re-add source w residual
Browse files
model.py
CHANGED
@@ -1,17 +1,439 @@
|
|
1 |
-
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import copy
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
import transformers
|
7 |
|
8 |
-
from cde.lib.dist import print0
|
9 |
-
from cde.lib.tensor import mean_pool, mean_pool_3d, mean_pool_weighted, last_token_pool
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def limit_layers(model: transformers.PreTrainedModel, n_layers: int) -> None:
|
17 |
if hasattr(model, 'transformer'):
|
@@ -27,6 +449,7 @@ def limit_layers(model: transformers.PreTrainedModel, n_layers: int) -> None:
|
|
27 |
model.encoder.layer = model.encoder.layer[:n_layers]
|
28 |
else:
|
29 |
raise RuntimeError(f"unknown how to limit layers of model {type(model)}")
|
|
|
30 |
|
31 |
|
32 |
def disable_dropout(model: torch.nn.Module):
|
@@ -78,8 +501,7 @@ class ContextualModelMixin(nn.Module):
|
|
78 |
|
79 |
def _prepare_dataset_embeddings(
|
80 |
self,
|
81 |
-
input_ids: torch.Tensor,
|
82 |
-
dataset_embeddings: torch.Tensor,
|
83 |
null_dataset_embedding: bool = False,
|
84 |
) -> torch.Tensor:
|
85 |
if not isinstance(dataset_embeddings, torch.Tensor):
|
@@ -89,6 +511,9 @@ class ContextualModelMixin(nn.Module):
|
|
89 |
# Auto-expand for a batch.
|
90 |
dataset_embeddings = dataset_embeddings[None, :, :] # (b, d) -> (1, b, d)
|
91 |
dataset_embeddings = dataset_embeddings.to(input_ids.device)
|
|
|
|
|
|
|
92 |
|
93 |
batch_size = input_ids.shape[0]
|
94 |
if (self.transductive_tokens_per_document > 1):
|
@@ -107,9 +532,11 @@ class ContextualModelMixin(nn.Module):
|
|
107 |
dataset_embeddings = dataset_embeddings[R].reshape((batch_size, self.num_corpus_tokens, self.hidden_size))
|
108 |
else:
|
109 |
dataset_embeddings = dataset_embeddings.reshape((1, self.num_corpus_tokens, self.hidden_size))
|
110 |
-
# print("reshaped to dataset_embeddings.shape =", dataset_embeddings.shape)
|
111 |
|
112 |
-
|
|
|
|
|
|
|
113 |
# If too many dataset embeddings are passed in, just take the first N until
|
114 |
# we have the proper number.
|
115 |
dataset_embeddings = dataset_embeddings[:, :self.num_corpus_tokens, :]
|
@@ -137,12 +564,24 @@ class ContextualModelMixin(nn.Module):
|
|
137 |
soft_prompt = self.prompt_projection(soft_prompt).reshape((1, self.n_soft_prompt, self.hidden_size))
|
138 |
soft_prompt = soft_prompt.expand((len(dataset_embeddings), -1, -1)) # -> (b, 4+b, d) # soft_prompt.repeat((len(input_ids), 1, 1))
|
139 |
soft_prompt = torch.cat((dataset_embeddings, soft_prompt), dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
return soft_prompt
|
142 |
|
143 |
-
|
144 |
class BiEncoder(transformers.PreTrainedModel):
|
145 |
-
config_class = ContextualModelConfig
|
146 |
embedder: transformers.PreTrainedModel
|
147 |
def __init__(
|
148 |
self,
|
@@ -199,6 +638,7 @@ class BiEncoder(transformers.PreTrainedModel):
|
|
199 |
attention_mask=attention_mask,
|
200 |
).last_hidden_state
|
201 |
)
|
|
|
202 |
if self.transductive_tokens_per_document > 1:
|
203 |
document_embeddings = None
|
204 |
batch_size, seq_length, output_dim = outputs.shape
|
@@ -233,7 +673,6 @@ class BiEncoder(transformers.PreTrainedModel):
|
|
233 |
else:
|
234 |
document_embeddings = document_embeddings.max(dim=1)
|
235 |
output = self.mlp(document_embeddings)
|
236 |
-
# breakpoint()
|
237 |
|
238 |
if output_hidden_states:
|
239 |
return {
|
@@ -258,9 +697,10 @@ class DatasetConditionedAutoregressive(transformers.PreTrainedModel, ContextualM
|
|
258 |
self.contextual_init()
|
259 |
disable_causality(self.backbone)
|
260 |
|
261 |
-
self.
