y7f6dX2UKGgGaAloD0MIFf4MbxZMc0CUhpRSlGgVS+poFkdAthB6pBHCoHV9lChoBmgJaA9DCLfxJyqbEHJAlIaUUpRoFUvVaBZHQLYQjPGhmGx1fZQoaAZoCWgPQwiZ9WIoJwBUQJSGlFKUaBVLkGgWR0C2EJ7RrrPddX2UKGgGaAloD0MInplgOJcicUCUhpRSlGgVS/FoFkdAthD1Huqm0nV9lChoBmgJaA9DCFCLwcO0qnBAlIaUUpRoFUvpaBZHQLYQ/7gKnel1fZQoaAZoCWgPQwiu9UVC29JxQJSGlFKUaBVL6GgWR0C2EVX3YcvNdX2UKGgGaAloD0MIhPI+jmYfckCUhpRSlGgVTQYBaBZHQLYRhphWo3t1fZQoaAZoCWgPQwgHeT2YFMhwQJSGlFKUaBVL6WgWR0C2EZSb+cYqdX2UKGgGaAloD0MIrMd9q7V+ckCUhpRSlGgVS+toFkdAthGkP6KtP3V9lChoBmgJaA9DCH0E/vBzJHJAlIaUUpRoFUvQaBZHQLYRq0bLlmx1fZQoaAZoCWgPQwgEjZlE/UBwQJSGlFKUaBVL7WgWR0C2EcGx6fJ4dX2UKGgGaAloD0MIzJvDtZohckCUhpRSlGgVS8doFkdAthH+mqHXVnV9lChoBmgJaA9DCISB595DsXFAlIaUUpRoFU0EAWgWR0C2EgXv6TGHdX2UKGgGaAloD0MIGsOcoA1YcUCUhpRSlGgVS85oFkdAthILK+zt1XVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 620,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48919839b48bc34c972ab12caa03efee75d459724913b26e34bb57ce4ae394aa
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bc12e866b22f50116fc87182d8393d49e97d844ce67536c902535e2d9f4721e
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 277.65446098653246, "std_reward": 18.905052793642106, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-07T12:09:19.996031"}
|