ppo-LunarLander-v2 / config.json
justinwilloughby's picture
Upload PPO LunarLander-v2 trained agent - 1,000,000 steps
f4200cf
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdd66a85b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdd66a85b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdd66a85c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdd66a85cb0>", "_build": "<function ActorCriticPolicy._build at 0x7fdd66a85d40>", "forward": "<function ActorCriticPolicy.forward at 0x7fdd66a85dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdd66a85e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdd66a85ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdd66a85f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdd66a8b050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdd66a8b0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdd66a63090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1657119792.7013059, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzWpePLVdej7F6Km9MWplvkGSq7y8Jso8AAAAAAAAAAANb4C9eLCsPqob3T1DUIS+Lm6JPVBHSb0AAAAAAAAAAGYBnzz2RBm6o3RFt1HnIrIeyoY6PqJsNgAAgD8AAIA/ZkvMPWGBWz4/dki+2z5YvpNwF746y+s7AAAAAAAAAABAUOq9mVc8P5LS3j0ee5u+7mu+vNSSrj0AAAAAAAAAAK1Gbr6cOIQ/jX1kve6Tnr70A5K+rhlVPgAAAAAAAAAAYIoEvs/3Hz8qsZY93C2svm0aEj3KfLw9AAAAAAAAAAAzMIa9ZLwEP9tQ7j1E87K+81DXPfuNVD0AAAAAAAAAADPj77o9CSq7En23OhnngTwtAD48yjphvQAAgD8AAIA/zeO+POHWvT9S0jA+SoKxPVd5kLy+dJ07AAAAAAAAAACAleY9B89pPvr6Vb5fm1m+g6cavSJgTz0AAAAAAAAAAOaDWD1APDY//zQgO0/4pr6LP489H7e/vAAAAAAAAAAAGq8fPdo+jT6qHGA9QNSVvuMCvT21hNI8AAAAAAAAAADmKmI9XPJ7PU5nNb4yFU2+XH2RvEZ2QzsAAAAAAAAAAKZKuL27kYM/eBn/PCMPxL5esNm9Ihd9PAAAAAAAAAAAoLYgPsmKeD+DDJI+VBQQvwBknT5e8WA9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+IpuvaY7YkCUhpRSlIwBbJRN6AOMAXSUR0CQIHBEKE39dX2UKGgGaAloD0MIlrIMcWxccUCUhpRSlGgVTWgCaBZHQJAzRvWH1vl1fZQoaAZoCWgPQwjzyB8MvLBuQJSGlFKUaBVNcAFoFkdAkDS5WV/tpnV9lChoBmgJaA9DCMZP4978NXJAlIaUUpRoFU16AWgWR0CQNbCCjDbbdX2UKGgGaAloD0MIcLTjhp/ocECUhpRSlGgVTWYBaBZHQJA2GwOe8PF1fZQoaAZoCWgPQwhKsg5HV1NvQJSGlFKUaBVNbAFoFkdAkDgu0ojOcHV9lChoBmgJaA9DCF0yjpHscHBAlIaUUpRoFU1VAWgWR0CQOJCRfWtmdX2UKGgGaAloD0MIxa2CGKh2ckCUhpRSlGgVTd4CaBZHQJA41NO/L1V1fZQoaAZoCWgPQwgWMIFbtz5xQJSGlFKUaBVNMQFoFkdAkDj7t7a7E3V9lChoBmgJaA9DCLXiGwrfCnBAlIaUUpRoFU2WAWgWR0CQOsU5+6RRdX2UKGgGaAloD0MIZ2FPO/yha0CUhpRSlGgVTVYBaBZHQJA8WcTakAR1fZQoaAZoCWgPQwiXrIpwk/5uQJSGlFKUaBVNSgFoFkdAkDzrVe8f3nV9lChoBmgJaA9DCKJESx4Pr3BAlIaUUpRoFU2kA2gWR0CQPRbjcVQAdX2UKGgGaAloD0MIkuo7v2hNcUCUhpRSlGgVTSYBaBZHQJA9mWrwOON1fZQoaAZoCWgPQwhwCisVVNBxQJSGlFKUaBVNMQFoFkdAkD7iml67d3V9lChoBmgJaA9DCPwdigK9OXJAlIaUUpRoFU1FAWgWR0CQQQC1qnFYdX2UKGgGaAloD0MIW0OpvYjZY0CUhpRSlGgVTegDaBZHQJBDTyPMjeN1fZQoaAZoCWgPQwhz2lNyzoBsQJSGlFKUaBVNJQFoFkdAkEOlPnB+F3V9lChoBmgJaA9DCE2jycUYo25AlIaUUpRoFU0hAWgWR0CQQ+2nsLOSdX2UKGgGaAloD0MIT3gJTj01cUCUhpRSlGgVTV4BaBZHQJBFhkVeruJ1fZQoaAZoCWgPQwgkRs8tdG08QJSGlFKUaBVL42gWR0CQReQbMotudX2UKGgGaAloD0MIWi4bnXNfcUCUhpRSlGgVTQICaBZHQJBGnqAz5451fZQoaAZoCWgPQwjiAWVT7uNyQJSGlFKUaBVNbAFoFkdAkEazFId2gXV9lChoBmgJaA9DCNv66T9rY3FAlIaUUpRoFU1OAWgWR0CQR5lmvnr6dX2UKGgGaAloD0MIzsMJTKc9bkCUhpRSlGgVTTABaBZHQJBIlsJpnHx1fZQoaAZoCWgPQwhJEoQr4NxxQJSGlFKUaBVNQQFoFkdAkEiqkqMFU3V9lChoBmgJaA9DCD+toj805WVAlIaUUpRoFU3oA2gWR0CQSYszl90BdX2UKGgGaAloD0MIqS9LO3WLcECUhpRSlGgVTSoCaBZHQJBKoNPP9k11fZQoaAZoCWgPQwjmdi/3SU1uQJSGlFKUaBVNWgFoFkdAkEvvNzKcNHV9lChoBmgJaA9DCNRlMbE5rXFAlIaUUpRoFU2EAWgWR0CQTBsbvPTodX2UKGgGaAloD0MIGZKTiVuxckCUhpRSlGgVS/5oFkdAkEySg5BC2XV9lChoBmgJaA9DCG40gLfA0HFAlIaUUpRoFU1NAWgWR0CQTWGM4tHydX2UKGgGaAloD0MInKiluVURckCUhpRSlGgVTU4BaBZHQJBPrrGBFux1fZQoaAZoCWgPQwgkYd9OYjdzQJSGlFKUaBVL9GgWR0CQUCCNCJGfdX2UKGgGaAloD0MIW+1hLxR5b0CUhpRSlGgVTV8BaBZHQJBQldPci4d1fZQoaAZoCWgPQwj3OxQFeu5wQJSGlFKUaBVNJgFoFkdAkFMmBz3h43V9lChoBmgJaA9DCGTrGcJxd3FAlIaUUpRoFU1lAWgWR0CQU5XXiBGydX2UKGgGaAloD0MI3+F2aFjqcUCUhpRSlGgVTTQBaBZHQJBT0d3jdYZ1fZQoaAZoCWgPQwiJKCZvAPNxQJSGlFKUaBVNJAFoFkdAkFWMh5gPVnV9lChoBmgJaA9DCH9N1qiHfXJAlIaUUpRoFU1XAWgWR0CQVkbDdgv2dX2UKGgGaAloD0MIa0QwDi67bUCUhpRSlGgVTc8BaBZHQJBWqE12q1h1fZQoaAZoCWgPQwiR0mwex8tyQJSGlFKUaBVNDQFoFkdAkFfD+BH09XV9lChoBmgJaA9DCP6cgvxsXm9AlIaUUpRoFU1/A2gWR0CQV9bTc6/7dX2UKGgGaAloD0MIIEHxY4wJc0CUhpRSlGgVTVoBaBZHQJBZArMC9yt1fZQoaAZoCWgPQwg4gem0LnlxQJSGlFKUaBVNCQJoFkdAkFkoAjps43V9lChoBmgJaA9DCIj1Rq2wLG9AlIaUUpRoFU39AWgWR0CQWXcJdB0IdX2UKGgGaAloD0MIcsEZ/D0VcECUhpRSlGgVTSUBaBZHQJBtGYqoZQ51fZQoaAZoCWgPQwhnYU87/CBvQJSGlFKUaBVNhgFoFkdAkG1zfixVyXV9lChoBmgJaA9DCLneNlOhW29AlIaUUpRoFU2XAWgWR0CQbY7ZWaMKdX2UKGgGaAloD0MI1bFK6ZkWMECUhpRSlGgVS9ZoFkdAkG3KKUFB6nV9lChoBmgJaA9DCGzRArRt7nBAlIaUUpRoFU1IAWgWR0CQbqKDkELZdX2UKGgGaAloD0MIEeULWki/b0CUhpRSlGgVTVoBaBZHQJBvkgGKQ7t1fZQoaAZoCWgPQwiKPh9lBDJwQJSGlFKUaBVNHQFoFkdAkHAxmseXA3V9lChoBmgJaA9DCJcA/FOqCW5AlIaUUpRoFU0tAWgWR0CQczvIfbKzdX2UKGgGaAloD0MItXBZhc0fcUCUhpRSlGgVTUkBaBZHQJBzPqHGjsV1fZQoaAZoCWgPQwjdfY6PFmNwQJSGlFKUaBVNBQFoFkdAkHQaFAVwgnV9lChoBmgJaA9DCD/lmCwuIHBAlIaUUpRoFU1UAWgWR0CQdFAoXsPbdX2UKGgGaAloD0MIfzMxXYirb0CUhpRSlGgVTSUBaBZHQJB1Y83dbgV1fZQoaAZoCWgPQwiTjJyFfVVwQJSGlFKUaBVNEQFoFkdAkHZ4rz5GjXV9lChoBmgJaA9DCGWPUDNk43BAlIaUUpRoFU1JAWgWR0CQdxGeMAFQdX2UKGgGaAloD0MITnrf+FpVbkCUhpRSlGgVTX0BaBZHQJB3QAU+LWJ1fZQoaAZoCWgPQwgOFeP8zYJvQJSGlFKUaBVNKAFoFkdAkHfFHSWqtHV9lChoBmgJaA9DCBqJ0Aj22HBAlIaUUpRoFU0uAWgWR0CQd9/O+qR2dX2UKGgGaAloD0MIINJvX0cVcECUhpRSlGgVTZ0BaBZHQJB4Y+TvAoJ1fZQoaAZoCWgPQwgXKv9aHnhyQJSGlFKUaBVNGgJoFkdAkHiRwl0HQnV9lChoBmgJaA9DCCI5mbgV0XBAlIaUUpRoFU0nAWgWR0CQeM0ulGgBdX2UKGgGaAloD0MIRfKVQEr+UkCUhpRSlGgVS4doFkdAkHj8CkoF3nV9lChoBmgJaA9DCJ0ui4nN3nBAlIaUUpRoFU15AWgWR0CQemcSGrS3dX2UKGgGaAloD0MIkPgVa7h0T0CUhpRSlGgVS8loFkdAkHrELH+6y3V9lChoBmgJaA9DCEPhs3Uw/3BAlIaUUpRoFU1TAWgWR0CQe6UiILw4dX2UKGgGaAloD0MIePF+3P4rbkCUhpRSlGgVTZIBaBZHQJB9I6hg3Lp1fZQoaAZoCWgPQwiie9Y1WnhuQJSGlFKUaBVNKAFoFkdAkH00Z75VO3V9lChoBmgJaA9DCNdNKa/VWnNAlIaUUpRoFU0xAWgWR0CQfXlxwQ18dX2UKGgGaAloD0MIqrncYOhGcECUhpRSlGgVS/NoFkdAkH8BllK9PHV9lChoBmgJaA9DCB7FOeqoQHFAlIaUUpRoFU0eAWgWR0CQf8qJdjXndX2UKGgGaAloD0MIU13Ay8yIckCUhpRSlGgVTQUBaBZHQJCAR3gUDdR1fZQoaAZoCWgPQwiLVBhbyClyQJSGlFKUaBVNIQFoFkdAkIBy1Vo6CHV9lChoBmgJaA9DCGpMiLmk421AlIaUUpRoFU0KAWgWR0CQgSDjin50dX2UKGgGaAloD0MIVIuIYvJXckCUhpRSlGgVTRcBaBZHQJCBWJTER8N1fZQoaAZoCWgPQwgLR5BKcSVxQJSGlFKUaBVNEgFoFkdAkIHWpEQXh3V9lChoBmgJaA9DCF+zXDY6MnNAlIaUUpRoFUvzaBZHQJCCv4ubqhV1fZQoaAZoCWgPQwicvwmFiI9vQJSGlFKUaBVNOwFoFkdAkILm5hBqsXV9lChoBmgJaA9DCErP9BKjUHJAlIaUUpRoFU0NAWgWR0CQgygTAWSEdX2UKGgGaAloD0MI5xcl6O/KcECUhpRSlGgVTasBaBZHQJCDTQmeDnN1fZQoaAZoCWgPQwhOe0rOyYNwQJSGlFKUaBVNCgFoFkdAkIQhEfDDTHV9lChoBmgJaA9DCMvW+iLhC3FAlIaUUpRoFU0IAWgWR0CQhUO1fE4vdX2UKGgGaAloD0MIX8/XLFeVckCUhpRSlGgVTTsBaBZHQJCHU9FF2FF1fZQoaAZoCWgPQwgrFOl+ThdtQJSGlFKUaBVNCgFoFkdAkIgWuLaVU3V9lChoBmgJaA9DCCybOSQ1l3BAlIaUUpRoFU0mAWgWR0CQiFVTaTOgdX2UKGgGaAloD0MIlzrI68Fbb0CUhpRSlGgVTQoBaBZHQJCIm0NSZSh1fZQoaAZoCWgPQwi8kuS5/q1xQJSGlFKUaBVL9mgWR0CQiNkWAPNFdX2UKGgGaAloD0MI7uwrDxIDcECUhpRSlGgVTQ0BaBZHQJCI4eQuEmJ1fZQoaAZoCWgPQwgfaAWG7BNyQJSGlFKUaBVNAQFoFkdAkIllBt1p03V9lChoBmgJaA9DCKiQK/Us2nFAlIaUUpRoFU08AmgWR0CQie8IRh+fdX2UKGgGaAloD0MI+MYQAByTMUCUhpRSlGgVS91oFkdAkIocb3oLX3V9lChoBmgJaA9DCJ5BQ//E73FAlIaUUpRoFU2oAWgWR0CQiqBCD28JdX2UKGgGaAloD0MIlgZ+VEMxcUCUhpRSlGgVTRsBaBZHQJCKp0wJw851fZQoaAZoCWgPQwiJesGnuRxvQJSGlFKUaBVL+2gWR0CQiw/z8P4EdX2UKGgGaAloD0MIYto39xcQcUCUhpRSlGgVS/ZoFkdAkIu/nW8RMHV9lChoBmgJaA9DCEQYP427zHJAlIaUUpRoFU1AAWgWR0CQjGWkrPMTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}