|
262 |
-
|
263 |
-
|
|
|
264 |
|
265 |
# Override contextual init
|
266 |
self.output_projection = torch.nn.Sequential(
|
@@ -286,7 +726,7 @@ class DatasetConditionedAutoregressive(transformers.PreTrainedModel, ContextualM
|
|
286 |
def _shift_rotary_embedding(self) -> None:
|
287 |
disable_transductive_rotary_embedding = vars(self.config).get("disable_transductive_rotary_embedding", True)
|
288 |
# TODO: Can we do this for LLAMA?
|
289 |
-
|
290 |
|
291 |
def forward(
|
292 |
self,
|
@@ -312,6 +752,7 @@ class DatasetConditionedAutoregressive(transformers.PreTrainedModel, ContextualM
|
|
312 |
soft_prompt = soft_prompt.reshape(
|
313 |
(soft_prompt.shape[0], -1, self.backbone_hidden_size)
|
314 |
)
|
|
|
315 |
# print("[DatasetConditionedAutoregressive] 2 -> soft_prompt.shape =", soft_prompt.shape)
|
316 |
|
317 |
backbone_attention_mask = torch.ones(
|
@@ -333,34 +774,11 @@ class DatasetConditionedAutoregressive(transformers.PreTrainedModel, ContextualM
|
|
333 |
output_hidden_states=True,
|
334 |
) # (1, 4 + b + s, d)
|
335 |
# trim soft prompt
|
336 |
-
|
337 |
n_soft_prompt_tokens = soft_prompt.shape[1]
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
# This is a bit arcane but relies on the fact that there will be a BOS token after the
|
342 |
-
# instruction, but also there may or may not be a BOS token at the beginning.
|
343 |
-
instruction_end_idx = (
|
344 |
-
(input_ids == self.pool_instruction_end_id) &
|
345 |
-
attention_mask &
|
346 |
-
(torch.arange(input_ids.shape[1], device=input_ids.device)[None, :] > 0)
|
347 |
-
).int().argmax(1)
|
348 |
-
is_instruction_token_mask = (
|
349 |
-
torch.arange(input_ids.shape[1], device=input_ids.device)[None, :] <= instruction_end_idx[:, None]
|
350 |
-
)
|
351 |
-
# catch edge case where there is no instruction
|
352 |
-
is_instruction_token_mask = is_instruction_token_mask.where(
|
353 |
-
(instruction_end_idx > 0)[:, None], torch.zeros_like(is_instruction_token_mask)
|
354 |
-
)
|
355 |
-
input_attention_mask = torch.cat((
|
356 |
-
backbone_attention_mask,
|
357 |
-
attention_mask & ~is_instruction_token_mask), dim=1
|
358 |
-
)
|
359 |
-
|
360 |
-
output_attention_mask = input_attention_mask
|
361 |
-
if self.pool_ignore_contextual_tokens:
|
362 |
-
output_vectors = output_vectors[:, n_soft_prompt_tokens:, :]
|
363 |
-
output_attention_mask = output_attention_mask[:, n_soft_prompt_tokens:]
|
364 |
|
365 |
# Take last token position
|
366 |
if vars(self.config).get("pooling_strategy") == "last_token":
|
@@ -371,6 +789,7 @@ class DatasetConditionedAutoregressive(transformers.PreTrainedModel, ContextualM
|
|
371 |
output_pooled = mean_pool_weighted(output_vectors, output_attention_mask)
|
372 |
|
373 |
# average with original vectors
|
|
|
374 |
output = self.output_projection(output_pooled) # (b, 2d) -> (b, d)
|
375 |
|
376 |
if output_hidden_states:
|
@@ -382,6 +801,7 @@ class DatasetConditionedAutoregressive(transformers.PreTrainedModel, ContextualM
|
|
382 |
return output
|
383 |
|
384 |
|
|
|
385 |
class DatasetConditionedBiencoder(transformers.PreTrainedModel, ContextualModelMixin):
|
386 |
def __init__(
|
387 |
self,
|
@@ -418,7 +838,7 @@ class DatasetConditionedBiencoder(transformers.PreTrainedModel, ContextualModelM
|
|
418 |
if hasattr(module, "rotary_emb_dim"):
|
419 |
module.rotary_start_pos = rotary_start_pos
|
420 |
rotary_disabled += 1
|
421 |
-
print0(f"modified {rotary_disabled} rotary modules –
|
422 |
|
423 |
def forward(
|
424 |
self,
|
@@ -547,7 +967,7 @@ class ContextualDocumentEmbeddingTransformer(transformers.PreTrainedModel):
|
|
547 |
):
|
548 |
super().__init__(config=config)
|
549 |
dataset_backbone, _ = load_embedder_and_tokenizer(
|
550 |
-
vars(config).get("dataset_backbone"
|
551 |
)
|
552 |
|
553 |
if config.limit_layers:
|
@@ -592,7 +1012,7 @@ class ContextualDocumentEmbeddingTransformer(transformers.PreTrainedModel):
|
|
592 |
output_hidden_states: bool = False,
|
593 |
) -> torch.Tensor:
|
594 |
"""
|
595 |
-
input_ids (long torch.Tensor) –
|
596 |
attention_mask (bool torch.Tensor)
|
597 |
"""
|
598 |
dataset_embeddings = self.first_stage_model(
|
@@ -606,17 +1026,12 @@ class ContextualDocumentEmbeddingTransformer(transformers.PreTrainedModel):
|
|
606 |
output_hidden_states=output_hidden_states,
|
607 |
)
|
608 |
|
609 |
-
|
610 |
-
|
611 |
def get_model_class(name: str):
|
612 |
if name in 'transductive':
|
613 |
return ContextualDocumentEmbeddingTransformer
|
614 |
elif name == 'biencoder':
|
615 |
return BiEncoder
|
616 |
-
elif name == "biencoder_plus_plus":
|
617 |
-
from cde.model_extra import BiEncoderPlusPlus
|
618 |
-
return BiEncoderPlusPlus
|
619 |
elif name == "dataset_prefix_biencoder":
|
620 |
return DatasetPrefixBiencoder
|
621 |
else:
|
622 |
-
raise ValueError(f'unknown model cls {name}')
|
|
|
1 |
+
###################################################################################################
|
2 |
+
###################################################################################################
|
3 |
+
###################################################################################################
|
4 |
|
5 |
+
import collections
|
6 |
+
import logging
|
7 |
+
|
8 |
+
import json
|
9 |
+
import math
|
10 |
+
import os
|
11 |
+
import re
|
12 |
+
from collections import OrderedDict
|
13 |
+
from functools import partial
|
14 |
+
from typing import List, Optional, Tuple, Union
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
########################################################
|
22 |
+
########################################################
|
23 |
+
########################################################
|
24 |
+
########################################################
|
25 |
+
|
26 |
+
|
27 |
+
from typing import Callable, Optional, Tuple
|
28 |
import copy
|
29 |
+
import math
|
30 |
+
import multiprocessing
|
31 |
+
import os
|
32 |
+
|
33 |
import torch
|
34 |
import torch.nn as nn
|
35 |
import transformers
|
36 |
|
|
|
|
|
37 |
|
38 |
+
class ContextualModelConfig(transformers.configuration_utils.PretrainedConfig):
|
39 |
+
"""We create a dummy configuration class that will just set properties
|
40 |
+
based on whatever kwargs we pass in.
