awoo
Browse filesSigned-off-by: Balazs Horvath <acsipont@gmail.com>
- jtp2.py +0 -161
- metrics/by_dagasi-v220240731004448/network_train/events.out.tfevents.1722379588.berilia.2834308.0 +0 -3
- metrics/by_hax-v1e400-20240804130227/network_train/events.out.tfevents.1722769396.berilia.3289669.0 +0 -3
- metrics/by_jinxit-v2e400-20240729235422/network_train/events.out.tfevents.1722290163.berilia.3199627.0 +0 -3
- metrics/magic-normalized-v2e400-20240730013158/network_train/events.out.tfevents.1722295954.berilia.3268268.0 +0 -3
- metrics/realistic-v7e400-20240802163709/network_train/events.out.tfevents.1722609499.berilia.1601635.0 +0 -3
- metrics/space-v2e200-20240730174030/network_train/events.out.tfevents.1722354067.berilia.1646768.0 +0 -3
- metrics/stoat-v7e400-20240729181527/network_train/events.out.tfevents.1722269758.berilia.2962309.0 +0 -3
- train-pony.sh +0 -103
jtp2.py
DELETED
@@ -1,161 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
from PIL import Image
|
4 |
-
import safetensors.torch
|
5 |
-
import timm
|
6 |
-
from timm.models import VisionTransformer
|
7 |
-
import torch
|
8 |
-
from torchvision.transforms import transforms
|
9 |
-
from torchvision.transforms import InterpolationMode
|
10 |
-
import torchvision.transforms.functional as TF
|
11 |
-
import argparse
|
12 |
-
import pillow_jxl
|
13 |
-
|
14 |
-
torch.set_grad_enabled(False)
|
15 |
-
|
16 |
-
class Fit(torch.nn.Module):
|
17 |
-
def __init__(self, bounds: tuple[int, int] | int, interpolation=InterpolationMode.LANCZOS, grow: bool = True, pad: float | None = None):
|
18 |
-
super().__init__()
|
19 |
-
self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds
|
20 |
-
self.interpolation = interpolation
|
21 |
-
self.grow = grow
|
22 |
-
self.pad = pad
|
23 |
-
|
24 |
-
def forward(self, img: Image) -> Image:
|
25 |
-
wimg, himg = img.size
|
26 |
-
hbound, wbound = self.bounds
|
27 |
-
hscale = hbound / himg
|
28 |
-
wscale = wbound / wimg
|
29 |
-
if not self.grow:
|
30 |
-
hscale = min(hscale, 1.0)
|
31 |
-
wscale = min(wscale, 1.0)
|
32 |
-
scale = min(hscale, wscale)
|
33 |
-
if scale == 1.0:
|
34 |
-
return img
|
35 |
-
hnew = min(round(himg * scale), hbound)
|
36 |
-
wnew = min(round(wimg * scale), wbound)
|
37 |
-
img = TF.resize(img, (hnew, wnew), self.interpolation)
|
38 |
-
if self.pad is None:
|
39 |
-
return img
|
40 |
-
hpad = hbound - hnew
|
41 |
-
wpad = wbound - wnew
|
42 |
-
tpad = hpad // 2
|
43 |
-
bpad = hpad - tpad
|
44 |
-
lpad = wpad // 2
|
45 |
-
rpad = wpad - lpad
|
46 |
-
return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad)
|
47 |
-
|
48 |
-
def __repr__(self) -> str:
|
49 |
-
return f"{self.__class__.__name__}(bounds={self.bounds}, interpolation={self.interpolation.value}, grow={self.grow}, pad={self.pad})"
|
50 |
-
|
51 |
-
class CompositeAlpha(torch.nn.Module):
|
52 |
-
def __init__(self, background: tuple[float, float, float] | float):
|
53 |
-
super().__init__()
|
54 |
-
self.background = (background, background, background) if isinstance(background, float) else background
|
55 |
-
self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2)
|
56 |
-
|
57 |
-
def forward(self, img: torch.Tensor) -> torch.Tensor:
|
58 |
-
if img.shape[-3] == 3:
|
59 |
-
return img
|
60 |
-
alpha = img[..., 3, None, :, :]
|
61 |
-
img[..., :3, :, :] *= alpha
|
62 |
-
background = self.background.expand(-1, img.shape[-2], img.shape[-1])
|
63 |
-
if background.ndim == 1:
|
64 |
-
background = background[:, None, None]
|
65 |
-
elif background.ndim == 2:
|
66 |
-
background = background[None, :, :]
|
67 |
-
img[..., :3, :, :] += (1.0 - alpha) * background
|
68 |
-
