ppo-lunarlander-v2 / config.json
krackarman
Revert "hyperparameter tune - v2"
d0477f7
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a6985231990>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a6985231a20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a6985231ab0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a6985231b40>", "_build": "<function ActorCriticPolicy._build at 0x7a6985231bd0>", "forward": "<function ActorCriticPolicy.forward at 0x7a6985231c60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a6985231cf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a6985231d80>", "_predict": "<function ActorCriticPolicy._predict at 0x7a6985231e10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a6985231ea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a6985231f30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a6985231fc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a69851c5980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701932160007474252, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFPAA776m1k/bLWSPBR9yr43K3C+TugIPgAAAAAAAAAAOkM1PqVxkj94I+Y+lKIdv80rXz4z7TM+AAAAAAAAAABNWR89tnUTvKTSsDtv4Aw8D6J3vTKU9zwAAIA/AACAPwBv+rwUVpm6etRKupTF17ix8Ry7uhB2OQAAgD8AAIA/WnWNPQrmG7sqCKM8PnK1PCYKVbwSLpo9AACAPwAAgD8Ayxg9qIjJPbT4CL+7Sy++7U5evm61Eb4AAAAAAAAAANP+Zz7rDz0/PpZEPdTB4L7XMj8+nafgvAAAAAAAAAAAcyuLvcMJFLogEOM5YbUjON9vxzpWeQe5AACAPwAAgD+NK789tsZjPaHayL1X/16+lj+DPLiNtT0AAAAAAAAAAGbsLT170IG6NjNktRosYLDhMTI7HhidNAAAgD8AAIA/VsmGPjpbjj/fvR0/wrMpv7V6kT64ZF4+AAAAAAAAAABmZhI8BpyUPtqoJj7QdbS+exTqPRLhGD0AAAAAAAAAAJpR2j3D0RW6Nl16uolXmLWLuZK7htWROQAAAAAAAIA/YLQPPpqjKj5Zl5W+Nv2Vvm0Zbj3twdO9AAAAAAAAAACm1JM9Kb1BvEP10zzLXv69EfPDvcjdmr4AAIA/AAAAADNv5DyPHnm6pfzXN/HJyjK7aYS4wsT8tgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHqTbFjurqMAWyUTScBjAF0lEdAtTauwC8vmHV9lChoBkdAcMsmUGFBY2gHS+NoCEdAtTaxJEpiJHV9lChoBkdAcQZUVBUrCmgHTQYBaAhHQLU21/1QIld1fZQoaAZHQHJtptSAH3VoB0vxaAhHQLU3HHiWE9N1fZQoaAZHQHCqLiqABktoB00WAWgIR0C1Nz2O2iL3