|
41 |
+
|
42 |
+
When this class is initialized (see experiments.py) we pass in the
|
43 |
+
union of all data, model, and training args, all of which should
|
44 |
+
get saved to the config json.
|
45 |
+
"""
|
46 |
+
|
47 |
+
def __init__(self, **kwargs):
|
48 |
+
for key, value in kwargs.items():
|
49 |
+
try:
|
50 |
+
json.dumps(value)
|
51 |
+
setattr(self, key, value)
|
52 |
+
except TypeError:
|
53 |
+
# value was not JSON-serializable, skip
|
54 |
+
continue
|
55 |
+
super().__init__()
|
56 |
+
|
57 |
+
|
58 |
+
def load_embedder_and_tokenizer(name: str) -> Tuple[
|
59 |
+
transformers.PreTrainedModel,
|
60 |
+
transformers.PreTrainedTokenizer
|
61 |
+
]:
|
62 |
+
print("Loading model:", name)
|
63 |
+
if name.startswith("nomic") or (name == "bert-base-uncased"):
|
64 |
+
model = ContextualNomicBertForPreTraining.from_pretrained(name, trust_remote_code=True).bert
|
65 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(name)
|
66 |
+
elif name in ["gtr-base", "gtr_base"]:
|
67 |
+
model = transformers.AutoModel.from_pretrained(
|
68 |
+
"sentence-transformers/gtr-t5-base"
|
69 |
+
).encoder
|
70 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
71 |
+
"sentence-transformers/gtr-t5-base"
|
72 |
+
)
|
73 |
+
elif name == "pile-t5-base-encoder":
|
74 |
+
model = transformers.AutoModel.from_pretrained(
|
75 |
+
"EleutherAI/pile-t5-base"
|
76 |
+
).encoder
|
77 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
78 |
+
"EleutherAI/pile-t5-base"
|
79 |
+
)
|
80 |
+
tokenizer.pad_token = tokenizer.eos_token
|
81 |
+
elif name == "pile-t5-base-decoder":
|
82 |
+
model = transformers.AutoModel.from_pretrained(
|
83 |
+
"EleutherAI/pile-t5-base"
|
84 |
+
).decoder
|
85 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
86 |
+
"EleutherAI/pile-t5-base"
|
87 |
+
)
|
88 |
+
tokenizer.pad_token = tokenizer.eos_token
|
89 |
+
elif name.startswith("gpt2") or name.startswith("meta-llama") or ("Llama" in name):
|
90 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
91 |
+
name,
|
92 |
+
# torch_dtype=torch.bfloat16,
|
93 |
+
attn_implementation="flash_attention_2",
|
94 |
+
low_cpu_mem_usage=True,
|
95 |
+
# device_map="auto",
|
96 |
+
)
|
97 |
+
model.padding_side = "right"
|
98 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(name)
|
99 |
+
tokenizer.pad_token = tokenizer.eos_token
|
100 |
+
tokenizer.add_eos_token = True
|
101 |
+
else:
|
102 |
+
model = transformers.AutoModel.from_pretrained(name, trust_remote_code=True)
|
103 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(name)
|
104 |
+
|
105 |
+
# if use_bettertransformer:
|
106 |
+
# from optimum.bettertransformer import BetterTransformer
|
107 |
+
# model = BetterTransformer.transform(model)
|
108 |
+
return model, tokenizer
|
109 |
+
|
110 |
+
|
111 |
+
def get_world_size() -> int:
|
112 |
+
try:
|
113 |
+
return torch.distributed.get_world_size()
|
114 |
+
except (RuntimeError, ValueError):
|
115 |
+
return 1
|
116 |
+
|
117 |
+
|
118 |
+
def get_rank() -> int:
|
119 |
+
try:
|
120 |
+
return torch.distributed.get_rank()
|
121 |
+
except (RuntimeError, ValueError):
|
122 |
+
return 0
|
123 |
+
|
124 |
+
def gather(t: torch.Tensor) -> torch.Tensor:
|
125 |
+
# torch.distributed.nn.all_gather scales by world size since the reduce op is SUM
|
126 |
+
# https://github.com/pytorch/pytorch/issues/58005
|
127 |
+
# only should use torch.distributed.nn.all_gather if we implement a `local_loss`
|
128 |
+
# like: https://github.com/mlfoundations/open_clip/issues/616
|
129 |
+
world_size = get_world_size()
|
130 |
+
if world_size == 1:
|
131 |
+
return t
|
132 |
+
|
133 |
+
if t.ndim == 0:
|
134 |
+
t = t.unsqueeze(0)
|
135 |
+
|
136 |
+
gathered = [torch.empty_like(t) for _ in range(world_size)]
|
137 |
+
torch.distributed.all_gather(gathered, t)
|
138 |
+
gathered[get_rank()] = t
|
139 |
+
return torch.cat(gathered, dim=0)
|
140 |
+
|
141 |
+
|
142 |
+
