|
from __future__ import annotations |
|
|
|
import json |
|
import logging |
|
import os |
|
from typing import Any, Optional |
|
|
|
import torch |
|
from torch import nn |
|
from transformers import AutoConfig, AutoModel, AutoTokenizer |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class Transformer(nn.Module): |
|
"""Hugging Face AutoModel to generate token embeddings. |
|
Loads the correct class, e.g. BERT / RoBERTa etc. |
|
|
|
Args: |
|
model_name_or_path: Hugging Face models name |
|
(https://huggingface.co/models) |
|
max_seq_length: Truncate any inputs longer than max_seq_length |
|
model_args: Keyword arguments passed to the Hugging Face |
|
Transformers model |
|
tokenizer_args: Keyword arguments passed to the Hugging Face |
|
Transformers tokenizer |
|
config_args: Keyword arguments passed to the Hugging Face |
|
Transformers config |
|
cache_dir: Cache dir for Hugging Face Transformers to store/load |
|
models |
|
do_lower_case: If true, lowercases the input (independent if the |
|
model is cased or not) |
|
tokenizer_name_or_path: Name or path of the tokenizer. When |
|
None, then model_name_or_path is used |
|
backend: Backend used for model inference. Can be `torch`, `onnx`, |
|
or `openvino`. Default is `torch`. |
|
""" |
|
|
|
save_in_root: bool = True |
|
|
|
def __init__( |
|
self, |
|
model_name_or_path: str, |
|
model_args: dict[str, Any] | None = None, |
|
tokenizer_args: dict[str, Any] | None = None, |
|
config_args: dict[str, Any] | None = None, |
|
cache_dir: str | None = None, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
if model_args is None: |
|
model_args = {} |
|
if tokenizer_args is None: |
|
tokenizer_args = {} |
|
if config_args is None: |
|
config_args = {} |
|
|
|
if not model_args.get("trust_remote_code", False): |
|
raise ValueError( |
|
"You need to set `trust_remote_code=True` to load this model." |
|
) |
|
|
|
self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir) |
|
self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args) |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
"bert-base-uncased", |
|
cache_dir=cache_dir, |
|
**tokenizer_args, |
|
) |
|
|
|
def __repr__(self) -> str: |
|
return f"Transformer({self.get_config_dict()}) with Transformer model: {self.auto_model.__class__.__name__} " |
|
|
|
def forward(self, features: dict[str, torch.Tensor], dataset_embeddings: Optional[torch.Tensor] = None, **kwargs) -> dict[str, torch.Tensor]: |
|
"""Returns token_embeddings, cls_token""" |
|
|
|
|
|
if dataset_embeddings is None: |
|
sentence_embedding = self.auto_model.first_stage_model( |
|
input_ids=features["input_ids"], |
|
attention_mask=features["attention_mask"], |
|
) |
|
else: |
|
sentence_embedding = self.auto_model.second_stage_model( |
|
input_ids=features["input_ids"], |
|
attention_mask=features["attention_mask"], |
|
dataset_embeddings=dataset_embeddings, |
|
) |
|
|
|
features["sentence_embedding"] = sentence_embedding |
|
return features |
|
|
|
def get_word_embedding_dimension(self) -> int: |
|
return self.auto_model.config.hidden_size |
|
|
|
def tokenize( |
|
self, texts: list[str] | list[dict] | list[tuple[str, str]], padding: str | bool = True |
|
) -> dict[str, torch.Tensor]: |
|
"""Tokenizes a text and maps tokens to token-ids""" |
|
output = {} |
|
if isinstance(texts[0], str): |
|
to_tokenize = [texts] |
|
elif isinstance(texts[0], dict): |
|
to_tokenize = [] |
|
output["text_keys"] = [] |
|
for lookup in texts: |
|
text_key, text = next(iter(lookup.items())) |
|
to_tokenize.append(text) |
|
output["text_keys"].append(text_key) |
|
to_tokenize = [to_tokenize] |
|
else: |
|
batch1, batch2 = [], [] |
|
for text_tuple in texts: |
|
batch1.append(text_tuple[0]) |
|
batch2.append(text_tuple[1]) |
|
to_tokenize = [batch1, batch2] |
|
|
|
max_seq_length = self.config.max_seq_length |
|
output.update( |
|
self.tokenizer( |
|
*to_tokenize, |
|
padding=padding, |
|
truncation="longest_first", |
|
return_tensors="pt", |
|
max_length=max_seq_length, |
|
) |
|
) |
|
return output |
|
|
|
def get_config_dict(self) -> dict[str, Any]: |
|
return {} |
|
|
|
def save(self, output_path: str, safe_serialization: bool = True) -> None: |
|
self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization) |
|
self.tokenizer.save_pretrained(output_path) |
|
|
|
with open(os.path.join(output_path, "sentence_bert_config.json"), "w") as fOut: |
|
json.dump(self.get_config_dict(), fOut, indent=2) |
|
|
|
@classmethod |
|
def load(cls, input_path: str) -> Transformer: |
|
sbert_config_path = os.path.join(input_path, "sentence_bert_config.json") |
|
if not os.path.exists(sbert_config_path): |
|
return cls(model_name_or_path=input_path) |
|
|
|
with open(sbert_config_path) as fIn: |
|
config = json.load(fIn) |
|
|
|
if "model_args" in config and "trust_remote_code" in config["model_args"]: |
|
config["model_args"].pop("trust_remote_code") |
|
if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]: |
|
config["tokenizer_args"].pop("trust_remote_code") |
|
if "config_args" in config and "trust_remote_code" in config["config_args"]: |
|
config["config_args"].pop("trust_remote_code") |
|
return cls(model_name_or_path=input_path, **config) |
|
|