dX2UKGgGR0Bwdh/ViF0xaAdL+GgIR0C1N1jXz19OdX2UKGgGR0BvLayGBWgfaAdNKwFoCEdAtTdtsyi22HV9lChoBkdAcmAZ1V5rxmgHTRIBaAhHQLU3nHnU2DR1fZQoaAZHQHHXyQkona5oB0v/aAhHQLU3tbFjurp1fZQoaAZHQG7nZHuqm0poB0vSaAhHQLU3t1SOzY51fZQoaAZHQHMVh/ZuhsZoB02zAWgIR0C1N9sPnSv1dX2UKGgGR0Bzx+cnVoYfaAdL1WgIR0C1OBbqY7aJdX2UKGgGR0B0CAs+V1OkaAdL6GgIR0C1OB9Mj/uLdX2UKGgGR0ByiFPEbYK6aAdNIwFoCEdAtTg3M/yGz3V9lChoBkdAcxngqmTC+GgHTQQBaAhHQLU4WkxREWt1fZQoaAZHQEw6Dyvs7dVoB0vAaAhHQLU4aMvAXVN1fZQoaAZHQHBa+ARTS9doB00RAWgIR0C1OGb5IpYtdX2UKGgGR0BwuCThYNiIaAdNBwFoCEdAtThwleF+NXV9lChoBkdAcJovzOHFgmgHTVQBaAhHQLU4h5NoJzF1fZQoaAZHQHECHsC1Z1VoB0v/aAhHQLU4iw4KhL51fZQoaAZHQHJDoyfthNNoB0vOaAhHQLU4qQHAymB1fZQoaAZHQHH1ZEDyOJdoB0vcaAhHQLU40Lux8lZ1fZQoaAZHQHIYAwsXizdoB0vhaAhHQLU5BMqz7dl1fZQoaAZHQFBfe5nUUfxoB0uaaAhHQLU5CTNMXad1fZQoaAZHQHOB0ulGgBdoB00jAWgIR0C1ORN6gM+edX2UKGgGR0BsuaZML4N7aAdL3GgIR0C1ORV/c32mdX2UKGgGR0BvC3HaN+9baAdL4GgIR0C1ORpBHCoCdX2UKGgGR0By2ul0o0AMaAdL32gIR0C1OTZNoJzDdX2UKGgGR0BxsCb4Ju2raAdL2WgIR0C1OaWrsByTdX2UKGgGR0BxLM5FPSDzaAdL2GgIR0C1Oa2bobGWdX2UKGgGR0Bx/vjMmnfmaAdNCgFoCEdAtTnNF1B+nnV9lChoBkdAcp/sjVx0dWgHS+BoCEdAtTnW3fAKv3V9lChoBkdAcTohiLEUCmgHS/5oCEdAtTnmWszVMHV9lChoBkdAbgVQyAQQMGgHS+doCEdAtTnl+b3GoHV9lChoBkdAcXAESdvsJWgHTQcBaAhHQLU550AtFrl1fZQoaAZHQG+Kwgkka/BoB0vmaAhHQLU6MXRPXTV1fZQoaAZHQHIqXc+JP69oB0vLaAhHQLU6TtIkJKJ1fZQoaAZHQHOWeZ9d/rloB003AWgIR0C1OpQu7HyVdX2UKGgGR0BzyeOJcgQpaAdNAgFoCEdAtTq8/PgNw3V9lChoBkdAcWlzkIX0oWgHTQUBaAhHQLU6vbuc+aB1fZQoaAZHQG+lld1MdtFoB00UAWgIR0C1OsRRMvh7dX2UKGgGR0BxPqGwiaAnaAdNJwFoCEdAtTrn0HyEtnV9lChoBkdAcX9qLCN0eWgHTRQBaAhHQLU6/w7kn1F1fZQoaAZHQHHtkp3HJcRoB03PAWgIR0C1OwRUJfICdX2UKGgGR0ByOewmmce9aAdLy2gIR0C1Ox++VTrFdX2UKGgGR0Bwtyzu4PPLaAdL4WgIR0C1O0mHtWuHdX2UKGgGR0ByShSm65G0aAdNBwFoCEdAtTtYcwQDm3V9lChoBkdAb1c7cwg1WWgHS+loCEdAtTtlb0OEunV9lChoBkdAcDM704BFNWgHS/poCEdAtTuEcm0E5nV9lChoBkdAcwL8yeqaPWgHS/xoCEdAtTuIpXp4bHV9lChoBkdAcO14C6pYLmgHS9toCEdAtTue3I+4b3V9lChoBkdAcNSNDc/MXGgHTQUBaAhHQLU8Ao3rD651fZQoaAZHQHA6AOSW7e5oB0vkaAhHQLU8M3/Pw/h1fZQoaAZHQHJ4XHR1HONoB0vsaAhHQLU8