def gather_sum(t: torch.Tensor) -> torch.Tensor:
|
143 |
+
# torch.distributed.nn.all_gather scales by world size since the reduce op is SUM
|
144 |
+
# https://github.com/pytorch/pytorch/issues/58005
|
145 |
+
# only should use torch.distributed.nn.all_gather if we implement a `local_loss`
|
146 |
+
# like: https://github.com/mlfoundations/open_clip/issues/616
|
147 |
+
world_size = get_world_size()
|
148 |
+
if world_size == 1:
|
149 |
+
return t
|
150 |
+
|
151 |
+
if t.ndim == 0:
|
152 |
+
t = t.unsqueeze(0)
|
153 |
+
|
154 |
+
gathered = [torch.empty_like(t) for _ in range(world_size)]
|
155 |
+
torch.distributed.all_gather(gathered, t)
|
156 |
+
gathered = torch.stack(gathered, dim=0)
|
157 |
+
return gathered.sum(dim=0) # Sum across workers
|
158 |
|
159 |
|
160 |
+
def get_num_proc() -> int:
|
161 |
+
world_size: int = get_world_size()
|
162 |
+
try:
|
163 |
+
# os.sched_getaffinity respects schedulers, unlike cpu_count(), but it's only available
|
164 |
+
# on some Unix platforms, so we support both!
|
165 |
+
return len(os.sched_getaffinity(0)) // world_size # type: ignore[attr-defined]
|
166 |
+
except AttributeError:
|
167 |
+
return multiprocessing.cpu_count() // world_size
|
168 |
+
|
169 |
+
|
170 |
+
def torch_main_worker_finish_first(func: Callable):
|
171 |
+
def wrapper(*args, **kwargs):
|
172 |
+
# Get local rank (need to support non-DDP).
|
173 |
+
try:
|
174 |
+
local_rank = torch.distributed.get_rank()
|
175 |
+
ddp_enabled = True
|
176 |
+
except (RuntimeError, ValueError):
|
177 |
+
local_rank = -1
|
178 |
+
ddp_enabled = False
|
179 |
+
is_main_worker = local_rank <= 0
|
180 |
+
# Run on main worker first.
|
181 |
+
if is_main_worker:
|
182 |
+
result = func(*args, **kwargs)
|
183 |
+
# Then everyone waits.
|
184 |
+
if ddp_enabled:
|
185 |
+
torch.distributed.barrier()
|
186 |
+
# Run on other workers now.
|
187 |
+
if not is_main_worker:
|
188 |
+
result = func(*args, **kwargs)
|
189 |
+
# Now everyone waits again.
|
190 |
+
if ddp_enabled:
|
191 |
+
torch.distributed.barrier()
|
192 |
+
return result
|
193 |
+
|
194 |
+
return wrapper
|
195 |
+
|
196 |
+
|
197 |
+
def print0(*args, **kwargs) -> None:
|
198 |
+
if get_rank() == 0:
|
199 |
+
print(*args, **kwargs)
|
200 |
+
|
201 |
+
|
202 |
+
def verify_ddp_weights_equal(model: torch.nn.Module, atol: float = 1e-5) -> None:
|
203 |
+
if hasattr(model, "module"):
|
204 |
+
model = model.module
|
205 |
+
|
206 |
+
world_size = get_world_size()
|
207 |
+
|
208 |
+
if world_size > 8:
|
209 |
+
print0(f"[verify_ddp_weights_equal] Skipping with world_size={world_size} ⚠️")
|
210 |
+
return
|
211 |
+
|
212 |
+
for name, param in model.named_parameters():
|
213 |
+
if param is None: continue
|
214 |
+
if param.grad is None:
|
215 |
+
print0(f"[verify_ddp_weights_equal] Skipping param [{name}] with no grad")
|
216 |
+
continue
|
217 |
+
gathered_param = gather(param).reshape((world_size, -1))
|
218 |
+
absolute_diffs = (gathered_param[None, 0, :] - gathered_param).abs()
|
219 |
+
rank_params_eq = (absolute_diffs < atol).all()
|
220 |
+
assert rank_params_eq, f"❌ param [{name}] not equal - got max_absolute_diff={absolute_diffs.max()}"
|
221 |
+
###################################################################################################################
|
222 |
+
gathered_param_grad = gather(param.grad).reshape((world_size, -1))
|
223 |
+
absolute_grad_diffs = (gathered_param_grad[None, 0, :] - gathered_param_grad).abs()
|
224 |
+
rank_grad_params_eq = (absolute_grad_diffs < atol).all()
|
225 |
+
assert rank_grad_params_eq, f"❌ param [{name}] grad not equal - got max_absolute_diff={absolute_grad_diffs.max()}"
|
226 |
+
###################################################################################################################
|
227 |
+
|
228 |
+
|
229 |
+
print0("[verify_ddp_weights_equal] Verified DDP parameter correctness ✅")
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
