kadirnar commited on
Commit
e1e82e7
1 Parent(s): c85c111

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -0
README.md CHANGED
@@ -1,3 +1,121 @@
1
  ---
2
  license: gpl-3.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: gpl-3.0
3
+ tags:
4
+ - object-detection
5
+ - computer-vision
6
+ - sort
7
+ - tracker
8
+ - osnet
9
  ---
10
+
11
+ <div align="center">
12
+ <h1>
13
+ Torchreid-Pip: Packaged version of Torchreid
14
+ </h1>
15
+ <h4>
16
+ <img width="700" alt="teaser" src="https://raw.githubusercontent.com/goksenin-uav/torchreid-pip/main/doc/logo.png">
17
+ </h4>
18
+ </div>
19
+
20
+ This repo is a packaged version of the [Torchreid](https://github.com/KaiyangZhou/deep-person-reid) algorithm.
21
+ ### Installation
22
+ ```
23
+ pip install torchreid
24
+ ```
25
+
26
+ ### Model Description
27
+ [Learning Generalisable Omni-Scale Representations for Person Re-Identification](https://arxiv.org/abs/1905.00953):
28
+ [Omni-Scale Feature Learning for Person Re-Identification](https://arxiv.org/abs/1910.06827)
29
+ [Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch](https://arxiv.org/abs/1910.10093)
30
+
31
+
32
+ ### Overview
33
+ ##### 1. Import ``torchreid``
34
+ ```python
35
+ import torchreid
36
+ ```
37
+ ##### 2. Load data manager
38
+
39
+ ```python
40
+ datamanager = torchreid.data.ImageDataManager(
41
+ root="reid-data",
42
+ sources="market1501",
43
+ targets="market1501",
44
+ height=256,
45
+ width=128,
46
+ batch_size_train=32,
47
+ batch_size_test=100,
48
+ transforms=["random_flip", "random_crop"]
49
+ )
50
+ ```
51
+ ##### 3 Build model, optimizer and lr_scheduler
52
+
53
+ ```python
54
+ model = torchreid.models.build_model(
55
+ name="resnet50",
56
+ num_classes=datamanager.num_train_pids,
57
+ loss="softmax",
58
+ pretrained=True
59
+ )
60
+
61
+ model = model.cuda()
62
+
63
+ optimizer = torchreid.optim.build_optimizer(
64
+ model,
65
+ optim="adam",
66
+ lr=0.0003
67
+ )
68
+
69
+ scheduler = torchreid.optim.build_lr_scheduler(
70
+ optimizer,
71
+ lr_scheduler="single_step",
72
+ stepsize=20
73
+ )
74
+ ```
75
+ ##### 4. Build engine
76
+
77
+ ```python
78
+ engine = torchreid.engine.ImageSoftmaxEngine(
79
+ datamanager,
80
+ model,
81
+ optimizer=optimizer,
82
+ scheduler=scheduler,
83
+ label_smooth=True
84
+ )
85
+ ```
86
+ ##### 5. Run training and test
87
+
88
+ ```python
89
+ engine.run(
90
+ save_dir="log/resnet50",
91
+ max_epoch=60,
92
+ eval_freq=10,
93
+ print_freq=10,
94
+ test_only=False
95
+ )
96
+ ```
97
+ Citation
98
+ ---------
99
+ If you use this code or the models in your research, please give credit to the following papers:
100
+ ```bibtex
101
+ @article{torchreid,
102
+ title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch},
103
+ author={Zhou, Kaiyang and Xiang, Tao},
104
+ journal={arXiv preprint arXiv:1910.10093},
105
+ year={2019}
106
+ }
107
+
108
+ @inproceedings{zhou2019osnet,
109
+ title={Omni-Scale Feature Learning for Person Re-Identification},
110
+ author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
111
+ booktitle={ICCV},
112
+ year={2019}
113
+ }
114
+
115
+ @article{zhou2021osnet,
116
+ title={Learning Generalisable Omni-Scale Representations for Person Re-Identification},
117
+ author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
118
+ journal={TPAMI},
119
+ year={2021}
120
+ }
121
+ ```