return img[..., :3, :, :]
|
69 |
-
|
70 |
-
def __repr__(self) -> str:
|
71 |
-
return f"{self.__class__.__name__}(background={self.background})"
|
72 |
-
|
73 |
-
transform = transforms.Compose([
|
74 |
-
Fit((384, 384)),
|
75 |
-
transforms.ToTensor(),
|
76 |
-
CompositeAlpha(0.5),
|
77 |
-
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
78 |
-
transforms.CenterCrop((384, 384)),
|
79 |
-
])
|
80 |
-
|
81 |
-
model = timm.create_model("vit_so400m_patch14_siglip_384.webli", pretrained=False, num_classes=9083) # type: VisionTransformer
|
82 |
-
|
83 |
-
class GatedHead(torch.nn.Module):
|
84 |
-
def __init__(self, num_features: int, num_classes: int):
|
85 |
-
super().__init__()
|
86 |
-
self.num_classes = num_classes
|
87 |
-
self.linear = torch.nn.Linear(num_features, num_classes * 2)
|
88 |
-
self.act = torch.nn.Sigmoid()
|
89 |
-
self.gate = torch.nn.Sigmoid()
|
90 |
-
|
91 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
92 |
-
x = self.linear(x)
|
93 |
-
x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:])
|
94 |
-
return x
|
95 |
-
|
96 |
-
model.head = GatedHead(min(model.head.weight.shape), 9083)
|
97 |
-
safetensors.torch.load_model(model, "JTP_PILOT2-e3-vit_so400m_patch14_siglip_384.safetensors")
|
98 |
-
|
99 |
-
if torch.cuda.is_available():
|
100 |
-
model.cuda()
|
101 |
-
if torch.cuda.get_device_capability()[0] >= 7: # tensor cores
|
102 |
-
model.to(dtype=torch.float16, memory_format=torch.channels_last)
|
103 |
-
|
104 |
-
model.eval()
|
105 |
-
|
106 |
-
with open("tags.json", "r") as file:
|
107 |
-
tags = json.load(file) # type: dict
|
108 |
-
allowed_tags = list(tags.keys())
|
109 |
-
|
110 |
-
for idx, tag in enumerate(allowed_tags):
|
111 |
-
allowed_tags[idx] = tag.replace("_", " ")
|
112 |
-
|
113 |
-
sorted_tag_score = {}
|
114 |
-
|
115 |
-
def run_classifier(image, threshold):
|
116 |
-
global sorted_tag_score
|
117 |
-
img = image.convert('RGBA')
|
118 |
-
tensor = transform(img).unsqueeze(0)
|
119 |
-
if torch.cuda.is_available():
|
120 |
-
tensor = tensor.cuda()
|
121 |
-
if torch.cuda.get_device_capability()[0] >= 7: # tensor cores
|
122 |
-
tensor = tensor.to(dtype=torch.float16, memory_format=torch.channels_last)
|
123 |
-
with torch.no_grad():
|
124 |
-
probits = model(tensor)[0].cpu()
|
125 |
-
values, indices = probits.topk(250)
|
126 |
-
tag_score = dict()
|
127 |
-
for i in range(indices.size(0)):
|
128 |
-
tag_score[allowed_tags[indices[i]]] = values[i].item()
|
129 |
-
sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True))
|
130 |
-
return create_tags(threshold)
|
131 |
-
|
132 |
-
def create_tags(threshold):
|
133 |
-
global sorted_tag_score
|
134 |
-
filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold}
|
135 |
-
text_no_impl = ", ".join(filtered_tag_score.keys())
|
136 |
-
return text_no_impl, filtered_tag_score
|
137 |
-
|
138 |
-
def process_directory(directory, threshold):
|
139 |
-
results = {}
|
140 |
-
for root, _, files in os.walk(directory):
|
141 |
-
for file in files:
|
142 |
-
if file.lower().endswith(('.jpg', '.jpeg', '.png', '.jxl')):
|
143 |
-
image_path = os.path.join(root, file)
|
144 |
-
image = Image.open(image_path)
|
145 |
-
tags, _ = run_classifier(image, threshold)
|
146 |
-
results[image_path] = tags
|
147 |
-
# Save tags to a text file with the same name as the image
|
148 |
-
text_file_path = os.path.splitext(image_path)[0] + ".txt"
|
149 |
-
with open(text_file_path, "w") as text_file:
|
150 |
-
text_file.write(tags)
|
151 |
-
return results
|
152 |
-
|
153 |
-
if __name__ == "__main__":
|
154 |
-
parser = argparse.ArgumentParser(description="Run inference on a directory of images.")