def mean_pool_3d(
|
234 |
+
hidden_states: torch.Tensor, attention_mask: torch.Tensor
|
235 |
+
) -> torch.Tensor:
|
236 |
+
B, T, S, D = hidden_states.shape
|
237 |
+
unmasked_outputs = hidden_states * attention_mask[..., None]
|
238 |
+
pooled_outputs = unmasked_outputs.sum(dim=2) / (attention_mask.sum(dim=2)[..., None] + 1e-9)
|
239 |
+
|
240 |
+
# fix for gradient flow: fill empty rows with the mean of the rest of the sequence
|
241 |
+
sequence_means = (
|
242 |
+
hidden_states.reshape((B, S * T, D))
|
243 |
+
.mean(dim=1, keepdim=True)
|
244 |
+
.expand(-1, T, -1)
|
245 |
+
)
|
246 |
+
pooled_outputs = pooled_outputs.where(
|
247 |
+
(attention_mask.sum(dim=2)[..., None] > 0),
|
248 |
+
sequence_means
|
249 |
+
)
|
250 |
+
assert pooled_outputs.shape == (B, T, D)
|
251 |
+
|
252 |
+
return pooled_outputs
|
253 |
+
|
254 |
+
def mean_pool(
|
255 |
+
hidden_states: torch.Tensor, attention_mask: torch.Tensor
|
256 |
+
) -> torch.Tensor:
|
257 |
+
B, _S, D = hidden_states.shape
|
258 |
+
unmasked_outputs = hidden_states * attention_mask[..., None]
|
259 |
+
pooled_outputs = unmasked_outputs.sum(dim=1) / (attention_mask.sum(dim=1)[:, None] + 1e-20)
|
260 |
+
|
261 |
+
assert pooled_outputs.shape == (B, D)
|
262 |
+
return pooled_outputs
|
263 |
+
|
264 |
+
|
265 |
+
def mean_pool_weighted(
|
266 |
+
hidden_states: torch.Tensor, attention_mask: torch.Tensor
|
267 |
+
) -> torch.Tensor:
|
268 |
+
B, _S, D = hidden_states.shape
|
269 |
+
attention_mask *= attention_mask.cumsum(dim=1) # [0,1,1,1,0,0] -> [0,1,2,3,0,0]
|
270 |
+
s = torch.sum(hidden_states * attention_mask.unsqueeze(-1).float(), dim=1)
|
271 |
+
d = attention_mask.sum(dim=1, keepdim=True).float()
|
272 |
+
return s / d
|
273 |
+
|
274 |
+
|
275 |
+
def slice_sparse_tensor_rows(t: torch.sparse.Tensor, min_row: int, max_row: int) -> torch.sparse.Tensor:
|
276 |
+
assert min_row < max_row, f"can't slice from row {min_row} to {max_row}"
|
277 |
+
t = t.coalesce()
|
278 |
+
row_idxs = t.indices()[0]
|
279 |
+
index_mask = (min_row <= row_idxs) & (row_idxs < max_row)
|
280 |
+
|
281 |
+
num_rows = (max_row - min_row)
|
282 |
+
num_cols = t.shape[1]
|
283 |
+
|
284 |
+
idxs = t.indices()[:, index_mask]
|
285 |
+
vals = t.values()[index_mask]
|
286 |
+
return torch.sparse_coo_tensor(idxs, vals, size=(num_rows, num_cols)).coalesce()
|
287 |
+
|
288 |
+
|
289 |
+
def slice_tensor_rows(t: torch.Tensor, min_row: int, max_row: int) -> torch.Tensor:
|
290 |
+
if t.is_sparse:
|
291 |
+
return slice_sparse_tensor_rows(t=t, min_row=min_row, max_row=max_row)
|
292 |
+
else:
|
293 |
+
return t[min_row:max_row]
|
294 |
+
|
295 |
+
|
296 |
+
@torch.no_grad
|
297 |
+
def maxsim(
|
298 |
+
X: torch.Tensor, y: torch.Tensor,
|
299 |
+
maximize: bool, chunk_size: int = 8_000,
|
300 |
+
debug_mem_usage: bool = False) -> torch.Tensor:
|
301 |
+
device = X.device
|
302 |
+
n_samples = X.shape[0]
|
303 |
+
|
304 |
+
max_sim_v = torch.zeros(n_samples, device=device, dtype=X.dtype)
|
305 |
+
max_sim_i = torch.zeros(n_samples, device=device, dtype=torch.int64)
|
306 |
+
|
307 |
+
# TODO: Implement faster max (without going to dense tensors).
|
308 |
+
# TODO: Use multiple GPUs.
|
309 |
+
rank = get_rank()
|
310 |
+
world_size = get_world_size()
|
311 |
+
|
312 |
+
worker_worklist_size = int(math.ceil(n_samples / world_size))
|
313 |
+
splits_start_idx = worker_worklist_size * rank
|
314 |
+
splits_end_idx = worker_worklist_size * (rank + 1)
|
315 |
+
|
316 |
+
for i in range(splits_start_idx, splits_end_idx, chunk_size):
|
317 |
+
start, end = i, min(i + chunk_size, n_samples)
|
318 |
+
sub_x = slice_tensor_rows(X, start, end)
|
319 |
+
if debug_mem_usage: print(f"[maxsim] step {i} cuda mem free/total = {torch.cuda.mem_get_info()}")
|
320 |
+
if debug_mem_usage: print("[maxsim] sub_x.shape:", sub_x.shape, "//", "y.shape:", y.shape)
|
321 |
+
sub_sim = sub_x @ y # TODO – Implement sparse max here to save mem!
