|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:37000000 |
|
- loss:MSELoss |
|
base_model: sentence-transformers/all-MiniLM-L6-v2 |
|
widget: |
|
- source_sentence: In addition, Julius Caesar's ally, Pompey, has joined the enemy. |
|
sentences: |
|
- Abandonando la música, giró su atención a la dirección de los dos hoteles que |
|
él poseyó, el Hotel Calbar y el Sweet Mother Hotel. |
|
- Además, el amigo de Julio César, su yerno Pompeyo, se ha pasado al enemigo. |
|
- Podemos requerir el acceso a otra información adicional de vez en cuando y buscaremos |
|
su permiso específico en ese momento. |
|
- source_sentence: We hold firm to that statement at Awaken because we believe it |
|
and live it out. |
|
sentences: |
|
- Não obstante as reservas que acabei de descrever, desejo que o relatório seja |
|
votado favoravelmente. |
|
- En Agüeras este aspecto lo tenemos muy claro porque creemos y confiamos en nuestro |
|
trabajo. |
|
- Y cuando esto sucede suficientes veces, tú eres un idiota, así que en términos |
|
de pura vanidad me di cuenta de que no iba a surfear más “. |
|
- source_sentence: We need to look carefully at where there are still hindrances to |
|
the internal market. |
|
sentences: |
|
- De acordo com a primeira linha da história do Mirror, Jackson “precisava ser estapeado”. |
|
- 'Las condiciones generales de venta y las informaciones relativas a la colocación |
|
y al mantenimiento están, de la misma manera, disponibles en 7 idiomas en la página |
|
Web: www.balsan.com' |
|
- Devemos ver onde se encontram os últimos obstáculos no mercado interno. |
|
- source_sentence: This is when we got this Tribunal for Yugoslavia. |
|
sentences: |
|
- Pesquisas recentes sugerem que a resposta para a segunda pergunta é “sim”. |
|
- -No se preocupe. |
|
- Foi nessa altura que obtivemos o Tribunal para a Jugoslávia. |
|
- source_sentence: The Social Security takes another 8.7 billion euros from the Backup |
|
Fund |
|
sentences: |
|
- La Seguridad Social saca otros 8.700 millones del Fondo de Reserva |
|
- Tiene unos 44.000 millones de barriles de reservas de petroleo, y 54 billones |
|
de pies cubicos de reservas de gas natural. |
|
- O local também é perfeito para assistir ao pôr do sol e tirar fotos fantásticas. |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: stsb multi mt pt |
|
type: stsb_multi_mt-pt |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8086948467711119 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8245345729788137 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: stsb multi mt en |
|
type: stsb_multi_mt-en |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8359627707398747 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8541682899846027 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: stsb multi mt es |
|
type: stsb_multi_mt-es |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8208760686851074 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8433672872125051 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
|
|
This [sentence-transformers](https://www.SBERT.net) model is a multilingual student model supporting English, Spanish, and Portuguese. For the student, an efficient MiniLM architecture was adopted, prized for its balance of performance and compact size (similar to the architecture used in models like [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)). This student was then trained by distilling knowledge from the high-performance [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) English embedding model, which served as the teacher. The resulting model maps sentences & paragraphs to a 384-dimensional dense vector space, suitable for tasks such as semantic textual similarity, semantic search, paraphrase mining, text classification, and clustering. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 384 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'The Social Security takes another 8.7 billion euros from the Backup Fund', |
|
'La Seguridad Social saca otros 8.700 millones del Fondo de Reserva', |
|
'Tiene unos 44.000 millones de barriles de reservas de petroleo, y 54 billones de pies cubicos de reservas de gas natural.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Datasets: `stsb_multi_mt-pt`, `stsb_multi_mt-en` and `stsb_multi_mt-es` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | stsb_multi_mt-pt | stsb_multi_mt-en | stsb_multi_mt-es | |
|
|:--------------------|:-----------------|:-----------------|:-----------------| |
|
| pearson_cosine | 0.8087 | 0.836 | 0.8209 | |
|