|
155 |
-
parser.add_argument("directory", type=str, help="Target directory containing images.")
|
156 |
-
parser.add_argument("--threshold", type=float, default=0.2, help="Threshold for tag filtering.")
|
157 |
-
args = parser.parse_args()
|
158 |
-
|
159 |
-
results = process_directory(args.directory, args.threshold)
|
160 |
-
for image_path, tags in results.items():
|
161 |
-
print(f"{image_path}: {tags}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
metrics/by_dagasi-v220240731004448/network_train/events.out.tfevents.1722379588.berilia.2834308.0
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9ccee82a99379d3deeea818c60394392931cfff3fe19fa7483dc6ad0fe3f5568
|
3 |
-
size 403320
|
|
|
|
|
|
|
|
metrics/by_hax-v1e400-20240804130227/network_train/events.out.tfevents.1722769396.berilia.3289669.0
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:034baf9175755f1a4d71e099eef11c13eaaf4f20f784c7b9ff121342ef5c7ddb
|
3 |
-
size 396905
|
|
|
|
|
|
|
|
metrics/by_jinxit-v2e400-20240729235422/network_train/events.out.tfevents.1722290163.berilia.3199627.0
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2c46a98e965052fabfbc1b65bfd9290e33e1358a3cf7c4b26addd2a627114595
|
3 |
-
size 843874
|
|
|
|
|
|
|
|
metrics/magic-normalized-v2e400-20240730013158/network_train/events.out.tfevents.1722295954.berilia.3268268.0
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a24bc14ad339847b995826600261af14c07c923a4fc04248b7124d25fadce7c8
|
3 |
-
size 544162
|
|
|
|
|
|
|
|
metrics/realistic-v7e400-20240802163709/network_train/events.out.tfevents.1722609499.berilia.1601635.0
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:55b3897bb017c365e498cb9545186be2243474821719180fb2fb5c519273d193
|
3 |
-
size 820965
|
|
|
|
|
|
|
|
metrics/space-v2e200-20240730174030/network_train/events.out.tfevents.1722354067.berilia.1646768.0
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b2288178ab681b4b4a20b12a65fe2627426add1bc4562530230952833ebb7950
|
3 |
-
size 620514
|
|
|
|
|
|
|
|
metrics/stoat-v7e400-20240729181527/network_train/events.out.tfevents.1722269758.berilia.2962309.0
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:8d5a441c2f829509ff64f2ef9ee575c93fef551944b85f81214fef7bb98a06ed
|
3 |
-
size 806521
|
|
|
|
|
|
|
|
train-pony.sh
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
#/usr/bin/env zsh
|
2 |
-
|
3 |
-
NAME="stoat-v2s400"
|
4 |
-
|
5 |
-
# alpha=1 @ dim=16 is the same lr than alpha=4 @ dim=256
|
6 |
-
# --min_snr_gamma=1
|
7 |
-
|
8 |
-
args=(
|
9 |
-
--pretrained_model_name_or_path=/home/kade/ComfyUI/models/checkpoints/ponyDiffusionV6XL_v6StartWithThisOne.safetensors
|
10 |
-
# Output, logging
|
11 |
-
--output_dir="/home/kade/output_dir/$NAME"
|
12 |
-
--output_name="$NAME"
|
13 |
-
--log_prefix="$NAME-"
|
14 |
-