|
322 |
+
sub_sim = sub_sim
|
323 |
+
if maximize:
|
324 |
+
sub_max_sim_v, sub_max_sim_i = sub_sim.to_dense().max(dim=-1)
|
325 |
+
else:
|
326 |
+
sub_max_sim_v, sub_max_sim_i = sub_sim.to_dense().min(dim=-1)
|
327 |
+
del sub_sim
|
328 |
+
del sub_x
|
329 |
+
torch.cuda.empty_cache() # needs to happen after maxsim for some reason.
|
330 |
+
max_sim_v[start: end] = sub_max_sim_v
|
331 |
+
max_sim_i[start: end] = sub_max_sim_i
|
332 |
+
|
333 |
+
# gather
|
334 |
+
max_sim_v = gather_sum(max_sim_v)
|
335 |
+
max_sim_i = gather_sum(max_sim_i)
|
336 |
+
k = y.shape[1]
|
337 |
+
|
338 |
+
assert max_sim_v.shape == (n_samples,)
|
339 |
+
assert max_sim_i.shape == (n_samples,)
|
340 |
+
assert max_sim_i.min() >= 0
|
341 |
+
assert max_sim_i.max() <= k
|
342 |
+
|
343 |
+
return max_sim_v, max_sim_i
|
344 |
+
|
345 |
+
|
346 |
+
def forward_batched(
|
347 |
+
model: torch.nn.Module,
|
348 |
+
input_ids: torch.Tensor,
|
349 |
+
attention_mask: torch.Tensor,
|
350 |
+
batch_size: int,
|
351 |
+
dataset_input_ids: Optional[torch.Tensor] = None,
|
352 |
+
dataset_attention_mask: Optional[torch.Tensor] = None,
|
353 |
+
**second_stage_model_kwargs,
|
354 |
+
) -> torch.Tensor:
|
355 |
+
if hasattr(model, "module"):
|
356 |
+
model = model.module
|
357 |
+
|
358 |
+
if hasattr(model, "first_stage_model"):
|
359 |
+
# Support pooling over 3D dataset_input_ids inputs.
|
360 |
+
if len(dataset_input_ids.shape) == 2:
|
361 |
+
dataset_input_ids = dataset_input_ids[None]
|
362 |
+
dataset_attention_mask = dataset_attention_mask[None]
|
363 |
+
|
364 |
+
dataset_embeddings = []
|
365 |
+
for j in range(len(dataset_input_ids)):
|
366 |
+
i = 0
|
367 |
+
dataset_embeddings_batch = []
|
368 |
+
while i < dataset_input_ids.shape[1]:
|
369 |
+
dataset_embeddings_batch.append(
|
370 |
+
model.first_stage_model(
|
371 |
+
input_ids=dataset_input_ids[j][i:i+batch_size],
|
372 |
+
attention_mask=dataset_attention_mask[j][i:i+batch_size],
|
373 |
+
)
|
374 |
+
)
|
375 |
+
i += batch_size
|
376 |
+
dataset_embeddings.append(
|
377 |
+
torch.cat(dataset_embeddings_batch, dim=0)
|
378 |
+
)