| **spearman_cosine** | **0.8245** | **0.8542** | **0.8434** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 37,000,000 training samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 21.97 tokens</li><li>max: 103 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 23.91 tokens</li><li>max: 118 tokens</li></ul> | <ul><li>size: 384 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>It also calls on the UN Secretary-General, to present by 15 April to the Security Council “options” for the deployment of an international police force.</code> | <code>Asimismo, solicita al Secretario General de las Naciones Unidas que presente al Consejo de Seguridad, antes del 15 de abril, algunas "propuestas" para el despliegue de fuerzas de policía internacional.</code> | <code>[-0.04722730070352554, -0.025426536798477173, 0.04836353287100792, -0.04443460330367088, 0.06477425247430801, ...]</code> | |
|
| <code>The Viacom Services governed by this privacy policy are generally not intended for use by children.</code> | <code>Los Servicios de Viacom que están regidos por esta política de privacidad, por lo general, no están destinados a menores de edad.</code> | <code>[0.0823400542140007, -0.004498262889683247, 0.023361222818493843, -0.07224256545305252, -0.0026566446758806705, ...]</code> | |
|
| <code>- You gotta promise me, doc.</code> | <code>- Prometa-me, Doutor.</code> | <code>[-0.010264741256833076, 0.004426243249326944, 0.06644191592931747, -0.03601944074034691, 0.009492351673543453, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 701,304 evaluation samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 22.86 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 24.97 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>size: 384 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Manufacturer: Rourke Educational Media</code> | <code>Gravadora: Rourke Meios Educativos</code> | <code>[0.016672328114509583, 0.025462372228503227, 0.024576706811785698, -0.01961815170943737, 0.014413068071007729, ...]</code> | |
|
| <code>What in hells success if it isnt right there in your Stevenson sonnet, which outranks Henleys Apparition, in that Love-cycle, in those sea- poems?</code> | <code>¿Qué demonios es el éxito sino lo que hay en su soneto sobre Stevenson, superior a la Aparición de Henley, o en su Ciclo del amor y en sus Poemas del mar?</code> | <code>[0.0172938983887434, -0.04857725650072098, -0.05557125806808472, -0.012614483945071697, -0.014296879060566425, ...]</code> | |
|
| <code>Everyone knows, and you know already that you are existing; there is no need, it is futile.</code> | <code>Todo mundo sabe, e você já sabe que está existindo; não há nenhuma necessidade disso, isso é fútil.</code> | <code>[-0.005980388727039099, -0.02314012683928013, 0.022277960553765297, -0.008318797685205936, -0.0034421393647789955, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 512 |
|
- `per_device_eval_batch_size`: 512 |
|
- `gradient_accumulation_steps`: 2 |
|
- `learning_rate`: 0.0003 |
|
- `num_train_epochs`: 8 |
|
- `warmup_ratio`: 0.15 |
|
- `bf16`: True |
|
- `dataloader_num_workers`: 8 |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 512 |
|
- `per_device_eval_batch_size`: 512 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 2 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 0.0003 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 8 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.15 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 8 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `tp_size`: 0 |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | Validation Loss | stsb_multi_mt-pt_spearman_cosine | stsb_multi_mt-en_spearman_cosine | stsb_multi_mt-es_spearman_cosine | |
|
|:------:|:------:|:-------------:|:---------------:|:--------------------------------:|:--------------------------------:|:--------------------------------:| |
|
| 0.0138 | 500 | 0.007 | - | - | - | - | |
|
| 0.0277 | 1000 | 0.0048 | - | - | - | - | |
|
| 0.0415 | 1500 | 0.0042 | - | - | - | - | |
|
| 0.0554 | 2000 | 0.0038 | - | - | - | - | |
|
| 0.0692 | 2500 | 0.0035 | - | - | - | - | |
|
| 0.0830 | 3000 | 0.0034 | - | - | - | - | |
|
| 0.0969 | 3500 | 0.0032 | - | - | - | - | |
|
| 0.1107 | 4000 | 0.0031 | - | - | - | - | |
|
| 0.1245 | 4500 | 0.003 | - | - | - | - | |
|
| 0.1384 | 5000 | 0.0029 | 0.0014 | 0.3870 | 0.4251 | 0.4009 | |
|
| 0.1522 | 5500 | 0.0027 | - | - | - | - | |
|
| 0.1661 | 6000 | 0.0026 | - | - | - | - | |
|
| 0.1799 | 6500 | 0.0025 | - | - | - | - | |
|
| 0.1937 | 7000 | 0.0024 | - | - | - | - | |
|
| 0.2076 | 7500 | 0.0024 | - | - | - | - | |
|
| 0.2214 | 8000 | 0.0023 | - | - | - | - | |
|
| 0.2352 | 8500 | 0.0022 | - | - | - | - | |
|
| 0.2491 | 9000 | 0.0021 | - | - | - | - | |
|
| 0.2629 | 9500 | 0.0021 | - | - | - | - | |
|
| 0.2768 | 10000 | 0.002 | 0.0009 | 0.5930 | 0.6429 | 0.6127 | |
|
| 0.2906 | 10500 | 0.0019 | - | - | - | - | |
|