--log_with=tensorboard
|
15 |
-
--logging_dir=/home/kade/output_dir/logs
|
16 |
-
--seed=1728871242
|
17 |
-
|
18 |
-
# Dataset
|
19 |
-
--train_data_dir=/home/kade/training_dir
|
20 |
-
--dataset_repeats=1
|
21 |
-
--resolution="1024,1024"
|
22 |
-
--enable_bucket
|
23 |
-
--bucket_reso_steps=32
|
24 |
-
--min_bucket_reso=256
|
25 |
-
--max_bucket_reso=2048
|
26 |
-
--flip_aug
|
27 |
-
--shuffle_caption
|
28 |
-
--cache_latents
|
29 |
-
--cache_latents_to_disk
|
30 |
-
--max_data_loader_n_workers=8
|
31 |
-
--persistent_data_loader_workers
|
32 |
-
|
33 |
-
# Network config
|
34 |
-
--network_dim=8
|
35 |
-
--network_alpha=4
|
36 |
-
--network_module="lycoris.kohya"
|
37 |
-
--network_args
|
38 |
-
"preset=full"
|
39 |
-
"conv_dim=256"
|
40 |
-
"conv_alpha=4"
|
41 |
-
"rank_dropout=0"
|
42 |
-
"module_dropout=0"
|
43 |
-
"use_tucker=False"
|
44 |
-
"use_scalar=False"
|
45 |
-
"rank_dropout_scale=False"
|
46 |
-
"algo=locon"
|
47 |
-
"dora_wd=False"
|
48 |
-
"train_norm=False"
|
49 |
-
--network_dropout=0
|
50 |
-
|
51 |
-
# Optimizer config
|
52 |
-
--optimizer_type=ClybW
|
53 |
-
--train_batch_size=8
|
54 |
-
--gradient_accumulation_steps=6
|
55 |
-
--max_grad_norm=1
|
56 |
-
--gradient_checkpointing
|
57 |
-
#--lr_warmup_steps=6
|
58 |
-
#--scale_weight_norms=1
|
59 |
-
|
60 |
-
# LR Scheduling
|
61 |
-
--max_train_steps=400
|
62 |
-
--learning_rate=0.0002
|
63 |
-
--unet_lr=0.0002
|
64 |
-
--text_encoder_lr=0.0001
|
65 |
-
--lr_scheduler="cosine"
|
66 |
-
--lr_scheduler_args="num_cycles=0.375"
|
67 |
-
|
68 |
-
# Noise
|
69 |
-
--multires_noise_iterations=12
|
70 |
-
--multires_noise_discount=0.4
|
71 |
-
#--min_snr_gamma=1
|
72 |
-
|
73 |
-
# Optimization, details
|
74 |
-
--no_half_vae
|
75 |
-
--sdpa
|
76 |
-
--mixed_precision="bf16"
|
77 |
-
|
78 |
-
# Saving
|
79 |
-
--save_model_as="safetensors"
|
80 |
-
--save_precision="fp16"
|
81 |
-
--save_every_n_steps=20
|
82 |
-
--save_state
|
83 |
-
# Either resume from a saved state
|
84 |
-
#--resume="$HOME/output_dir/wolflink-vfucks400" # Resume from saved state
|
85 |
-
#--skip_until_initial_step
|
86 |
-
# Or from a checkpoint
|
87 |
-
#--network_weights="$HOME/output_dir/wolflink-vfucks400/wolflink-vfucks400-step00000120.safetensors" # Resume from checkpoint (not needed with state, i think)
|
88 |
-
#--initial_step=120
|
89 |
-
|
90 |
-
# Sampling
|
91 |
-
--sample_every_n_steps=20
|
92 |
-
--sample_prompts=/home/kade/training_dir/sample-prompts.txt
|
93 |
-
--sample_sampler="euler_a"
|
94 |
-
--caption_extension=".txt"
|
95 |
-
)
|
96 |
-
|
97 |
-
|
98 |
-
cd ~/source/repos/sd-scripts
|
99 |
-
|
100 |
-
#accelerate launch --num_cpu_threads_per_process=2
|
101 |
-
python "./sdxl_train_network.py" "${args[@]}"
|
102 |
-
|
103 |
-
cd ~
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|