|
379 |
+
|
380 |
+
# Automatically pool over 3D dataset_input_ids.
|
381 |
+
dataset_embeddings = torch.stack(dataset_embeddings, dim=0).mean(dim=0)
|
382 |
+
|
383 |
+
j = 0
|
384 |
+
outputs = []
|
385 |
+
while j < len(input_ids):
|
386 |
+
outputs.append(
|
387 |
+
model.second_stage_model(
|
388 |
+
input_ids=input_ids[j:j+batch_size],
|
389 |
+
attention_mask=attention_mask[j:j+batch_size],
|
390 |
+
dataset_embeddings=dataset_embeddings,
|
391 |
+
**second_stage_model_kwargs,
|
392 |
+
)
|
393 |
+
)
|
394 |
+
j += batch_size
|
395 |
+
return torch.cat(outputs, dim=0)
|
396 |
+
|
397 |
+
else:
|
398 |
+
i = 0
|
399 |
+
outputs = []
|
400 |
+
while i < len(input_ids):
|
401 |
+
outputs.append(
|
402 |
+
model(
|
403 |
+
input_ids=input_ids[i:i+batch_size],
|
404 |
+
attention_mask=attention_mask[i:i+batch_size],
|
405 |
+
**second_stage_model_kwargs,
|
406 |
+
)
|
407 |
+
)
|
408 |
+
i += batch_size
|
409 |
+
return torch.cat(outputs, dim=0)
|
410 |
+
|
411 |
+
|
412 |
+
def last_token_pool(hidden_state: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
413 |
+
# https://github.com/ContextualAI/gritlm/blob/main/gritlm/gritlm.py#L190
|
414 |
+
b, n, d = hidden_state.size()
|
415 |
+
# Get the last `1` in the attention mask of each item
|
416 |
+
# Often it is just `gather_indices = torch.argmin(attention_mask, 1, keepdim=False) - 1`
|
417 |
+
# except when 1) There's all 1's 2) There's 0's before the 1's
|
418 |
+
reversed_mask = torch.flip(attention_mask, dims=(1,))
|
419 |
+
argmax_reverse = torch.argmax(reversed_mask, dim=1, keepdim=False)
|
420 |
+
gather_indices = attention_mask.size(1) - argmax_reverse - 1
|
421 |
+
# If there are empty sequences, where the index would become -1 it will crash so set them to 0
|
422 |
+
gather_indices = torch.clamp(gather_indices, min=0)
|
423 |
+
# Turn indices from shape [b] -> [b, 1, d]
|
424 |
+
gather_indices = gather_indices.unsqueeze(-1).repeat(1, d)
|
425 |
+
gather_indices = gather_indices.unsqueeze(1)
|
426 |
+
assert gather_indices.shape == (b, 1, d)
|
427 |
+
# Gather along the seq len: [b, n, d] -> [b, d]
|
428 |
+
# Actually no need for the attention mask as we gather the last token where attn_mask=1 but
|
429 |
+
# as some indices (which shouldn't be attended to) may be 0 due to clamp, use mask to ignore them again
|
430 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand((b, n, d)).float()
|
431 |
+
return torch.gather(hidden_state * input_mask_expanded, 1, gather_indices).squeeze(dim=1)
|
432 |
+
|
433 |
+
def print0(*args, **kwargs) -> None:
|
434 |
+
if get_rank() == 0:
|
435 |
+
print(*args, **kwargs)
|
436 |
+
|
437 |
|
438 |
def limit_layers(model: transformers.PreTrainedModel, n_layers: int) -> None:
|
439 |
if hasattr(model, 'transformer'):
|
|
|
449 |
model.encoder.layer = model.encoder.layer[:n_layers]
|
450 |
else:
|
451 |
raise RuntimeError(f"unknown how to limit layers of model {type(model)}")
|
452 |
+
|
453 |
|
454 |
|
455 |
def disable_dropout(model: torch.nn.Module):
|
|
|
501 |
|
502 |
def _prepare_dataset_embeddings(
|
503 |
self,
|
504 |
+
input_ids: torch.Tensor, dataset_embeddings: torch.Tensor,
|
|
|
505 |
null_dataset_embedding: bool = False,
|
506 |
) -> torch.Tensor:
|
507 |
if not isinstance(dataset_embeddings, torch.Tensor):
|
|
|
511 |
# Auto-expand for a batch.
|
512 |
dataset_embeddings = dataset_embeddings[None, :, :] # (b, d) -> (1, b, d)
|
513 |
dataset_embeddings = dataset_embeddings.to(input_ids.device)
|
514 |
+
|
515 |
+
if len(dataset_embeddings.shape) < 3:
|
516 |
+
raise ValueError(f"dataset_embeddings must have at least 3 dimensions, got {dataset_embeddings.shape}")
|
517 |
|
518 |
batch_size = input_ids.shape[0]
|
519 |
if (self.transductive_tokens_per_document > 1):
|
|
|
532 |
dataset_embeddings = dataset_embeddings[R].reshape((batch_size, self.num_corpus_tokens, self.hidden_size))
|
533 |
else:
|
534 |
dataset_embeddings = dataset_embeddings.reshape((1, self.num_corpus_tokens, self.hidden_size))
|
|
|
535 |
|
536 |
+
|
537 |
+
if dataset_embeddings.shape[1] < self.num_corpus_tokens:
|
538 |
+
raise ValueError(f"dataset_embeddings must have at least {self.num_corpus_tokens} tokens, got {dataset_embeddings.shape[1]}")
|
539 |
+
elif dataset_embeddings.shape[1] > self.num_corpus_tokens:
|
540 |
# If too many dataset embeddings are passed in, just take the first N until
|
541 |
# we have the proper number.
|
542 |
dataset_embeddings = dataset_embeddings[:, :self.num_corpus_tokens, :]
|
|
|
564 |
soft_prompt = self.prompt_projection(soft_prompt).reshape((1, self.n_soft_prompt, self.hidden_size))
|
565 |
soft_prompt = soft_prompt.expand((len(dataset_embeddings), -1, -1)) # -> (b, 4+b, d) # soft_prompt.repeat((len(input_ids), 1, 1))
|
566 |
soft_prompt = torch.cat((dataset_embeddings, soft_prompt), dim=1)
|
567 |
+
|
568 |
+
# print(f"[ContextualModelMixin] soft_prompt.shape = {soft_prompt.shape}")
|
569 |
+
|
570 |
+
if self.training and self.randomize_dataset_sequence_order:
|
571 |
+
randomized_order = torch.stack(
|
572 |
+
[
|
573 |
+
torch.cat(
|
574 |
+
(
|
575 |
+
torch.randperm(corpus_size, device=soft_prompt.device),
|
576 |
+
torch.arange(self.n_soft_prompt, device=soft_prompt.device) + corpus_size
|
577 |
+
), dim=0)
|
578 |
+
for _ in range(batch_size)])
|
579 |
+
randomized_order = randomized_order.to(soft_prompt.device)
|
580 |
+
soft_prompt = soft_prompt.gather(1, randomized_order[..., None].expand_as(soft_prompt))
|
581 |
|
582 |
return soft_prompt
|
583 |
|
|
|
584 |
class BiEncoder(transformers.PreTrainedModel):
|
|
|
585 |
embedder: transformers.PreTrainedModel
|
586 |
def __init__(
|
587 |
self,
|
|
|
638 |
attention_mask=attention_mask,
|
639 |
).last_hidden_state
|
640 |
)
|
641 |
+
|
642 |
if self.transductive_tokens_per_document > 1:
|
643 |
document_embeddings = None
|
644 |
batch_size, seq_length, output_dim = outputs.shape
|
|
|
673 |
else:
|
674 |
document_embeddings = document_embeddings.max(dim=1)
|
675 |
output = self.mlp(document_embeddings)
|
|
|
676 |
|
677 |
if output_hidden_states:
|
678 |
return {
|
|
|
697 |
self.contextual_init()
|
698 |
disable_causality(self.backbone)
|
699 |
|
700 |
+
self.input_ln = torch.nn.LayerNorm(
|
701 |
+
self.backbone_hidden_size,
|
702 |
+
eps=1e-5
|
703 |
+
)
|
704 |
|
705 |
# Override contextual init
|
706 |
self.output_projection = torch.nn.Sequential(
|
|
|
726 |
def _shift_rotary_embedding(self) -> None:
|
727 |
disable_transductive_rotary_embedding = vars(self.config).get("disable_transductive_rotary_embedding", True)
|
728 |
# TODO: Can we do this for LLAMA?
|
729 |
+
print("Warning: Positional embedding disabling not implemented for LLAMA.")
|
730 |
|
731 |
def forward(
|
732 |
self,
|
|
|
752 |
soft_prompt = soft_prompt.reshape(
|
753 |
(soft_prompt.shape[0], -1, self.backbone_hidden_size)
|
754 |
)
|
755 |
+
soft_prompt = self.input_ln(soft_prompt)
|
756 |
# print("[DatasetConditionedAutoregressive] 2 -> soft_prompt.shape =", soft_prompt.shape)
|
757 |
|
758 |
backbone_attention_mask = torch.ones(
|
|
|
774 |
output_hidden_states=True,
|
775 |
) # (1, 4 + b + s, d)
|
776 |
# trim soft prompt
|
777 |
+
last_hidden_state = output.hidden_states[-1]
|
778 |
n_soft_prompt_tokens = soft_prompt.shape[1]
|
779 |
|
780 |
+
output_vectors = last_hidden_state[:, n_soft_prompt_tokens:, :]
|
781 |
+
output_attention_mask = input_attention_mask[:, n_soft_prompt_tokens:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
782 |
|
783 |
# Take last token position
|
784 |
if vars(self.config).get("pooling_strategy") == "last_token":
|
|
|
789 |
output_pooled = mean_pool_weighted(output_vectors, output_attention_mask)
|
790 |
|
791 |
# average with original vectors
|
792 |
+
# TODO: Argparse for pooling strategy.
|
793 |
output = self.output_projection(output_pooled) # (b, 2d) -> (b, d)
|
794 |
|
795 |
if output_hidden_states:
|
|
|
801 |
return output
|
802 |
|
803 |
|
804 |
+
|
805 |
class DatasetConditionedBiencoder(transformers.PreTrainedModel, ContextualModelMixin):
|
806 |
def __init__(
|
807 |
self,
|
|
|
838 |
if hasattr(module, "rotary_emb_dim"):
|
839 |
module.rotary_start_pos = rotary_start_pos
|
840 |
rotary_disabled += 1
|
841 |
+
print0(f"modified {rotary_disabled} rotary modules – set rotary_start_pos to {rotary_start_pos}")
|
842 |
|
843 |
def forward(
|
844 |
self,
|
|
|
967 |
):
|
968 |
super().__init__(config=config)
|
969 |
dataset_backbone, _ = load_embedder_and_tokenizer(
|
970 |
+
vars(config).get("dataset_backbone", config.embedder)
|
971 |
)
|
972 |
|
973 |
if config.limit_layers:
|
|
|
1012 |
output_hidden_states: bool = False,
|
1013 |
) -> torch.Tensor:
|
1014 |
"""
|
1015 |
+
input_ids (long torch.Tensor) – ids of input tokens
|
1016 |
attention_mask (bool torch.Tensor)
|
1017 |
"""
|
1018 |
dataset_embeddings = self.first_stage_model(
|
|
|
1026 |
output_hidden_states=output_hidden_states,
|
1027 |
)
|
1028 |
|
|
|
|
|
1029 |
def get_model_class(name: str):
|
1030 |
if name in 'transductive':
|
1031 |
return ContextualDocumentEmbeddingTransformer
|
1032 |
elif name == 'biencoder':
|
1033 |
return BiEncoder
|
|
|
|
|
|
|
1034 |
elif name == "dataset_prefix_biencoder":
|
1035 |
return DatasetPrefixBiencoder
|
1036 |
else:
|
1037 |
+
raise ValueError(f'unknown model cls {name}')
|