| 0.3044 | 11000 | 0.0019 | - | - | - | - | |
|
| 0.3183 | 11500 | 0.0018 | - | - | - | - | |
|
| 0.3321 | 12000 | 0.0018 | - | - | - | - | |
|
| 0.3459 | 12500 | 0.0017 | - | - | - | - | |
|
| 0.3598 | 13000 | 0.0017 | - | - | - | - | |
|
| 0.3736 | 13500 | 0.0016 | - | - | - | - | |
|
| 0.3875 | 14000 | 0.0016 | - | - | - | - | |
|
| 0.4013 | 14500 | 0.0015 | - | - | - | - | |
|
| 0.4151 | 15000 | 0.0015 | 0.0007 | 0.6874 | 0.7547 | 0.7104 | |
|
| 0.4290 | 15500 | 0.0015 | - | - | - | - | |
|
| 0.4428 | 16000 | 0.0014 | - | - | - | - | |
|
| 0.4566 | 16500 | 0.0014 | - | - | - | - | |
|
| 0.4705 | 17000 | 0.0014 | - | - | - | - | |
|
| 0.4843 | 17500 | 0.0013 | - | - | - | - | |
|
| 0.4982 | 18000 | 0.0013 | - | - | - | - | |
|
| 0.5120 | 18500 | 0.0013 | - | - | - | - | |
|
| 0.5258 | 19000 | 0.0013 | - | - | - | - | |
|
| 0.5397 | 19500 | 0.0012 | - | - | - | - | |
|
| 0.5535 | 20000 | 0.0012 | 0.0006 | 0.7185 | 0.7866 | 0.7445 | |
|
| 0.5673 | 20500 | 0.0012 | - | - | - | - | |
|
| 0.5812 | 21000 | 0.0012 | - | - | - | - | |
|
| 0.5950 | 21500 | 0.0012 | - | - | - | - | |
|
| 0.6089 | 22000 | 0.0012 | - | - | - | - | |
|
| 0.6227 | 22500 | 0.0012 | - | - | - | - | |
|
| 0.6365 | 23000 | 0.0011 | - | - | - | - | |
|
| 0.6504 | 23500 | 0.0011 | - | - | - | - | |
|
| 0.6642 | 24000 | 0.0011 | - | - | - | - | |
|
| 0.6781 | 24500 | 0.0011 | - | - | - | - | |
|
| 0.6919 | 25000 | 0.0011 | 0.0005 | 0.7381 | 0.8008 | 0.7642 | |
|
| 0.7057 | 25500 | 0.0011 | - | - | - | - | |
|
| 0.7196 | 26000 | 0.0011 | - | - | - | - | |
|
| 0.7334 | 26500 | 0.0011 | - | - | - | - | |
|
| 0.7472 | 27000 | 0.0011 | - | - | - | - | |
|
| 0.7611 | 27500 | 0.001 | - | - | - | - | |
|
| 0.7749 | 28000 | 0.001 | - | - | - | - | |
|
| 0.7888 | 28500 | 0.001 | - | - | - | - | |
|
| 0.8026 | 29000 | 0.001 | - | - | - | - | |
|
| 0.8164 | 29500 | 0.001 | - | - | - | - | |
|
| 0.8303 | 30000 | 0.001 | 0.0005 | 0.7555 | 0.8184 | 0.7799 | |
|
| 0.8441 | 30500 | 0.001 | - | - | - | - | |
|
| 0.8579 | 31000 | 0.001 | - | - | - | - | |
|
| 0.8718 | 31500 | 0.001 | - | - | - | - | |
|
| 0.8856 | 32000 | 0.001 | - | - | - | - | |
|
| 0.8995 | 32500 | 0.001 | - | - | - | - | |
|
| 0.9133 | 33000 | 0.001 | - | - | - | - | |
|
| 0.9271 | 33500 | 0.001 | - | - | - | - | |
|
| 0.9410 | 34000 | 0.001 | - | - | - | - | |
|
| 0.9548 | 34500 | 0.001 | - | - | - | - | |
|
| 0.9686 | 35000 | 0.001 | 0.0004 | 0.7628 | 0.8230 | 0.7883 | |
|
| 0.9825 | 35500 | 0.001 | - | - | - | - | |
|
| 0.9963 | 36000 | 0.0009 | - | - | - | - | |
|
| 1.0102 | 36500 | 0.0009 | - | - | - | - | |
|
| 1.0240 | 37000 | 0.0009 | - | - | - | - | |
|
| 1.0378 | 37500 | 0.0009 | - | - | - | - | |
|
| 1.0517 | 38000 | 0.0009 | - | - | - | - | |
|
| 1.0655 | 38500 | 0.0009 | - | - | - | - | |
|
| 1.0793 | 39000 | 0.0009 | - | - | - | - | |
|
| 1.0932 | 39500 | 0.0009 | - | - | - | - | |
|
| 1.1070 | 40000 | 0.0009 | 0.0004 | 0.7701 | 0.8313 | 0.7975 | |
|
| 1.1209 | 40500 | 0.0009 | - | - | - | - | |
|
| 1.1347 | 41000 | 0.0009 | - | - | - | - | |
|
| 1.1485 | 41500 | 0.0009 | - | - | - | - | |
|
| 1.1624 | 42000 | 0.0009 | - | - | - | - | |
|
| 1.1762 | 42500 | 0.0009 | - | - | - | - | |
|
| 1.1900 | 43000 | 0.0009 | - | - | - | - | |
|
| 1.2039 | 43500 | 0.0009 | - | - | - | - | |
|
| 1.2177 | 44000 | 0.0009 | - | - | - | - | |
|
| 1.2316 | 44500 | 0.0009 | - | - | - | - | |
|
| 1.2454 | 45000 | 0.0009 | 0.0004 | 0.7747 | 0.8344 | 0.7990 | |
|
| 1.2592 | 45500 | 0.0009 | - | - | - | - | |
|
| 1.2731 | 46000 | 0.0009 | - | - | - | - | |
|
| 1.2869 | 46500 | 0.0009 | - | - | - | - | |
|
| 1.3008 | 47000 | 0.0009 | - | - | - | - | |
|
| 1.3146 | 47500 | 0.0009 | - | - | - | - | |
|
| 1.3284 | 48000 | 0.0009 | - | - | - | - | |
|
| 1.3423 | 48500 | 0.0009 | - | - | - | - | |
|
| 1.3561 | 49000 | 0.0009 | - | - | - | - | |
|
| 1.3699 | 49500 | 0.0009 | - | - | - | - | |
|
| 1.3838 | 50000 | 0.0009 | 0.0004 | 0.7824 | 0.8372 | 0.8111 | |
|
| 1.3976 | 50500 | 0.0009 | - | - | - | - | |
|
| 1.4115 | 51000 | 0.0009 | - | - | - | - | |
|
| 1.4253 | 51500 | 0.0009 | - | - | - | - | |
|
| 1.4391 | 52000 | 0.0009 | - | - | - | - | |
|
| 1.4530 | 52500 | 0.0009 | - | - | - | - | |
|
| 1.4668 | 53000 | 0.0009 | - | - | - | - | |
|
| 1.4806 | 53500 | 0.0009 | - | - | - | - | |
|
| 1.4945 | 54000 | 0.0008 | - | - | - | - | |
|
| 1.5083 | 54500 | 0.0008 | - | - | - | - | |
|
| 1.5222 | 55000 | 0.0008 | 0.0004 | 0.7882 | 0.8426 | 0.8149 | |
|
| 1.5360 | 55500 | 0.0008 | - | - | - | - | |
|
| 1.5498 | 56000 | 0.0008 | - | - | - | - | |
|
| 1.5637 | 56500 | 0.0008 | - | - | - | - | |
|
| 1.5775 | 57000 | 0.0008 | - | - | - | - | |
|
| 1.5913 | 57500 | 0.0008 | - | - | - | - | |
|
| 1.6052 | 58000 | 0.0008 | - | - | - | - | |
|
| 1.6190 | 58500 | 0.0008 | - | - | - | - | |
|
