update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
model-index:
|
8 |
+
- name: bart-large-japanese-RMT-tobyoki-20
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# bart-large-japanese-RMT-tobyoki-20
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [ku-nlp/bart-large-japanese](https://huggingface.co/ku-nlp/bart-large-japanese) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.4333
|
20 |
+
- Rouge1: 10.4455
|
21 |
+
- Rouge2: 0.9997
|
22 |
+
- Rougel: 7.6259
|
23 |
+
- Rougelsum: 9.0518
|
24 |
+
- Gen Len: 2098.2
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 3e-06
|
44 |
+
- train_batch_size: 2
|
45 |
+
- eval_batch_size: 2
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 10.0
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:|
|
55 |
+
| No log | 1.0 | 40 | 3.1809 | 9.7012 | 1.3824 | 6.3532 | 8.4445 | 3000.0 |
|
56 |
+
| No log | 2.0 | 80 | 2.8693 | 11.308 | 1.6656 | 6.9919 | 9.8495 | 2980.5 |
|
57 |
+
| No log | 3.0 | 120 | 2.6873 | 11.7005 | 1.6944 | 7.3988 | 10.0862 | 2702.3 |
|
58 |
+
| No log | 4.0 | 160 | 2.5541 | 10.815 | 1.2578 | 7.4659 | 9.1837 | 2275.6 |
|
59 |
+
| No log | 5.0 | 200 | 2.4785 | 10.5975 | 1.0925 | 7.6191 | 9.357 | 2157.6 |
|
60 |
+
| No log | 6.0 | 240 | 2.4333 | 10.4455 | 0.9997 | 7.6259 | 9.0518 | 2098.2 |
|
61 |
+
|
62 |
+
|
63 |
+
### Framework versions
|
64 |
+
|
65 |
+
- Transformers 4.30.0
|
66 |
+
- Pytorch 2.0.1+cu117
|
67 |
+
- Datasets 2.14.4
|
68 |
+
- Tokenizers 0.13.3
|