QUi6g/V1fZQoaAZHQHL7oBaLXMBoB0vtaAhHQLU8Sa2F36h1fZQoaAZHQHB1CkTHsC1oB00VAWgIR0C1PGDSkTHsdX2UKGgGR0Bvl+jmCAc1aAdL32gIR0C1PG33pOerdX2UKGgGR0BzPYAGSpzcaAdL/GgIR0C1PIiRjjJddX2UKGgGR0BxfUOvt+kQaAdL2mgIR0C1PI5m7J4jdX2UKGgGR0BzFCiVSn+AaAdL9GgIR0C1PJgK8cuKdX2UKGgGR0Bm/uCVbA1vaAdNwgFoCEdAtTyeMYMvy3V9lChoBkdAc2o09hZyMmgHS/BoCEdAtTzVBC2MKnV9lChoBkdAcd4L4vexfWgHS+RoCEdAtTz51+y7gHV9lChoBkdAcs+ggow222gHS+toCEdAtT0xajesP3V9lChoBkdAcpKgdfb9ImgHS/xoCEdAtT037Kq4pnV9lChoBkdAbzKFAVwgkmgHTTsBaAhHQLU9nwV0tAd1fZQoaAZHQG/tyJCSidtoB01IAWgIR0C1PasurZJ1dX2UKGgGR0ByAEo6S1VpaAdLzGgIR0C1PbT2SMcZdX2UKGgGR0Bwl9MIu5BkaAdL+2gIR0C1Pd9Y8uBddX2UKGgGR0BwsaCK77KraAdL52gIR0C1Pf2HHmzTdX2UKGgGR0BvV9xVAAyVaAdL3mgIR0C1PiQZsKsudX2UKGgGR0BzJgd+5OJtaAdL+mgIR0C1PjFx0dR0dX2UKGgGR0BybSHUMG5daAdL+mgIR0C1Pk8ewLVndX2UKGgGR0BxH/PcBU70aAdL6GgIR0C1Pm9VJcxCdX2UKGgGR0By9G6nR9gGaAdNEgFoCEdAtT617F85S3V9lChoBkdAcAtRc/t6X2gHTQ4BaAhHQLU+tamXPZ91fZQoaAZHQHJwnBLwnYxoB00RAWgIR0C1PtA79ycTdX2UKGgGR0Bv3Hr0J4SpaAdL7GgIR0C1PtUfcN6PdX2UKGgGR0Byclgv114gaAdL6GgIR0C1PzRri2lVdX2UKGgGR0BvvBv73wkPaAdNFwFoCEdAtT9geOn2qXV9lChoBkdAcXMpNKyv92gHS9toCEdAtT+CHnEET3V9lChoBkdAcsdpYs/Y8WgHS8VoCEdAtT+p2yLQ5XV9lChoBkdAcsCib2Dg62gHS99oCEdAtT/DAgxJunV9lChoBkdAcZ2cQAdXDGgHTQgBaAhHQLU/3AIppex1fZQoaAZHQHKkZCBwuNBoB005AWgIR0C1P+LQswtbdX2UKGgGR0BvTRLwnYxtaAdNCQFoCEdAtT/v7j1f3XV9lChoBkdAcnGcaOxSpGgHS/poCEdAtUBI7U5MlHV9lChoBkdAchhMgU1yemgHS+xoCEdAtUBJrO7g9HV9lChoBkdAdAtNSqEOAmgHTQMBaAhHQLVAT7aqS5l1fZQoaAZHQHBj4FJQLuxoB0vkaAhHQLVAV6wt8NR1fZQoaAZHQHEGDUExIrhoB0vhaAhHQLVAkkeZG8V1fZQoaAZHQG9bSM1jy4FoB0vhaAhHQLVAtXZoPCl1fZQoaAZHQHAYBHCoCMhoB00AAWgIR0C1QMz5O8CgdX2UKGgGR0BwHvsJIDoyaAdNBgFoCEdAtUDqtnwocHV9lChoBkdAciJuDBdld2gHS9poCEdAtUDvIYFaCHV9lChoBkdAcG30J4SpSGgHS8poCEdAtUEJ5+pfhXV9lChoBkdAcJodmxt52WgHS9VoCEdAtUFF7eEZi3V9lChoBkdAcmPa5PM0QGgHTQ8BaAhHQLVBXiml67d1fZQoaAZHQHJyRsyi22JoB0vsaAhHQLVBf5iVjZt1fZQoaAZHQHIWqLn9vTBoB00HAWgIR0C1QYZy2hIwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 184, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}