| 1.6329 | 59000 | 0.0008 | - | - | - | - | |
|
| 1.6467 | 59500 | 0.0008 | - | - | - | - | |
|
| 1.6605 | 60000 | 0.0008 | 0.0004 | 0.7969 | 0.8453 | 0.8242 | |
|
| 1.6744 | 60500 | 0.0008 | - | - | - | - | |
|
| 1.6882 | 61000 | 0.0008 | - | - | - | - | |
|
| 1.7020 | 61500 | 0.0008 | - | - | - | - | |
|
| 1.7159 | 62000 | 0.0008 | - | - | - | - | |
|
| 1.7297 | 62500 | 0.0008 | - | - | - | - | |
|
| 1.7436 | 63000 | 0.0008 | - | - | - | - | |
|
| 1.7574 | 63500 | 0.0008 | - | - | - | - | |
|
| 1.7712 | 64000 | 0.0008 | - | - | - | - | |
|
| 1.7851 | 64500 | 0.0008 | - | - | - | - | |
|
| 1.7989 | 65000 | 0.0008 | 0.0004 | 0.7970 | 0.8473 | 0.8254 | |
|
| 1.8127 | 65500 | 0.0008 | - | - | - | - | |
|
| 1.8266 | 66000 | 0.0008 | - | - | - | - | |
|
| 1.8404 | 66500 | 0.0008 | - | - | - | - | |
|
| 1.8543 | 67000 | 0.0008 | - | - | - | - | |
|
| 1.8681 | 67500 | 0.0008 | - | - | - | - | |
|
| 1.8819 | 68000 | 0.0008 | - | - | - | - | |
|
| 1.8958 | 68500 | 0.0008 | - | - | - | - | |
|
| 1.9096 | 69000 | 0.0008 | - | - | - | - | |
|
| 1.9234 | 69500 | 0.0008 | - | - | - | - | |
|
| 1.9373 | 70000 | 0.0008 | 0.0004 | 0.7959 | 0.8459 | 0.8234 | |
|
| 1.9511 | 70500 | 0.0008 | - | - | - | - | |
|
| 1.9650 | 71000 | 0.0008 | - | - | - | - | |
|
| 1.9788 | 71500 | 0.0008 | - | - | - | - | |
|
| 1.9926 | 72000 | 0.0008 | - | - | - | - | |
|
| 2.0065 | 72500 | 0.0008 | - | - | - | - | |
|
| 2.0203 | 73000 | 0.0008 | - | - | - | - | |
|
| 2.0342 | 73500 | 0.0008 | - | - | - | - | |
|
| 2.0480 | 74000 | 0.0008 | - | - | - | - | |
|
| 2.0618 | 74500 | 0.0008 | - | - | - | - | |
|
| 2.0757 | 75000 | 0.0008 | 0.0004 | 0.7995 | 0.8489 | 0.8277 | |
|
| 2.0895 | 75500 | 0.0008 | - | - | - | - | |
|
| 2.1033 | 76000 | 0.0008 | - | - | - | - | |
|
| 2.1172 | 76500 | 0.0008 | - | - | - | - | |
|
| 2.1310 | 77000 | 0.0008 | - | - | - | - | |
|
| 2.1449 | 77500 | 0.0008 | - | - | - | - | |
|
| 2.1587 | 78000 | 0.0008 | - | - | - | - | |
|
| 2.1725 | 78500 | 0.0008 | - | - | - | - | |
|
| 2.1864 | 79000 | 0.0008 | - | - | - | - | |
|
| 2.2002 | 79500 | 0.0008 | - | - | - | - | |
|
| 2.2140 | 80000 | 0.0008 | 0.0004 | 0.7994 | 0.8462 | 0.8237 | |
|
| 2.2279 | 80500 | 0.0008 | - | - | - | - | |
|
| 2.2417 | 81000 | 0.0008 | - | - | - | - | |
|
| 2.2556 | 81500 | 0.0008 | - | - | - | - | |
|
| 2.2694 | 82000 | 0.0008 | - | - | - | - | |
|
| 2.2832 | 82500 | 0.0008 | - | - | - | - | |
|
| 2.2971 | 83000 | 0.0008 | - | - | - | - | |
|
| 2.3109 | 83500 | 0.0008 | - | - | - | - | |
|
| 2.3247 | 84000 | 0.0008 | - | - | - | - | |
|
| 2.3386 | 84500 | 0.0008 | - | - | - | - | |
|
| 2.3524 | 85000 | 0.0008 | 0.0004 | 0.8074 | 0.8499 | 0.8300 | |
|
| 2.3663 | 85500 | 0.0008 | - | - | - | - | |
|
| 2.3801 | 86000 | 0.0008 | - | - | - | - | |
|
| 2.3939 | 86500 | 0.0008 | - | - | - | - | |
|
| 2.4078 | 87000 | 0.0008 | - | - | - | - | |
|
| 2.4216 | 87500 | 0.0008 | - | - | - | - | |
|
| 2.4354 | 88000 | 0.0008 | - | - | - | - | |
|
| 2.4493 | 88500 | 0.0008 | - | - | - | - | |
|
| 2.4631 | 89000 | 0.0008 | - | - | - | - | |
|
| 2.4770 | 89500 | 0.0008 | - | - | - | - | |
|
| 2.4908 | 90000 | 0.0008 | 0.0003 | 0.8088 | 0.8506 | 0.8315 | |
|
| 2.5046 | 90500 | 0.0008 | - | - | - | - | |
|
| 2.5185 | 91000 | 0.0008 | - | - | - | - | |
|
| 2.5323 | 91500 | 0.0008 | - | - | - | - | |
|
| 2.5461 | 92000 | 0.0008 | - | - | - | - | |
|
| 2.5600 | 92500 | 0.0008 | - | - | - | - | |
|
| 2.5738 | 93000 | 0.0008 | - | - | - | - | |
|
| 2.5877 | 93500 | 0.0008 | - | - | - | - | |
|
| 2.6015 | 94000 | 0.0008 | - | - | - | - | |
|
| 2.6153 | 94500 | 0.0008 | - | - | - | - | |
|
| 2.6292 | 95000 | 0.0008 | 0.0003 | 0.8094 | 0.8518 | 0.8337 | |
|
| 2.6430 | 95500 | 0.0008 | - | - | - | - | |
|
| 2.6569 | 96000 | 0.0008 | - | - | - | - | |
|
| 2.6707 | 96500 | 0.0008 | - | - | - | - | |
|
| 2.6845 | 97000 | 0.0008 | - | - | - | - | |
|
| 2.6984 | 97500 | 0.0008 | - | - | - | - | |
|
| 2.7122 | 98000 | 0.0008 | - | - | - | - | |
|
| 2.7260 | 98500 | 0.0008 | - | - | - | - | |
|
| 2.7399 | 99000 | 0.0008 | - | - | - | - | |
|
| 2.7537 | 99500 | 0.0008 | - | - | - | - | |
|
| 2.7676 | 100000 | 0.0008 | 0.0003 | 0.8083 | 0.8514 | 0.8303 | |
|
| 2.7814 | 100500 | 0.0008 | - | - | - | - | |
|
| 2.7952 | 101000 | 0.0008 | - | - | - | - | |
|
| 2.8091 | 101500 | 0.0008 | - | - | - | - | |
|
| 2.8229 | 102000 | 0.0008 | - | - | - | - | |
|
| 2.8367 | 102500 | 0.0008 | - | - | - | - | |
|
| 2.8506 | 103000 | 0.0008 | - | - | - | - | |
|
| 2.8644 | 103500 | 0.0008 | - | - | - | - | |
|
| 2.8783 | 104000 | 0.0008 | - | - | - | - | |
|
| 2.8921 | 104500 | 0.0008 | - | - | - | - | |
|
| 2.9059 | 105000 | 0.0008 | 0.0003 | 0.8126 | 0.8521 | 0.8352 | |
|
| 2.9198 | 105500 | 0.0008 | - | - | - | - | |
|
| 2.9336 | 106000 | 0.0008 | - | - | - | - | |
|
