cde-small-v1 / sentence_transformers_impl.py
Tom Aarsen
Integrate with Sentence Transformers + README
bed6830
raw
history blame
6.1 kB
from __future__ import annotations
import json
import logging
import os
from typing import Any, Optional
import torch
from torch import nn
from transformers import AutoConfig, AutoModel, AutoTokenizer
logger = logging.getLogger(__name__)
class Transformer(nn.Module):
"""Hugging Face AutoModel to generate token embeddings.
Loads the correct class, e.g. BERT / RoBERTa etc.
Args:
model_name_or_path: Hugging Face models name
(https://huggingface.co/models)
max_seq_length: Truncate any inputs longer than max_seq_length
model_args: Keyword arguments passed to the Hugging Face
Transformers model
tokenizer_args: Keyword arguments passed to the Hugging Face
Transformers tokenizer
config_args: Keyword arguments passed to the Hugging Face
Transformers config
cache_dir: Cache dir for Hugging Face Transformers to store/load
models
do_lower_case: If true, lowercases the input (independent if the
model is cased or not)
tokenizer_name_or_path: Name or path of the tokenizer. When
None, then model_name_or_path is used
backend: Backend used for model inference. Can be `torch`, `onnx`,
or `openvino`. Default is `torch`.
"""
save_in_root: bool = True
def __init__(
self,
model_name_or_path: str,
model_args: dict[str, Any] | None = None,
tokenizer_args: dict[str, Any] | None = None,
config_args: dict[str, Any] | None = None,
cache_dir: str | None = None,
**kwargs,
) -> None:
super().__init__()
if model_args is None:
model_args = {}
if tokenizer_args is None:
tokenizer_args = {}
if config_args is None:
config_args = {}
if not model_args.get("trust_remote_code", False):
raise ValueError(
"You need to set `trust_remote_code=True` to load this model."
)
self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args)
self.tokenizer = AutoTokenizer.from_pretrained(
"bert-base-uncased",
cache_dir=cache_dir,
**tokenizer_args,
)
def __repr__(self) -> str:
return f"Transformer({self.get_config_dict()}) with Transformer model: {self.auto_model.__class__.__name__} "
def forward(self, features: dict[str, torch.Tensor], dataset_embeddings: Optional[torch.Tensor] = None, **kwargs) -> dict[str, torch.Tensor]:
"""Returns token_embeddings, cls_token"""
# If we don't have embeddings, then run the 1st stage model.
# If we do, then run the 2nd stage model.
if dataset_embeddings is None:
sentence_embedding = self.auto_model.first_stage_model(
input_ids=features["input_ids"],
attention_mask=features["attention_mask"],
)
else:
sentence_embedding = self.auto_model.second_stage_model(
input_ids=features["input_ids"],
attention_mask=features["attention_mask"],
dataset_embeddings=dataset_embeddings,
)
features["sentence_embedding"] = sentence_embedding
return features
def get_word_embedding_dimension(self) -> int:
return self.auto_model.config.hidden_size
def tokenize(
self, texts: list[str] | list[dict] | list[tuple[str, str]], padding: str | bool = True
) -> dict[str, torch.Tensor]:
"""Tokenizes a text and maps tokens to token-ids"""
output = {}
if isinstance(texts[0], str):
to_tokenize = [texts]
elif isinstance(texts[0], dict):
to_tokenize = []
output["text_keys"] = []
for lookup in texts:
text_key, text = next(iter(lookup.items()))
to_tokenize.append(text)
output["text_keys"].append(text_key)
to_tokenize = [to_tokenize]
else:
batch1, batch2 = [], []
for text_tuple in texts:
batch1.append(text_tuple[0])
batch2.append(text_tuple[1])
to_tokenize = [batch1, batch2]
max_seq_length = self.config.max_seq_length
output.update(
self.tokenizer(
*to_tokenize,
padding=padding,
truncation="longest_first",
return_tensors="pt",
max_length=max_seq_length,
)
)
return output
def get_config_dict(self) -> dict[str, Any]:
return {}
def save(self, output_path: str, safe_serialization: bool = True) -> None:
self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization)
self.tokenizer.save_pretrained(output_path)
with open(os.path.join(output_path, "sentence_bert_config.json"), "w") as fOut:
json.dump(self.get_config_dict(), fOut, indent=2)
@classmethod
def load(cls, input_path: str) -> Transformer:
sbert_config_path = os.path.join(input_path, "sentence_bert_config.json")
if not os.path.exists(sbert_config_path):
return cls(model_name_or_path=input_path)
with open(sbert_config_path) as fIn:
config = json.load(fIn)
# Don't allow configs to set trust_remote_code
if "model_args" in config and "trust_remote_code" in config["model_args"]:
config["model_args"].pop("trust_remote_code")
if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]:
config["tokenizer_args"].pop("trust_remote_code")
if "config_args" in config and "trust_remote_code" in config["config_args"]:
config["config_args"].pop("trust_remote_code")
return cls(model_name_or_path=input_path, **config)