| 2.9474 | 106500 | 0.0008 | - | - | - | - | |
|
| 2.9613 | 107000 | 0.0008 | - | - | - | - | |
|
| 2.9751 | 107500 | 0.0008 | - | - | - | - | |
|
| 2.9890 | 108000 | 0.0008 | - | - | - | - | |
|
| 3.0028 | 108500 | 0.0008 | - | - | - | - | |
|
| 3.0166 | 109000 | 0.0008 | - | - | - | - | |
|
| 3.0305 | 109500 | 0.0008 | - | - | - | - | |
|
| 3.0443 | 110000 | 0.0008 | 0.0003 | 0.8149 | 0.8515 | 0.8340 | |
|
| 3.0581 | 110500 | 0.0008 | - | - | - | - | |
|
| 3.0720 | 111000 | 0.0008 | - | - | - | - | |
|
| 3.0858 | 111500 | 0.0008 | - | - | - | - | |
|
| 3.0997 | 112000 | 0.0008 | - | - | - | - | |
|
| 3.1135 | 112500 | 0.0008 | - | - | - | - | |
|
| 3.1273 | 113000 | 0.0008 | - | - | - | - | |
|
| 3.1412 | 113500 | 0.0008 | - | - | - | - | |
|
| 3.1550 | 114000 | 0.0008 | - | - | - | - | |
|
| 3.1688 | 114500 | 0.0008 | - | - | - | - | |
|
| 3.1827 | 115000 | 0.0008 | 0.0003 | 0.8160 | 0.8527 | 0.8348 | |
|
| 3.1965 | 115500 | 0.0008 | - | - | - | - | |
|
| 3.2104 | 116000 | 0.0008 | - | - | - | - | |
|
| 3.2242 | 116500 | 0.0008 | - | - | - | - | |
|
| 3.2380 | 117000 | 0.0008 | - | - | - | - | |
|
| 3.2519 | 117500 | 0.0008 | - | - | - | - | |
|
| 3.2657 | 118000 | 0.0008 | - | - | - | - | |
|
| 3.2796 | 118500 | 0.0008 | - | - | - | - | |
|
| 3.2934 | 119000 | 0.0008 | - | - | - | - | |
|
| 3.3072 | 119500 | 0.0008 | - | - | - | - | |
|
| 3.3211 | 120000 | 0.0008 | 0.0003 | 0.8176 | 0.8524 | 0.8359 | |
|
| 3.3349 | 120500 | 0.0008 | - | - | - | - | |
|
| 3.3487 | 121000 | 0.0008 | - | - | - | - | |
|
| 3.3626 | 121500 | 0.0008 | - | - | - | - | |
|
| 3.3764 | 122000 | 0.0008 | - | - | - | - | |
|
| 3.3903 | 122500 | 0.0008 | - | - | - | - | |
|
| 3.4041 | 123000 | 0.0008 | - | - | - | - | |
|
| 3.4179 | 123500 | 0.0008 | - | - | - | - | |
|
| 3.4318 | 124000 | 0.0008 | - | - | - | - | |
|
| 3.4456 | 124500 | 0.0008 | - | - | - | - | |
|
| 3.4594 | 125000 | 0.0008 | 0.0003 | 0.8177 | 0.8541 | 0.8379 | |
|
| 3.4733 | 125500 | 0.0008 | - | - | - | - | |
|
| 3.4871 | 126000 | 0.0008 | - | - | - | - | |
|
| 3.5010 | 126500 | 0.0008 | - | - | - | - | |
|
| 3.5148 | 127000 | 0.0008 | - | - | - | - | |
|
| 3.5286 | 127500 | 0.0008 | - | - | - | - | |
|
| 3.5425 | 128000 | 0.0008 | - | - | - | - | |
|
| 3.5563 | 128500 | 0.0008 | - | - | - | - | |
|
| 3.5701 | 129000 | 0.0008 | - | - | - | - | |
|
| 3.5840 | 129500 | 0.0008 | - | - | - | - | |
|
| 3.5978 | 130000 | 0.0008 | 0.0003 | 0.8162 | 0.8520 | 0.8371 | |
|
| 3.6117 | 130500 | 0.0008 | - | - | - | - | |
|
| 3.6255 | 131000 | 0.0008 | - | - | - | - | |
|
| 3.6393 | 131500 | 0.0008 | - | - | - | - | |
|
| 3.6532 | 132000 | 0.0008 | - | - | - | - | |
|
| 3.6670 | 132500 | 0.0008 | - | - | - | - | |
|
| 3.6808 | 133000 | 0.0008 | - | - | - | - | |
|
| 3.6947 | 133500 | 0.0008 | - | - | - | - | |
|
| 3.7085 | 134000 | 0.0008 | - | - | - | - | |
|
| 3.7224 | 134500 | 0.0008 | - | - | - | - | |
|
| 3.7362 | 135000 | 0.0008 | 0.0003 | 0.8178 | 0.8542 | 0.8378 | |
|
| 3.7500 | 135500 | 0.0008 | - | - | - | - | |
|
| 3.7639 | 136000 | 0.0008 | - | - | - | - | |
|
| 3.7777 | 136500 | 0.0008 | - | - | - | - | |
|
| 3.7915 | 137000 | 0.0008 | - | - | - | - | |
|
| 3.8054 | 137500 | 0.0008 | - | - | - | - | |
|
| 3.8192 | 138000 | 0.0008 | - | - | - | - | |
|
| 3.8331 | 138500 | 0.0008 | - | - | - | - | |
|
| 3.8469 | 139000 | 0.0008 | - | - | - | - | |
|
| 3.8607 | 139500 | 0.0008 | - | - | - | - | |
|
| 3.8746 | 140000 | 0.0008 | 0.0003 | 0.8214 | 0.8542 | 0.8408 | |
|
| 3.8884 | 140500 | 0.0008 | - | - | - | - | |
|
| 3.9023 | 141000 | 0.0008 | - | - | - | - | |
|
| 3.9161 | 141500 | 0.0007 | - | - | - | - | |
|
| 3.9299 | 142000 | 0.0007 | - | - | - | - | |
|
| 3.9438 | 142500 | 0.0008 | - | - | - | - | |
|
| 3.9576 | 143000 | 0.0008 | - | - | - | - | |
|
| 3.9714 | 143500 | 0.0007 | - | - | - | - | |
|
| 3.9853 | 144000 | 0.0007 | - | - | - | - | |
|
| 3.9991 | 144500 | 0.0007 | - | - | - | - | |
|
| 4.0130 | 145000 | 0.0007 | 0.0003 | 0.8163 | 0.8521 | 0.8365 | |
|
| 4.0268 | 145500 | 0.0007 | - | - | - | - | |
|
| 4.0406 | 146000 | 0.0007 | - | - | - | - | |
|
| 4.0545 | 146500 | 0.0007 | - | - | - | - | |
|
| 4.0683 | 147000 | 0.0007 | - | - | - | - | |
|
| 4.0821 | 147500 | 0.0007 | - | - | - | - | |
|
| 4.0960 | 148000 | 0.0007 | - | - | - | - | |
|
| 4.1098 | 148500 | 0.0007 | - | - | - | - | |
|
| 4.1237 | 149000 | 0.0007 | - | - | - | - | |
|
| 4.1375 | 149500 | 0.0007 | - | - | - | - | |
|
| 4.1513 | 150000 | 0.0007 | 0.0003 | 0.8183 | 0.8537 | 0.8374 | |
|
| 4.1652 | 150500 | 0.0007 | - | - | - | - | |
|
| 4.1790 | 151000 | 0.0007 | - | - | - | - | |
|
| 4.1928 | 151500 | 0.0007 | - | - | - | - | |
|
| 4.2067 | 152000 | 0.0007 | - | - | - | - | |
|
| 4.2205 | 152500 | 0.0007 | - | - | - | - | |
|
| 4.2344 | 153000 | 0.0007 | - | - | - | - | |
|
| 4.2482 | 153500 | 0.0007 | - | - | - | - | |
|
| 4.2620 | 154000 | 0.0007 | - | - | - | - | |
|
| 4.2759 | 154500 | 0.0007 | - | - | - | - | |
|
| 4.2897 | 155000 | 0.0007 | 0.0003 | 0.8187 | 0.8525 | 0.8387 | |
|
| 4.3035 | 155500 | 0.0007 | - | - | - | - | |
|
| 4.3174 | 156000 | 0.0007 | - | - | - | - | |
|
| 4.3312 | 156500 | 0.0007 | - | - | - | - | |
|
| 4.3451 | 157000 | 0.0007 | - | - | - | - | |
|
| 4.3589 | 157500 | 0.0007 | - | - | - | - | |
|
| 4.3727 | 158000 | 0.0007 | - | - | - | - | |
|
| 4.3866 | 158500 | 0.0007 | - | - | - | - | |
|
| 4.4004 | 159000 | 0.0007 | - | - | - | - | |
|
| 4.4142 | 159500 | 0.0007 | - | - | - | - | |
|
| 4.4281 | 160000 | 0.0007 | 0.0003 | 0.8152 | 0.8516 | 0.8359 | |
|
| 4.4419 | 160500 | 0.0007 | - | - | - | - | |
|
| 4.4558 | 161000 | 0.0007 | - | - | - | - | |
|
| 4.4696 | 161500 | 0.0007 | - | - | - | - | |
|
| 4.4834 | 162000 | 0.0007 | - | - | - | - | |
|
| 4.4973 | 162500 | 0.0007 | - | - | - | - | |
|
| 4.5111 | 163000 | 0.0007 | - | - | - | - | |
|
| 4.5249 | 163500 | 0.0007 | - | - | - | - | |
|
| 4.5388 | 164000 | 0.0007 | - | - | - | - | |
|
| 4.5526 | 164500 | 0.0007 | - | - | - | - | |
|
| 4.5665 | 165000 | 0.0007 | 0.0003 | 0.8192 | 0.8532 | 0.8407 | |
|
| 4.5803 | 165500 | 0.0007 | - | - | - | - | |
|
| 4.5941 | 166000 | 0.0007 | - | - | - | - | |
|
| 4.6080 | 166500 | 0.0007 | - | - | - | - | |
|
| 4.6218 | 167000 | 0.0007 | - | - | - | - | |
|
| 4.6357 | 167500 | 0.0007 | - | - | - | - | |
|
| 4.6495 | 168000 | 0.0007 | - | - | - | - | |
|
| 4.6633 | 168500 | 0.0007 | - | - | - | - | |
|
| 4.6772 | 169000 | 0.0007 | - | - | - | - | |
|
| 4.6910 | 169500 | 0.0007 | - | - | - | - | |
|
| 4.7048 | 170000 | 0.0007 | 0.0003 | 0.8205 | 0.8526 | 0.8393 | |
|
| 4.7187 | 170500 | 0.0007 | - | - | - | - | |
|
| 4.7325 | 171000 | 0.0007 | - | - | - | - | |
|
| 4.7464 | 171500 | 0.0007 | - | - | - | - | |
|
| 4.7602 | 172000 | 0.0007 | - | - | - | - | |
|
| 4.7740 | 172500 | 0.0007 | - | - | - | - | |
|
| 4.7879 | 173000 | 0.0007 | - | - | - | - | |
|
| 4.8017 | 173500 | 0.0007 | - | - | - | - | |
|
| 4.8155 | 174000 | 0.0007 | - | - | - | - | |
|
| 4.8294 | 174500 | 0.0007 | - | - | - | - | |
|
| 4.8432 | 175000 | 0.0007 | 0.0003 | 0.8191 | 0.8524 | 0.8396 | |
|
| 4.8571 | 175500 | 0.0007 | - | - | - | - | |
|
| 4.8709 | 176000 | 0.0007 | - | - | - | - | |
|
| 4.8847 | 176500 | 0.0007 | - | - | - | - | |
|
| 4.8986 | 177000 | 0.0007 | - | - | - | - | |
|
| 4.9124 | 177500 | 0.0007 | - | - | - | - | |
|
| 4.9262 | 178000 | 0.0007 | - | - | - | - | |
|
| 4.9401 | 178500 | 0.0007 | - | - | - | - | |
|
| 4.9539 | 179000 | 0.0007 | - | - | - | - | |
|
| 4.9678 | 179500 | 0.0007 | - | - | - | - | |
|
| 4.9816 | 180000 | 0.0007 | 0.0003 | 0.8202 | 0.8538 | 0.8426 | |
|
| 4.9954 | 180500 | 0.0007 | - | - | - | - | |
|
| 5.0093 | 181000 | 0.0007 | - | - | - | - | |
|
| 5.0231 | 181500 | 0.0007 | - | - | - | - | |
|
| 5.0369 | 182000 | 0.0007 | - | - | - | - | |
|
| 5.0508 | 182500 | 0.0007 | - | - | - | - | |
|
| 5.0646 | 183000 | 0.0007 | - | - | - | - | |
|
| 5.0785 | 183500 | 0.0007 | - | - | - | - | |
|
| 5.0923 | 184000 | 0.0007 | - | - | - | - | |
|
| 5.1061 | 184500 | 0.0007 | - | - | - | - | |
|
| 5.1200 | 185000 | 0.0007 | 0.0003 | 0.8221 | 0.8548 | 0.8425 | |
|
| 5.1338 | 185500 | 0.0007 | - | - | - | - | |
|
| 5.1476 | 186000 | 0.0007 | - | - | - | - | |
|
| 5.1615 | 186500 | 0.0007 | - | - | - | - | |
|
| 5.1753 | 187000 | 0.0007 | - | - | - | - | |
|
| 5.1892 | 187500 | 0.0007 | - | - | - | - | |
|
| 5.2030 | 188000 | 0.0007 | - | - | - | - | |
|
| 5.2168 | 188500 | 0.0007 | - | - | - | - | |
|
| 5.2307 | 189000 | 0.0007 | - | - | - | - | |
|
| 5.2445 | 189500 | 0.0007 | - | - | - | - | |
|
| 5.2584 | 190000 | 0.0007 | 0.0003 | 0.8205 | 0.8530 | 0.8401 | |
|
| 5.2722 | 190500 | 0.0007 | - | - | - | - | |
|
| 5.2860 | 191000 | 0.0007 | - | - | - | - | |
|
| 5.2999 | 191500 | 0.0007 | - | - | - | - | |
|
| 5.3137 | 192000 | 0.0007 | - | - | - | - | |
|
| 5.3275 | 192500 | 0.0007 | - | - | - | - | |
|
| 5.3414 | 193000 | 0.0007 | - | - | - | - | |
|
| 5.3552 | 193500 | 0.0007 | - | - | - | - | |
|
| 5.3691 | 194000 | 0.0007 | - | - | - | - | |
|
| 5.3829 | 194500 | 0.0007 | - | - | - | - | |
|
| 5.3967 | 195000 | 0.0007 | 0.0003 | 0.8220 | 0.8526 | 0.8415 | |
|
| 5.4106 | 195500 | 0.0007 | - | - | - | - | |
|
| 5.4244 | 196000 | 0.0007 | - | - | - | - | |
|
| 5.4382 | 196500 | 0.0007 | - | - | - | - | |
|
| 5.4521 | 197000 | 0.0007 | - | - | - | - | |
|
| 5.4659 | 197500 | 0.0007 | - | - | - | - | |
|
| 5.4798 | 198000 | 0.0007 | - | - | - | - | |
|
| 5.4936 | 198500 | 0.0007 | - | - | - | - | |
|
| 5.5074 | 199000 | 0.0007 | - | - | - | - | |
|
| 5.5213 | 199500 | 0.0007 | - | - | - | - | |
|
| 5.5351 | 200000 | 0.0007 | 0.0003 | 0.8187 | 0.8525 | 0.8395 | |
|
| 5.5489 | 200500 | 0.0007 | - | - | - | - | |
|
| 5.5628 | 201000 | 0.0007 | - | - | - | - | |
|
| 5.5766 | 201500 | 0.0007 | - | - | - | - | |
|
| 5.5905 | 202000 | 0.0007 | - | - | - | - | |
|
| 5.6043 | 202500 | 0.0007 | - | - | - | - | |
|
| 5.6181 | 203000 | 0.0007 | - | - | - | - | |
|
| 5.6320 | 203500 | 0.0007 | - | - | - | - | |
|
| 5.6458 | 204000 | 0.0007 | - | - | - | - | |
|
| 5.6596 | 204500 | 0.0007 | - | - | - | - | |
|
| 5.6735 | 205000 | 0.0007 | 0.0003 | 0.8219 | 0.8531 | 0.8426 | |
|
| 5.6873 | 205500 | 0.0007 | - | - | - | - | |
|
| 5.7012 | 206000 | 0.0007 | - | - | - | - | |
|
| 5.7150 | 206500 | 0.0007 | - | - | - | - | |
|
| 5.7288 | 207000 | 0.0007 | - | - | - | - | |
|
| 5.7427 | 207500 | 0.0007 | - | - | - | - | |
|
| 5.7565 | 208000 | 0.0007 | - | - | - | - | |
|
| 5.7703 | 208500 | 0.0007 | - | - | - | - | |
|
| 5.7842 | 209000 | 0.0007 | - | - | - | - | |
|
| 5.7980 | 209500 | 0.0007 | - | - | - | - | |
|
| 5.8119 | 210000 | 0.0007 | 0.0003 | 0.8226 | 0.8535 | 0.8413 | |
|
| 5.8257 | 210500 | 0.0007 | - | - | - | - | |
|
| 5.8395 | 211000 | 0.0007 | - | - | - | - | |
|
| 5.8534 | 211500 | 0.0007 | - | - | - | - | |
|
| 5.8672 | 212000 | 0.0007 | - | - | - | - | |
|
| 5.8811 | 212500 | 0.0007 | - | - | - | - | |
|
| 5.8949 | 213000 | 0.0007 | - | - | - | - | |
|
| 5.9087 | 213500 | 0.0007 | - | - | - | - | |
|
| 5.9226 | 214000 | 0.0007 | - | - | - | - | |
|
| 5.9364 | 214500 | 0.0007 | - | - | - | - | |
|
| 5.9502 | 215000 | 0.0007 | 0.0003 | 0.8223 | 0.8542 | 0.8416 | |
|
| 5.9641 | 215500 | 0.0007 | - | - | - | - | |
|
| 5.9779 | 216000 | 0.0007 | - | - | - | - | |
|
| 5.9918 | 216500 | 0.0007 | - | - | - | - | |
|
| 6.0056 | 217000 | 0.0007 | - | - | - | - | |
|
| 6.0194 | 217500 | 0.0007 | - | - | - | - | |
|
| 6.0333 | 218000 | 0.0007 | - | - | - | - | |
|
| 6.0471 | 218500 | 0.0007 | - | - | - | - | |
|
| 6.0609 | 219000 | 0.0007 | - | - | - | - | |
|
| 6.0748 | 219500 | 0.0007 | - | - | - | - | |
|
| 6.0886 | 220000 | 0.0007 | 0.0003 | 0.8215 | 0.8538 | 0.8416 | |
|
| 6.1025 | 220500 | 0.0007 | - | - | - | - | |
|
| 6.1163 | 221000 | 0.0007 | - | - | - | - | |
|
| 6.1301 | 221500 | 0.0007 | - | - | - | - | |
|
| 6.1440 | 222000 | 0.0007 | - | - | - | - | |
|
| 6.1578 | 222500 | 0.0007 | - | - | - | - | |
|
| 6.1716 | 223000 | 0.0007 | - | - | - | - | |
|
| 6.1855 | 223500 | 0.0007 | - | - | - | - | |
|
| 6.1993 | 224000 | 0.0007 | - | - | - | - | |
|
| 6.2132 | 224500 | 0.0007 | - | - | - | - | |
|
| 6.2270 | 225000 | 0.0007 | 0.0003 | 0.8243 | 0.8545 | 0.8415 | |
|
| 6.2408 | 225500 | 0.0007 | - | - | - | - | |
|
| 6.2547 | 226000 | 0.0007 | - | - | - | - | |
|
| 6.2685 | 226500 | 0.0007 | - | - | - | - | |
|
| 6.2823 | 227000 | 0.0007 | - | - | - | - | |
|
| 6.2962 | 227500 | 0.0007 | - | - | - | - | |
|
| 6.3100 | 228000 | 0.0007 | - | - | - | - | |
|
| 6.3239 | 228500 | 0.0007 | - | - | - | - | |
|
| 6.3377 | 229000 | 0.0007 | - | - | - | - | |
|
| 6.3515 | 229500 | 0.0007 | - | - | - | - | |
|
| 6.3654 | 230000 | 0.0007 | 0.0003 | 0.8234 | 0.8539 | 0.8418 | |
|
| 6.3792 | 230500 | 0.0007 | - | - | - | - | |
|
| 6.3930 | 231000 | 0.0007 | - | - | - | - | |
|
| 6.4069 | 231500 | 0.0007 | - | - | - | - | |
|
| 6.4207 | 232000 | 0.0007 | - | - | - | - | |
|
| 6.4346 | 232500 | 0.0007 | - | - | - | - | |
|
| 6.4484 | 233000 | 0.0007 | - | - | - | - | |
|
| 6.4622 | 233500 | 0.0007 | - | - | - | - | |
|
| 6.4761 | 234000 | 0.0007 | - | - | - | - | |
|
| 6.4899 | 234500 | 0.0007 | - | - | - | - | |
|
| 6.5038 | 235000 | 0.0007 | 0.0003 | 0.8217 | 0.8537 | 0.8410 | |
|
| 6.5176 | 235500 | 0.0007 | - | - | - | - | |
|
| 6.5314 | 236000 | 0.0007 | - | - | - | - | |
|
| 6.5453 | 236500 | 0.0007 | - | - | - | - | |
|
| 6.5591 | 237000 | 0.0007 | - | - | - | - | |
|
| 6.5729 | 237500 | 0.0007 | - | - | - | - | |
|
| 6.5868 | 238000 | 0.0007 | - | - | - | - | |
|
| 6.6006 | 238500 | 0.0007 | - | - | - | - | |
|
| 6.6145 | 239000 | 0.0007 | - | - | - | - | |
|
| 6.6283 | 239500 | 0.0007 | - | - | - | - | |
|
| 6.6421 | 240000 | 0.0007 | 0.0003 | 0.8239 | 0.8537 | 0.8434 | |
|
| 6.6560 | 240500 | 0.0007 | - | - | - | - | |
|
| 6.6698 | 241000 | 0.0007 | - | - | - | - | |
|
| 6.6836 | 241500 | 0.0007 | - | - | - | - | |
|
| 6.6975 | 242000 | 0.0007 | - | - | - | - | |
|
| 6.7113 | 242500 | 0.0007 | - | - | - | - | |
|
| 6.7252 | 243000 | 0.0007 | - | - | - | - | |
|
| 6.7390 | 243500 | 0.0007 | - | - | - | - | |
|
| 6.7528 | 244000 | 0.0007 | - | - | - | - | |
|
| 6.7667 | 244500 | 0.0007 | - | - | - | - | |
|
| 6.7805 | 245000 | 0.0007 | 0.0003 | 0.8233 | 0.8534 | 0.8431 | |
|
| 6.7943 | 245500 | 0.0007 | - | - | - | - | |
|
| 6.8082 | 246000 | 0.0007 | - | - | - | - | |
|
| 6.8220 | 246500 | 0.0007 | - | - | - | - | |
|
| 6.8359 | 247000 | 0.0007 | - | - | - | - | |
|
| 6.8497 | 247500 | 0.0007 | - | - | - | - | |
|
| 6.8635 | 248000 | 0.0007 | - | - | - | - | |
|
| 6.8774 | 248500 | 0.0007 | - | - | - | - | |
|
| 6.8912 | 249000 | 0.0007 | - | - | - | - | |
|
| 6.9050 | 249500 | 0.0007 | - | - | - | - | |
|
| 6.9189 | 250000 | 0.0007 | 0.0003 | 0.8239 | 0.8543 | 0.8432 | |
|
| 6.9327 | 250500 | 0.0007 | - | - | - | - | |
|
| 6.9466 | 251000 | 0.0007 | - | - | - | - | |
|
| 6.9604 | 251500 | 0.0007 | - | - | - | - | |
|
| 6.9742 | 252000 | 0.0007 | - | - | - | - | |
|
| 6.9881 | 252500 | 0.0007 | - | - | - | - | |
|
| 7.0019 | 253000 | 0.0007 | - | - | - | - | |
|
| 7.0157 | 253500 | 0.0007 | - | - | - | - | |
|
| 7.0296 | 254000 | 0.0007 | - | - | - | - | |
|
| 7.0434 | 254500 | 0.0007 | - | - | - | - | |
|
| 7.0573 | 255000 | 0.0007 | 0.0003 | 0.8242 | 0.8541 | 0.8429 | |
|
| 7.0711 | 255500 | 0.0007 | - | - | - | - | |
|
| 7.0849 | 256000 | 0.0007 | - | - | - | - | |
|
| 7.0988 | 256500 | 0.0007 | - | - | - | - | |
|
| 7.1126 | 257000 | 0.0007 | - | - | - | - | |
|
| 7.1264 | 257500 | 0.0007 | - | - | - | - | |
|
| 7.1403 | 258000 | 0.0007 | - | - | - | - | |
|
| 7.1541 | 258500 | 0.0007 | - | - | - | - | |
|
| 7.1680 | 259000 | 0.0007 | - | - | - | - | |
|
| 7.1818 | 259500 | 0.0007 | - | - | - | - | |
|
| 7.1956 | 260000 | 0.0007 | 0.0003 | 0.8236 | 0.8537 | 0.8418 | |
|
| 7.2095 | 260500 | 0.0007 | - | - | - | - | |
|
| 7.2233 | 261000 | 0.0007 | - | - | - | - | |
|
| 7.2372 | 261500 | 0.0007 | - | - | - | - | |
|
| 7.2510 | 262000 | 0.0007 | - | - | - | - | |
|
| 7.2648 | 262500 | 0.0007 | - | - | - | - | |
|
| 7.2787 | 263000 | 0.0007 | - | - | - | - | |
|
| 7.2925 | 263500 | 0.0007 | - | - | - | - | |
|
| 7.3063 | 264000 | 0.0007 | - | - | - | - | |
|
| 7.3202 | 264500 | 0.0007 | - | - | - | - | |
|
| 7.3340 | 265000 | 0.0007 | 0.0003 | 0.8245 | 0.8536 | 0.8420 | |
|
| 7.3479 | 265500 | 0.0007 | - | - | - | - | |
|
| 7.3617 | 266000 | 0.0007 | - | - | - | - | |
|
| 7.3755 | 266500 | 0.0007 | - | - | - | - | |
|
| 7.3894 | 267000 | 0.0007 | - | - | - | - | |
|
| 7.4032 | 267500 | 0.0007 | - | - | - | - | |
|
| 7.4170 | 268000 | 0.0007 | - | - | - | - | |
|
| 7.4309 | 268500 | 0.0007 | - | - | - | - | |
|
| 7.4447 | 269000 | 0.0007 | - | - | - | - | |
|
| 7.4586 | 269500 | 0.0007 | - | - | - | - | |
|
| 7.4724 | 270000 | 0.0007 | 0.0003 | 0.8253 | 0.8545 | 0.8424 | |
|
| 7.4862 | 270500 | 0.0007 | - | - | - | - | |
|
| 7.5001 | 271000 | 0.0007 | - | - | - | - | |
|
| 7.5139 | 271500 | 0.0007 | - | - | - | - | |
|
| 7.5277 | 272000 | 0.0007 | - | - | - | - | |
|
| 7.5416 | 272500 | 0.0007 | - | - | - | - | |
|
| 7.5554 | 273000 | 0.0007 | - | - | - | - | |
|
| 7.5693 | 273500 | 0.0007 | - | - | - | - | |
|
| 7.5831 | 274000 | 0.0007 | - | - | - | - | |
|
| 7.5969 | 274500 | 0.0007 | - | - | - | - | |
|
| 7.6108 | 275000 | 0.0007 | 0.0003 | 0.8233 | 0.8534 | 0.8427 | |
|
| 7.6246 | 275500 | 0.0007 | - | - | - | - | |
|
| 7.6384 | 276000 | 0.0007 | - | - | - | - | |
|
| 7.6523 | 276500 | 0.0007 | - | - | - | - | |
|
| 7.6661 | 277000 | 0.0007 | - | - | - | - | |
|
| 7.6800 | 277500 | 0.0007 | - | - | - | - | |
|
| 7.6938 | 278000 | 0.0007 | - | - | - | - | |
|
| 7.7076 | 278500 | 0.0007 | - | - | - | - | |
|
| 7.7215 | 279000 | 0.0007 | - | - | - | - | |
|
| 7.7353 | 279500 | 0.0007 | - | - | - | - | |
|
| 7.7491 | 280000 | 0.0007 | 0.0003 | 0.8242 | 0.8541 | 0.8428 | |
|
| 7.7630 | 280500 | 0.0007 | - | - | - | - | |
|
| 7.7768 | 281000 | 0.0007 | - | - | - | - | |
|
| 7.7907 | 281500 | 0.0007 | - | - | - | - | |
|
| 7.8045 | 282000 | 0.0007 | - | - | - | - | |
|
| 7.8183 | 282500 | 0.0007 | - | - | - | - | |
|
| 7.8322 | 283000 | 0.0007 | - | - | - | - | |
|
| 7.8460 | 283500 | 0.0007 | - | - | - | - | |
|
| 7.8599 | 284000 | 0.0007 | - | - | - | - | |
|
| 7.8737 | 284500 | 0.0007 | - | - | - | - | |
|
| 7.8875 | 285000 | 0.0007 | 0.0003 | 0.8245 | 0.8542 | 0.8434 | |
|
| 7.9014 | 285500 | 0.0007 | - | - | - | - | |
|
| 7.9152 | 286000 | 0.0007 | - | - | - | - | |
|
| 7.9290 | 286500 | 0.0007 | - | - | - | - | |
|
| 7.9429 | 287000 | 0.0007 | - | - | - | - | |
|
| 7.9567 | 287500 | 0.0007 | - | - | - | - | |
|
| 7.9706 | 288000 | 0.0007 | - | - | - | - | |
|
| 7.9844 | 288500 | 0.0007 | - | - | - | - | |
|
| 7.9982 | 289000 | 0.0007 | - | - | - | - | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.16 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.51.3 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MSELoss |
|
```bibtex |
|
@inproceedings{reimers-2020-multilingual-sentence-bert, |
|
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2020", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/2004.09813", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |