SirajRLX commited on
Commit
89ec0cd
·
verified ·
1 Parent(s): a555835

Add Devstral-24B SFT training run

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +7 -0
  2. sft_devstral_24B/best_adapter/README.md +207 -0
  3. sft_devstral_24B/best_adapter/adapter_config.json +43 -0
  4. sft_devstral_24B/best_adapter/adapter_model.safetensors +3 -0
  5. sft_devstral_24B/best_adapter/training_args.bin +3 -0
  6. sft_devstral_24B/checkpoints/checkpoint-1000/README.md +207 -0
  7. sft_devstral_24B/checkpoints/checkpoint-1000/adapter_config.json +43 -0
  8. sft_devstral_24B/checkpoints/checkpoint-1000/adapter_model.safetensors +3 -0
  9. sft_devstral_24B/checkpoints/checkpoint-1000/optimizer.pt +3 -0
  10. sft_devstral_24B/checkpoints/checkpoint-1000/rng_state.pth +3 -0
  11. sft_devstral_24B/checkpoints/checkpoint-1000/scheduler.pt +3 -0
  12. sft_devstral_24B/checkpoints/checkpoint-1000/trainer_state.json +3623 -0
  13. sft_devstral_24B/checkpoints/checkpoint-1000/training_args.bin +3 -0
  14. sft_devstral_24B/checkpoints/checkpoint-1500/README.md +207 -0
  15. sft_devstral_24B/checkpoints/checkpoint-1500/adapter_config.json +43 -0
  16. sft_devstral_24B/checkpoints/checkpoint-1500/adapter_model.safetensors +3 -0
  17. sft_devstral_24B/checkpoints/checkpoint-1500/optimizer.pt +3 -0
  18. sft_devstral_24B/checkpoints/checkpoint-1500/rng_state.pth +3 -0
  19. sft_devstral_24B/checkpoints/checkpoint-1500/scheduler.pt +3 -0
  20. sft_devstral_24B/checkpoints/checkpoint-1500/trainer_state.json +0 -0
  21. sft_devstral_24B/checkpoints/checkpoint-1500/training_args.bin +3 -0
  22. sft_devstral_24B/checkpoints/checkpoint-2000/README.md +207 -0
  23. sft_devstral_24B/checkpoints/checkpoint-2000/adapter_config.json +43 -0
  24. sft_devstral_24B/checkpoints/checkpoint-2000/adapter_model.safetensors +3 -0
  25. sft_devstral_24B/checkpoints/checkpoint-2000/optimizer.pt +3 -0
  26. sft_devstral_24B/checkpoints/checkpoint-2000/rng_state.pth +3 -0
  27. sft_devstral_24B/checkpoints/checkpoint-2000/scheduler.pt +3 -0
  28. sft_devstral_24B/checkpoints/checkpoint-2000/trainer_state.json +0 -0
  29. sft_devstral_24B/checkpoints/checkpoint-2000/training_args.bin +3 -0
  30. sft_devstral_24B/checkpoints/checkpoint-2500/README.md +207 -0
  31. sft_devstral_24B/checkpoints/checkpoint-2500/adapter_config.json +43 -0
  32. sft_devstral_24B/checkpoints/checkpoint-2500/adapter_model.safetensors +3 -0
  33. sft_devstral_24B/checkpoints/checkpoint-2500/optimizer.pt +3 -0
  34. sft_devstral_24B/checkpoints/checkpoint-2500/rng_state.pth +3 -0
  35. sft_devstral_24B/checkpoints/checkpoint-2500/scheduler.pt +3 -0
  36. sft_devstral_24B/checkpoints/checkpoint-2500/trainer_state.json +0 -0
  37. sft_devstral_24B/checkpoints/checkpoint-2500/training_args.bin +3 -0
  38. sft_devstral_24B/checkpoints/checkpoint-3000/README.md +207 -0
  39. sft_devstral_24B/checkpoints/checkpoint-3000/adapter_config.json +43 -0
  40. sft_devstral_24B/checkpoints/checkpoint-3000/adapter_model.safetensors +3 -0
  41. sft_devstral_24B/checkpoints/checkpoint-3000/optimizer.pt +3 -0
  42. sft_devstral_24B/checkpoints/checkpoint-3000/rng_state.pth +3 -0
  43. sft_devstral_24B/checkpoints/checkpoint-3000/scheduler.pt +3 -0
  44. sft_devstral_24B/checkpoints/checkpoint-3000/trainer_state.json +0 -0
  45. sft_devstral_24B/checkpoints/checkpoint-3000/training_args.bin +3 -0
  46. sft_devstral_24B/checkpoints/checkpoint-3500/README.md +207 -0
  47. sft_devstral_24B/checkpoints/checkpoint-3500/adapter_config.json +43 -0
  48. sft_devstral_24B/checkpoints/checkpoint-3500/adapter_model.safetensors +3 -0
  49. sft_devstral_24B/checkpoints/checkpoint-3500/optimizer.pt +3 -0
  50. sft_devstral_24B/checkpoints/checkpoint-3500/rng_state.pth +3 -0
.gitattributes CHANGED
@@ -48,3 +48,10 @@ cpt_devstral_24B/checkpoints/checkpoint-400/tokenizer.json filter=lfs diff=lfs m
48
  cpt_devstral_24B/checkpoints/checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
49
  cpt_devstral_24B/checkpoints/checkpoint-600/tokenizer.json filter=lfs diff=lfs merge=lfs -text
50
  cpt_devstral_24B/checkpoints/checkpoint-686/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
48
  cpt_devstral_24B/checkpoints/checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
49
  cpt_devstral_24B/checkpoints/checkpoint-600/tokenizer.json filter=lfs diff=lfs merge=lfs -text
50
  cpt_devstral_24B/checkpoints/checkpoint-686/tokenizer.json filter=lfs diff=lfs merge=lfs -text
51
+ sft_devstral_24B/wandb/offline-run-20251223_133437-tqihmbvy/run-tqihmbvy.wandb filter=lfs diff=lfs merge=lfs -text
52
+ sft_devstral_24B/wandb/offline-run-20251223_133750-62isnb1e/run-62isnb1e.wandb filter=lfs diff=lfs merge=lfs -text
53
+ sft_devstral_24B/wandb/offline-run-20251223_134033-mifdnkpc/run-mifdnkpc.wandb filter=lfs diff=lfs merge=lfs -text
54
+ sft_devstral_24B/wandb/offline-run-20251223_134236-sicxj35d/run-sicxj35d.wandb filter=lfs diff=lfs merge=lfs -text
55
+ sft_devstral_24B/wandb/offline-run-20251223_134432-y3kepwdy/run-y3kepwdy.wandb filter=lfs diff=lfs merge=lfs -text
56
+ sft_devstral_24B/wandb/run-20251223_134618-9jed4peb/run-9jed4peb.wandb filter=lfs diff=lfs merge=lfs -text
57
+ sft_devstral_24B/wandb/run-20251223_142235-cktxoubm/run-cktxoubm.wandb filter=lfs diff=lfs merge=lfs -text
sft_devstral_24B/best_adapter/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CPT/runs/cpt_run_v1/merged_24b_cpt_lora
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:CPT/runs/cpt_run_v1/merged_24b_cpt_lora
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B/best_adapter/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "CPT/runs/cpt_run_v1/merged_24b_cpt_lora",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "k_proj",
34
+ "q_proj",
35
+ "o_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B/best_adapter/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2525c1928ca9de033f220a5e840c681a9d5f8ed45f23f11db8475248b70b962f
3
+ size 45690960
sft_devstral_24B/best_adapter/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67cec3db40d9b4bcc81f7a80aeef5218639d2e42b1c9e2f551945abddeb1ff4d
3
+ size 5201
sft_devstral_24B/checkpoints/checkpoint-1000/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CPT/runs/cpt_run_v1/merged_24b_cpt_lora
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:CPT/runs/cpt_run_v1/merged_24b_cpt_lora
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B/checkpoints/checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "CPT/runs/cpt_run_v1/merged_24b_cpt_lora",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "k_proj",
34
+ "q_proj",
35
+ "o_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B/checkpoints/checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea4c757c4c0f3bbeeaf2adc988ec942be6365d6898b69b63df419440670b6de8
3
+ size 45690960
sft_devstral_24B/checkpoints/checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3c4d1c020b9578461ce598133e846fa5f23fb37515ccdc96eadc37880ce8b65
3
+ size 78912907
sft_devstral_24B/checkpoints/checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9117a0d2e77a257b35af0540b2152c9ac110688113b9e80bfcff71a2f4afd0c
3
+ size 14645
sft_devstral_24B/checkpoints/checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d143e54fa61abf54a1448fc63239d34fad8fd9690881106ffe349bfaf2479434
3
+ size 1465
sft_devstral_24B/checkpoints/checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,3623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 1000,
3
+ "best_metric": 0.8266019821166992,
4
+ "best_model_checkpoint": "runs/instruct_run_24b/checkpoints/checkpoint-1000",
5
+ "epoch": 0.43149946062567424,
6
+ "eval_steps": 100,
7
+ "global_step": 1000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0008629989212513484,
14
+ "grad_norm": 1.9118273258209229,
15
+ "learning_rate": 8.984725965858042e-08,
16
+ "loss": 1.398809790611267,
17
+ "step": 2
18
+ },
19
+ {
20
+ "epoch": 0.001725997842502697,
21
+ "grad_norm": 1.785147786140442,
22
+ "learning_rate": 2.6954177897574125e-07,
23
+ "loss": 1.3699476718902588,
24
+ "step": 4
25
+ },
26
+ {
27
+ "epoch": 0.0025889967637540453,
28
+ "grad_norm": 1.6857414245605469,
29
+ "learning_rate": 4.492362982929021e-07,
30
+ "loss": 1.4487650394439697,
31
+ "step": 6
32
+ },
33
+ {
34
+ "epoch": 0.003451995685005394,
35
+ "grad_norm": 1.7351312637329102,
36
+ "learning_rate": 6.28930817610063e-07,
37
+ "loss": 1.3360817432403564,
38
+ "step": 8
39
+ },
40
+ {
41
+ "epoch": 0.004314994606256742,
42
+ "grad_norm": 1.7769269943237305,
43
+ "learning_rate": 8.086253369272238e-07,
44
+ "loss": 1.4294791221618652,
45
+ "step": 10
46
+ },
47
+ {
48
+ "epoch": 0.005177993527508091,
49
+ "grad_norm": 1.776668906211853,
50
+ "learning_rate": 9.883198562443846e-07,
51
+ "loss": 1.3927934169769287,
52
+ "step": 12
53
+ },
54
+ {
55
+ "epoch": 0.006040992448759439,
56
+ "grad_norm": 1.500367283821106,
57
+ "learning_rate": 1.1680143755615454e-06,
58
+ "loss": 1.4140764474868774,
59
+ "step": 14
60
+ },
61
+ {
62
+ "epoch": 0.006903991370010788,
63
+ "grad_norm": 1.7255949974060059,
64
+ "learning_rate": 1.3477088948787064e-06,
65
+ "loss": 1.3873623609542847,
66
+ "step": 16
67
+ },
68
+ {
69
+ "epoch": 0.007766990291262136,
70
+ "grad_norm": 1.9073798656463623,
71
+ "learning_rate": 1.5274034141958671e-06,
72
+ "loss": 1.4562759399414062,
73
+ "step": 18
74
+ },
75
+ {
76
+ "epoch": 0.008629989212513484,
77
+ "grad_norm": 1.7253859043121338,
78
+ "learning_rate": 1.707097933513028e-06,
79
+ "loss": 1.4264800548553467,
80
+ "step": 20
81
+ },
82
+ {
83
+ "epoch": 0.009492988133764833,
84
+ "grad_norm": 1.4858287572860718,
85
+ "learning_rate": 1.8867924528301887e-06,
86
+ "loss": 1.3717138767242432,
87
+ "step": 22
88
+ },
89
+ {
90
+ "epoch": 0.010355987055016181,
91
+ "grad_norm": 1.7516961097717285,
92
+ "learning_rate": 2.0664869721473496e-06,
93
+ "loss": 1.3605879545211792,
94
+ "step": 24
95
+ },
96
+ {
97
+ "epoch": 0.01121898597626753,
98
+ "grad_norm": 1.754793643951416,
99
+ "learning_rate": 2.2461814914645104e-06,
100
+ "loss": 1.465327262878418,
101
+ "step": 26
102
+ },
103
+ {
104
+ "epoch": 0.012081984897518877,
105
+ "grad_norm": 1.5204869508743286,
106
+ "learning_rate": 2.425876010781671e-06,
107
+ "loss": 1.3205785751342773,
108
+ "step": 28
109
+ },
110
+ {
111
+ "epoch": 0.012944983818770227,
112
+ "grad_norm": 2.03002667427063,
113
+ "learning_rate": 2.605570530098832e-06,
114
+ "loss": 1.4751381874084473,
115
+ "step": 30
116
+ },
117
+ {
118
+ "epoch": 0.013807982740021575,
119
+ "grad_norm": 1.6153842210769653,
120
+ "learning_rate": 2.785265049415993e-06,
121
+ "loss": 1.3976212739944458,
122
+ "step": 32
123
+ },
124
+ {
125
+ "epoch": 0.014670981661272923,
126
+ "grad_norm": 1.7034062147140503,
127
+ "learning_rate": 2.964959568733154e-06,
128
+ "loss": 1.4062179327011108,
129
+ "step": 34
130
+ },
131
+ {
132
+ "epoch": 0.015533980582524271,
133
+ "grad_norm": 1.5724587440490723,
134
+ "learning_rate": 3.1446540880503146e-06,
135
+ "loss": 1.2940696477890015,
136
+ "step": 36
137
+ },
138
+ {
139
+ "epoch": 0.01639697950377562,
140
+ "grad_norm": 1.7072066068649292,
141
+ "learning_rate": 3.324348607367475e-06,
142
+ "loss": 1.4216598272323608,
143
+ "step": 38
144
+ },
145
+ {
146
+ "epoch": 0.017259978425026967,
147
+ "grad_norm": 1.6051130294799805,
148
+ "learning_rate": 3.504043126684636e-06,
149
+ "loss": 1.4204131364822388,
150
+ "step": 40
151
+ },
152
+ {
153
+ "epoch": 0.018122977346278317,
154
+ "grad_norm": 1.5114386081695557,
155
+ "learning_rate": 3.683737646001797e-06,
156
+ "loss": 1.3492953777313232,
157
+ "step": 42
158
+ },
159
+ {
160
+ "epoch": 0.018985976267529667,
161
+ "grad_norm": 1.5557284355163574,
162
+ "learning_rate": 3.863432165318958e-06,
163
+ "loss": 1.4241598844528198,
164
+ "step": 44
165
+ },
166
+ {
167
+ "epoch": 0.019848975188781013,
168
+ "grad_norm": 1.5814268589019775,
169
+ "learning_rate": 4.0431266846361185e-06,
170
+ "loss": 1.3903125524520874,
171
+ "step": 46
172
+ },
173
+ {
174
+ "epoch": 0.020711974110032363,
175
+ "grad_norm": 1.53256356716156,
176
+ "learning_rate": 4.22282120395328e-06,
177
+ "loss": 1.3726638555526733,
178
+ "step": 48
179
+ },
180
+ {
181
+ "epoch": 0.021574973031283712,
182
+ "grad_norm": 1.5670084953308105,
183
+ "learning_rate": 4.40251572327044e-06,
184
+ "loss": 1.2536468505859375,
185
+ "step": 50
186
+ },
187
+ {
188
+ "epoch": 0.02243797195253506,
189
+ "grad_norm": 1.3708246946334839,
190
+ "learning_rate": 4.582210242587602e-06,
191
+ "loss": 1.2309948205947876,
192
+ "step": 52
193
+ },
194
+ {
195
+ "epoch": 0.02330097087378641,
196
+ "grad_norm": 1.5670109987258911,
197
+ "learning_rate": 4.7619047619047615e-06,
198
+ "loss": 1.3564441204071045,
199
+ "step": 54
200
+ },
201
+ {
202
+ "epoch": 0.024163969795037755,
203
+ "grad_norm": 1.3550655841827393,
204
+ "learning_rate": 4.941599281221923e-06,
205
+ "loss": 1.2251620292663574,
206
+ "step": 56
207
+ },
208
+ {
209
+ "epoch": 0.025026968716289105,
210
+ "grad_norm": 1.4416121244430542,
211
+ "learning_rate": 5.121293800539084e-06,
212
+ "loss": 1.2395249605178833,
213
+ "step": 58
214
+ },
215
+ {
216
+ "epoch": 0.025889967637540454,
217
+ "grad_norm": 1.4638670682907104,
218
+ "learning_rate": 5.300988319856245e-06,
219
+ "loss": 1.3229656219482422,
220
+ "step": 60
221
+ },
222
+ {
223
+ "epoch": 0.0267529665587918,
224
+ "grad_norm": 1.2204002141952515,
225
+ "learning_rate": 5.4806828391734054e-06,
226
+ "loss": 1.1076340675354004,
227
+ "step": 62
228
+ },
229
+ {
230
+ "epoch": 0.02761596548004315,
231
+ "grad_norm": 1.2641915082931519,
232
+ "learning_rate": 5.660377358490566e-06,
233
+ "loss": 1.237392544746399,
234
+ "step": 64
235
+ },
236
+ {
237
+ "epoch": 0.0284789644012945,
238
+ "grad_norm": 1.4635342359542847,
239
+ "learning_rate": 5.840071877807727e-06,
240
+ "loss": 1.3567079305648804,
241
+ "step": 66
242
+ },
243
+ {
244
+ "epoch": 0.029341963322545846,
245
+ "grad_norm": 1.5813465118408203,
246
+ "learning_rate": 6.019766397124888e-06,
247
+ "loss": 1.3595421314239502,
248
+ "step": 68
249
+ },
250
+ {
251
+ "epoch": 0.030204962243797196,
252
+ "grad_norm": 1.435356616973877,
253
+ "learning_rate": 6.1994609164420485e-06,
254
+ "loss": 1.2183864116668701,
255
+ "step": 70
256
+ },
257
+ {
258
+ "epoch": 0.031067961165048542,
259
+ "grad_norm": 1.4559556245803833,
260
+ "learning_rate": 6.37915543575921e-06,
261
+ "loss": 1.2084243297576904,
262
+ "step": 72
263
+ },
264
+ {
265
+ "epoch": 0.03193096008629989,
266
+ "grad_norm": 1.2870471477508545,
267
+ "learning_rate": 6.558849955076371e-06,
268
+ "loss": 1.2476426362991333,
269
+ "step": 74
270
+ },
271
+ {
272
+ "epoch": 0.03279395900755124,
273
+ "grad_norm": 1.3345798254013062,
274
+ "learning_rate": 6.738544474393531e-06,
275
+ "loss": 1.2200642824172974,
276
+ "step": 76
277
+ },
278
+ {
279
+ "epoch": 0.03365695792880259,
280
+ "grad_norm": 1.48223876953125,
281
+ "learning_rate": 6.918238993710692e-06,
282
+ "loss": 1.2497955560684204,
283
+ "step": 78
284
+ },
285
+ {
286
+ "epoch": 0.034519956850053934,
287
+ "grad_norm": 1.2421257495880127,
288
+ "learning_rate": 7.097933513027853e-06,
289
+ "loss": 1.1987318992614746,
290
+ "step": 80
291
+ },
292
+ {
293
+ "epoch": 0.035382955771305284,
294
+ "grad_norm": 1.5042678117752075,
295
+ "learning_rate": 7.277628032345015e-06,
296
+ "loss": 1.218438982963562,
297
+ "step": 82
298
+ },
299
+ {
300
+ "epoch": 0.036245954692556634,
301
+ "grad_norm": 1.3047534227371216,
302
+ "learning_rate": 7.457322551662174e-06,
303
+ "loss": 1.1181117296218872,
304
+ "step": 84
305
+ },
306
+ {
307
+ "epoch": 0.037108953613807984,
308
+ "grad_norm": 1.3297117948532104,
309
+ "learning_rate": 7.637017070979335e-06,
310
+ "loss": 1.047302484512329,
311
+ "step": 86
312
+ },
313
+ {
314
+ "epoch": 0.03797195253505933,
315
+ "grad_norm": 1.4515916109085083,
316
+ "learning_rate": 7.816711590296496e-06,
317
+ "loss": 1.1821871995925903,
318
+ "step": 88
319
+ },
320
+ {
321
+ "epoch": 0.038834951456310676,
322
+ "grad_norm": 1.5435426235198975,
323
+ "learning_rate": 7.996406109613658e-06,
324
+ "loss": 1.1171189546585083,
325
+ "step": 90
326
+ },
327
+ {
328
+ "epoch": 0.039697950377562026,
329
+ "grad_norm": 1.5270947217941284,
330
+ "learning_rate": 8.176100628930818e-06,
331
+ "loss": 1.067047357559204,
332
+ "step": 92
333
+ },
334
+ {
335
+ "epoch": 0.040560949298813376,
336
+ "grad_norm": 2.4402992725372314,
337
+ "learning_rate": 8.35579514824798e-06,
338
+ "loss": 1.0745081901550293,
339
+ "step": 94
340
+ },
341
+ {
342
+ "epoch": 0.041423948220064725,
343
+ "grad_norm": 1.7703081369400024,
344
+ "learning_rate": 8.53548966756514e-06,
345
+ "loss": 1.252164602279663,
346
+ "step": 96
347
+ },
348
+ {
349
+ "epoch": 0.042286947141316075,
350
+ "grad_norm": 1.4324337244033813,
351
+ "learning_rate": 8.715184186882301e-06,
352
+ "loss": 1.1030420064926147,
353
+ "step": 98
354
+ },
355
+ {
356
+ "epoch": 0.043149946062567425,
357
+ "grad_norm": 1.3258590698242188,
358
+ "learning_rate": 8.89487870619946e-06,
359
+ "loss": 1.0817893743515015,
360
+ "step": 100
361
+ },
362
+ {
363
+ "epoch": 0.043149946062567425,
364
+ "eval_loss": 1.128923773765564,
365
+ "eval_runtime": 825.0166,
366
+ "eval_samples_per_second": 2.497,
367
+ "eval_steps_per_second": 2.497,
368
+ "step": 100
369
+ },
370
+ {
371
+ "epoch": 0.04401294498381877,
372
+ "grad_norm": 1.5833592414855957,
373
+ "learning_rate": 9.074573225516622e-06,
374
+ "loss": 1.0982940196990967,
375
+ "step": 102
376
+ },
377
+ {
378
+ "epoch": 0.04487594390507012,
379
+ "grad_norm": 1.5289201736450195,
380
+ "learning_rate": 9.254267744833784e-06,
381
+ "loss": 1.0529299974441528,
382
+ "step": 104
383
+ },
384
+ {
385
+ "epoch": 0.04573894282632147,
386
+ "grad_norm": 1.4507837295532227,
387
+ "learning_rate": 9.433962264150944e-06,
388
+ "loss": 1.0896434783935547,
389
+ "step": 106
390
+ },
391
+ {
392
+ "epoch": 0.04660194174757282,
393
+ "grad_norm": 1.3846485614776611,
394
+ "learning_rate": 9.613656783468104e-06,
395
+ "loss": 1.1196398735046387,
396
+ "step": 108
397
+ },
398
+ {
399
+ "epoch": 0.04746494066882417,
400
+ "grad_norm": 1.4094940423965454,
401
+ "learning_rate": 9.793351302785265e-06,
402
+ "loss": 1.1305382251739502,
403
+ "step": 110
404
+ },
405
+ {
406
+ "epoch": 0.04832793959007551,
407
+ "grad_norm": 1.7674189805984497,
408
+ "learning_rate": 9.973045822102427e-06,
409
+ "loss": 1.0138700008392334,
410
+ "step": 112
411
+ },
412
+ {
413
+ "epoch": 0.04919093851132686,
414
+ "grad_norm": 1.6083961725234985,
415
+ "learning_rate": 1.0152740341419587e-05,
416
+ "loss": 1.0583173036575317,
417
+ "step": 114
418
+ },
419
+ {
420
+ "epoch": 0.05005393743257821,
421
+ "grad_norm": 1.7483229637145996,
422
+ "learning_rate": 1.0332434860736747e-05,
423
+ "loss": 1.1116671562194824,
424
+ "step": 116
425
+ },
426
+ {
427
+ "epoch": 0.05091693635382956,
428
+ "grad_norm": 1.8256834745407104,
429
+ "learning_rate": 1.0512129380053909e-05,
430
+ "loss": 1.0832366943359375,
431
+ "step": 118
432
+ },
433
+ {
434
+ "epoch": 0.05177993527508091,
435
+ "grad_norm": 1.5875557661056519,
436
+ "learning_rate": 1.069182389937107e-05,
437
+ "loss": 1.1089236736297607,
438
+ "step": 120
439
+ },
440
+ {
441
+ "epoch": 0.05264293419633225,
442
+ "grad_norm": 1.6553549766540527,
443
+ "learning_rate": 1.087151841868823e-05,
444
+ "loss": 1.1191619634628296,
445
+ "step": 122
446
+ },
447
+ {
448
+ "epoch": 0.0535059331175836,
449
+ "grad_norm": 1.3675798177719116,
450
+ "learning_rate": 1.1051212938005392e-05,
451
+ "loss": 1.031973958015442,
452
+ "step": 124
453
+ },
454
+ {
455
+ "epoch": 0.05436893203883495,
456
+ "grad_norm": 1.5343760251998901,
457
+ "learning_rate": 1.1230907457322552e-05,
458
+ "loss": 0.9964010119438171,
459
+ "step": 126
460
+ },
461
+ {
462
+ "epoch": 0.0552319309600863,
463
+ "grad_norm": 1.5928982496261597,
464
+ "learning_rate": 1.1410601976639713e-05,
465
+ "loss": 1.1144609451293945,
466
+ "step": 128
467
+ },
468
+ {
469
+ "epoch": 0.05609492988133765,
470
+ "grad_norm": 1.6411585807800293,
471
+ "learning_rate": 1.1590296495956873e-05,
472
+ "loss": 0.9953935146331787,
473
+ "step": 130
474
+ },
475
+ {
476
+ "epoch": 0.056957928802589,
477
+ "grad_norm": 1.6077220439910889,
478
+ "learning_rate": 1.1769991015274035e-05,
479
+ "loss": 0.9940203428268433,
480
+ "step": 132
481
+ },
482
+ {
483
+ "epoch": 0.05782092772384034,
484
+ "grad_norm": 1.7327438592910767,
485
+ "learning_rate": 1.1949685534591196e-05,
486
+ "loss": 1.045546293258667,
487
+ "step": 134
488
+ },
489
+ {
490
+ "epoch": 0.05868392664509169,
491
+ "grad_norm": 1.607404112815857,
492
+ "learning_rate": 1.2129380053908356e-05,
493
+ "loss": 0.9932523369789124,
494
+ "step": 136
495
+ },
496
+ {
497
+ "epoch": 0.05954692556634304,
498
+ "grad_norm": 1.5056802034378052,
499
+ "learning_rate": 1.2309074573225516e-05,
500
+ "loss": 0.9584172368049622,
501
+ "step": 138
502
+ },
503
+ {
504
+ "epoch": 0.06040992448759439,
505
+ "grad_norm": 1.5453966856002808,
506
+ "learning_rate": 1.2488769092542678e-05,
507
+ "loss": 0.9733421206474304,
508
+ "step": 140
509
+ },
510
+ {
511
+ "epoch": 0.06127292340884574,
512
+ "grad_norm": 1.546397089958191,
513
+ "learning_rate": 1.2668463611859838e-05,
514
+ "loss": 0.9971115589141846,
515
+ "step": 142
516
+ },
517
+ {
518
+ "epoch": 0.062135922330097085,
519
+ "grad_norm": 1.5259592533111572,
520
+ "learning_rate": 1.2848158131177e-05,
521
+ "loss": 1.0994833707809448,
522
+ "step": 144
523
+ },
524
+ {
525
+ "epoch": 0.06299892125134844,
526
+ "grad_norm": 1.56397545337677,
527
+ "learning_rate": 1.302785265049416e-05,
528
+ "loss": 1.0203801393508911,
529
+ "step": 146
530
+ },
531
+ {
532
+ "epoch": 0.06386192017259978,
533
+ "grad_norm": 1.618053674697876,
534
+ "learning_rate": 1.320754716981132e-05,
535
+ "loss": 1.0223872661590576,
536
+ "step": 148
537
+ },
538
+ {
539
+ "epoch": 0.06472491909385113,
540
+ "grad_norm": 1.9544042348861694,
541
+ "learning_rate": 1.3387241689128482e-05,
542
+ "loss": 1.0207403898239136,
543
+ "step": 150
544
+ },
545
+ {
546
+ "epoch": 0.06558791801510248,
547
+ "grad_norm": 1.7001299858093262,
548
+ "learning_rate": 1.3566936208445644e-05,
549
+ "loss": 1.025482177734375,
550
+ "step": 152
551
+ },
552
+ {
553
+ "epoch": 0.06645091693635383,
554
+ "grad_norm": 1.9833810329437256,
555
+ "learning_rate": 1.3746630727762804e-05,
556
+ "loss": 1.0077980756759644,
557
+ "step": 154
558
+ },
559
+ {
560
+ "epoch": 0.06731391585760518,
561
+ "grad_norm": 1.6378769874572754,
562
+ "learning_rate": 1.3926325247079966e-05,
563
+ "loss": 1.0046619176864624,
564
+ "step": 156
565
+ },
566
+ {
567
+ "epoch": 0.06817691477885653,
568
+ "grad_norm": 1.762683629989624,
569
+ "learning_rate": 1.4106019766397124e-05,
570
+ "loss": 1.0332108736038208,
571
+ "step": 158
572
+ },
573
+ {
574
+ "epoch": 0.06903991370010787,
575
+ "grad_norm": 1.5698739290237427,
576
+ "learning_rate": 1.4285714285714285e-05,
577
+ "loss": 0.973042905330658,
578
+ "step": 160
579
+ },
580
+ {
581
+ "epoch": 0.06990291262135923,
582
+ "grad_norm": 1.6132292747497559,
583
+ "learning_rate": 1.4465408805031447e-05,
584
+ "loss": 0.9966566562652588,
585
+ "step": 162
586
+ },
587
+ {
588
+ "epoch": 0.07076591154261057,
589
+ "grad_norm": 1.989534616470337,
590
+ "learning_rate": 1.4645103324348609e-05,
591
+ "loss": 1.078708529472351,
592
+ "step": 164
593
+ },
594
+ {
595
+ "epoch": 0.07162891046386193,
596
+ "grad_norm": 1.8199284076690674,
597
+ "learning_rate": 1.4824797843665769e-05,
598
+ "loss": 0.9075545072555542,
599
+ "step": 166
600
+ },
601
+ {
602
+ "epoch": 0.07249190938511327,
603
+ "grad_norm": 1.6908831596374512,
604
+ "learning_rate": 1.500449236298293e-05,
605
+ "loss": 0.9268680810928345,
606
+ "step": 168
607
+ },
608
+ {
609
+ "epoch": 0.07335490830636461,
610
+ "grad_norm": 1.5648242235183716,
611
+ "learning_rate": 1.5184186882300092e-05,
612
+ "loss": 1.0361101627349854,
613
+ "step": 170
614
+ },
615
+ {
616
+ "epoch": 0.07421790722761597,
617
+ "grad_norm": 1.8292360305786133,
618
+ "learning_rate": 1.5363881401617252e-05,
619
+ "loss": 0.9197717905044556,
620
+ "step": 172
621
+ },
622
+ {
623
+ "epoch": 0.07508090614886731,
624
+ "grad_norm": 1.6882517337799072,
625
+ "learning_rate": 1.554357592093441e-05,
626
+ "loss": 0.9661652445793152,
627
+ "step": 174
628
+ },
629
+ {
630
+ "epoch": 0.07594390507011867,
631
+ "grad_norm": 1.695921778678894,
632
+ "learning_rate": 1.572327044025157e-05,
633
+ "loss": 1.0006932020187378,
634
+ "step": 176
635
+ },
636
+ {
637
+ "epoch": 0.07680690399137001,
638
+ "grad_norm": 2.0128681659698486,
639
+ "learning_rate": 1.5902964959568733e-05,
640
+ "loss": 1.0096064805984497,
641
+ "step": 178
642
+ },
643
+ {
644
+ "epoch": 0.07766990291262135,
645
+ "grad_norm": 1.6833231449127197,
646
+ "learning_rate": 1.6082659478885895e-05,
647
+ "loss": 0.972679853439331,
648
+ "step": 180
649
+ },
650
+ {
651
+ "epoch": 0.07853290183387271,
652
+ "grad_norm": 1.6940670013427734,
653
+ "learning_rate": 1.6262353998203056e-05,
654
+ "loss": 0.9232968091964722,
655
+ "step": 182
656
+ },
657
+ {
658
+ "epoch": 0.07939590075512405,
659
+ "grad_norm": 2.0851218700408936,
660
+ "learning_rate": 1.6442048517520218e-05,
661
+ "loss": 0.981245219707489,
662
+ "step": 184
663
+ },
664
+ {
665
+ "epoch": 0.08025889967637541,
666
+ "grad_norm": 1.3769028186798096,
667
+ "learning_rate": 1.662174303683738e-05,
668
+ "loss": 0.9762678146362305,
669
+ "step": 186
670
+ },
671
+ {
672
+ "epoch": 0.08112189859762675,
673
+ "grad_norm": 1.85263192653656,
674
+ "learning_rate": 1.6801437556154538e-05,
675
+ "loss": 0.9905523061752319,
676
+ "step": 188
677
+ },
678
+ {
679
+ "epoch": 0.08198489751887811,
680
+ "grad_norm": 1.654221534729004,
681
+ "learning_rate": 1.69811320754717e-05,
682
+ "loss": 0.8457058072090149,
683
+ "step": 190
684
+ },
685
+ {
686
+ "epoch": 0.08284789644012945,
687
+ "grad_norm": 1.7715294361114502,
688
+ "learning_rate": 1.7160826594788858e-05,
689
+ "loss": 1.0171988010406494,
690
+ "step": 192
691
+ },
692
+ {
693
+ "epoch": 0.0837108953613808,
694
+ "grad_norm": 1.7162128686904907,
695
+ "learning_rate": 1.734052111410602e-05,
696
+ "loss": 0.9767695069313049,
697
+ "step": 194
698
+ },
699
+ {
700
+ "epoch": 0.08457389428263215,
701
+ "grad_norm": 1.7938538789749146,
702
+ "learning_rate": 1.752021563342318e-05,
703
+ "loss": 0.9786219596862793,
704
+ "step": 196
705
+ },
706
+ {
707
+ "epoch": 0.0854368932038835,
708
+ "grad_norm": 1.944226861000061,
709
+ "learning_rate": 1.7699910152740342e-05,
710
+ "loss": 0.9941093921661377,
711
+ "step": 198
712
+ },
713
+ {
714
+ "epoch": 0.08629989212513485,
715
+ "grad_norm": 1.816835880279541,
716
+ "learning_rate": 1.7879604672057504e-05,
717
+ "loss": 0.8924376964569092,
718
+ "step": 200
719
+ },
720
+ {
721
+ "epoch": 0.08629989212513485,
722
+ "eval_loss": 0.981117308139801,
723
+ "eval_runtime": 826.4469,
724
+ "eval_samples_per_second": 2.493,
725
+ "eval_steps_per_second": 2.493,
726
+ "step": 200
727
+ },
728
+ {
729
+ "epoch": 0.08716289104638619,
730
+ "grad_norm": 1.8230189085006714,
731
+ "learning_rate": 1.8059299191374666e-05,
732
+ "loss": 0.9908216595649719,
733
+ "step": 202
734
+ },
735
+ {
736
+ "epoch": 0.08802588996763754,
737
+ "grad_norm": 1.8223077058792114,
738
+ "learning_rate": 1.8238993710691824e-05,
739
+ "loss": 0.9657744765281677,
740
+ "step": 204
741
+ },
742
+ {
743
+ "epoch": 0.08888888888888889,
744
+ "grad_norm": 1.811195731163025,
745
+ "learning_rate": 1.8418688230008986e-05,
746
+ "loss": 0.9397313594818115,
747
+ "step": 206
748
+ },
749
+ {
750
+ "epoch": 0.08975188781014024,
751
+ "grad_norm": 1.579998254776001,
752
+ "learning_rate": 1.8598382749326147e-05,
753
+ "loss": 0.8770087361335754,
754
+ "step": 208
755
+ },
756
+ {
757
+ "epoch": 0.09061488673139159,
758
+ "grad_norm": 1.592136263847351,
759
+ "learning_rate": 1.8778077268643305e-05,
760
+ "loss": 0.922799825668335,
761
+ "step": 210
762
+ },
763
+ {
764
+ "epoch": 0.09147788565264293,
765
+ "grad_norm": 1.9334869384765625,
766
+ "learning_rate": 1.8957771787960467e-05,
767
+ "loss": 0.9007947444915771,
768
+ "step": 212
769
+ },
770
+ {
771
+ "epoch": 0.09234088457389428,
772
+ "grad_norm": 1.8619475364685059,
773
+ "learning_rate": 1.913746630727763e-05,
774
+ "loss": 0.9261049628257751,
775
+ "step": 214
776
+ },
777
+ {
778
+ "epoch": 0.09320388349514563,
779
+ "grad_norm": 1.751584529876709,
780
+ "learning_rate": 1.931716082659479e-05,
781
+ "loss": 0.9319002628326416,
782
+ "step": 216
783
+ },
784
+ {
785
+ "epoch": 0.09406688241639698,
786
+ "grad_norm": 2.1829185485839844,
787
+ "learning_rate": 1.9496855345911952e-05,
788
+ "loss": 0.947629451751709,
789
+ "step": 218
790
+ },
791
+ {
792
+ "epoch": 0.09492988133764833,
793
+ "grad_norm": 1.8973567485809326,
794
+ "learning_rate": 1.967654986522911e-05,
795
+ "loss": 0.9213902354240417,
796
+ "step": 220
797
+ },
798
+ {
799
+ "epoch": 0.09579288025889968,
800
+ "grad_norm": 1.9995585680007935,
801
+ "learning_rate": 1.985624438454627e-05,
802
+ "loss": 0.9058182835578918,
803
+ "step": 222
804
+ },
805
+ {
806
+ "epoch": 0.09665587918015102,
807
+ "grad_norm": 1.9369088411331177,
808
+ "learning_rate": 2.0035938903863433e-05,
809
+ "loss": 0.8918466567993164,
810
+ "step": 224
811
+ },
812
+ {
813
+ "epoch": 0.09751887810140238,
814
+ "grad_norm": 2.1926183700561523,
815
+ "learning_rate": 2.0215633423180595e-05,
816
+ "loss": 1.009294033050537,
817
+ "step": 226
818
+ },
819
+ {
820
+ "epoch": 0.09838187702265372,
821
+ "grad_norm": 1.872399926185608,
822
+ "learning_rate": 2.0395327942497757e-05,
823
+ "loss": 0.9543544054031372,
824
+ "step": 228
825
+ },
826
+ {
827
+ "epoch": 0.09924487594390508,
828
+ "grad_norm": 2.011009454727173,
829
+ "learning_rate": 2.0575022461814915e-05,
830
+ "loss": 0.9188834428787231,
831
+ "step": 230
832
+ },
833
+ {
834
+ "epoch": 0.10010787486515642,
835
+ "grad_norm": 1.8422952890396118,
836
+ "learning_rate": 2.0754716981132076e-05,
837
+ "loss": 0.84498131275177,
838
+ "step": 232
839
+ },
840
+ {
841
+ "epoch": 0.10097087378640776,
842
+ "grad_norm": 2.208738088607788,
843
+ "learning_rate": 2.0934411500449238e-05,
844
+ "loss": 0.9864624738693237,
845
+ "step": 234
846
+ },
847
+ {
848
+ "epoch": 0.10183387270765912,
849
+ "grad_norm": 1.6119916439056396,
850
+ "learning_rate": 2.1114106019766396e-05,
851
+ "loss": 0.928769588470459,
852
+ "step": 236
853
+ },
854
+ {
855
+ "epoch": 0.10269687162891046,
856
+ "grad_norm": 1.906336784362793,
857
+ "learning_rate": 2.1293800539083558e-05,
858
+ "loss": 0.885361909866333,
859
+ "step": 238
860
+ },
861
+ {
862
+ "epoch": 0.10355987055016182,
863
+ "grad_norm": 2.046064615249634,
864
+ "learning_rate": 2.147349505840072e-05,
865
+ "loss": 0.9497957229614258,
866
+ "step": 240
867
+ },
868
+ {
869
+ "epoch": 0.10442286947141316,
870
+ "grad_norm": 2.1612143516540527,
871
+ "learning_rate": 2.165318957771788e-05,
872
+ "loss": 0.958332896232605,
873
+ "step": 242
874
+ },
875
+ {
876
+ "epoch": 0.1052858683926645,
877
+ "grad_norm": 2.139829635620117,
878
+ "learning_rate": 2.1832884097035043e-05,
879
+ "loss": 1.0089390277862549,
880
+ "step": 244
881
+ },
882
+ {
883
+ "epoch": 0.10614886731391586,
884
+ "grad_norm": 1.9842045307159424,
885
+ "learning_rate": 2.2012578616352204e-05,
886
+ "loss": 0.9627355933189392,
887
+ "step": 246
888
+ },
889
+ {
890
+ "epoch": 0.1070118662351672,
891
+ "grad_norm": 1.968578577041626,
892
+ "learning_rate": 2.2192273135669366e-05,
893
+ "loss": 0.9260450601577759,
894
+ "step": 248
895
+ },
896
+ {
897
+ "epoch": 0.10787486515641856,
898
+ "grad_norm": 2.192275047302246,
899
+ "learning_rate": 2.2371967654986524e-05,
900
+ "loss": 1.0654462575912476,
901
+ "step": 250
902
+ },
903
+ {
904
+ "epoch": 0.1087378640776699,
905
+ "grad_norm": 2.0267577171325684,
906
+ "learning_rate": 2.2551662174303682e-05,
907
+ "loss": 0.9680672883987427,
908
+ "step": 252
909
+ },
910
+ {
911
+ "epoch": 0.10960086299892124,
912
+ "grad_norm": 1.9834461212158203,
913
+ "learning_rate": 2.2731356693620844e-05,
914
+ "loss": 1.0027307271957397,
915
+ "step": 254
916
+ },
917
+ {
918
+ "epoch": 0.1104638619201726,
919
+ "grad_norm": 2.0105156898498535,
920
+ "learning_rate": 2.2911051212938006e-05,
921
+ "loss": 1.0050861835479736,
922
+ "step": 256
923
+ },
924
+ {
925
+ "epoch": 0.11132686084142394,
926
+ "grad_norm": 1.9150307178497314,
927
+ "learning_rate": 2.3090745732255167e-05,
928
+ "loss": 0.8955062627792358,
929
+ "step": 258
930
+ },
931
+ {
932
+ "epoch": 0.1121898597626753,
933
+ "grad_norm": 2.100795269012451,
934
+ "learning_rate": 2.327044025157233e-05,
935
+ "loss": 0.941332221031189,
936
+ "step": 260
937
+ },
938
+ {
939
+ "epoch": 0.11305285868392664,
940
+ "grad_norm": 1.837814211845398,
941
+ "learning_rate": 2.345013477088949e-05,
942
+ "loss": 0.9292652606964111,
943
+ "step": 262
944
+ },
945
+ {
946
+ "epoch": 0.113915857605178,
947
+ "grad_norm": 1.9122955799102783,
948
+ "learning_rate": 2.3629829290206652e-05,
949
+ "loss": 0.9460650682449341,
950
+ "step": 264
951
+ },
952
+ {
953
+ "epoch": 0.11477885652642934,
954
+ "grad_norm": 1.9168611764907837,
955
+ "learning_rate": 2.380952380952381e-05,
956
+ "loss": 0.8730320334434509,
957
+ "step": 266
958
+ },
959
+ {
960
+ "epoch": 0.11564185544768069,
961
+ "grad_norm": 2.1184403896331787,
962
+ "learning_rate": 2.3989218328840972e-05,
963
+ "loss": 0.9194066524505615,
964
+ "step": 268
965
+ },
966
+ {
967
+ "epoch": 0.11650485436893204,
968
+ "grad_norm": 1.910470962524414,
969
+ "learning_rate": 2.4168912848158133e-05,
970
+ "loss": 0.8994337320327759,
971
+ "step": 270
972
+ },
973
+ {
974
+ "epoch": 0.11736785329018339,
975
+ "grad_norm": 1.9906529188156128,
976
+ "learning_rate": 2.434860736747529e-05,
977
+ "loss": 0.8509554266929626,
978
+ "step": 272
979
+ },
980
+ {
981
+ "epoch": 0.11823085221143474,
982
+ "grad_norm": 2.5982062816619873,
983
+ "learning_rate": 2.4528301886792453e-05,
984
+ "loss": 1.0223658084869385,
985
+ "step": 274
986
+ },
987
+ {
988
+ "epoch": 0.11909385113268608,
989
+ "grad_norm": 1.8959418535232544,
990
+ "learning_rate": 2.4707996406109615e-05,
991
+ "loss": 0.8702670931816101,
992
+ "step": 276
993
+ },
994
+ {
995
+ "epoch": 0.11995685005393743,
996
+ "grad_norm": 2.115907669067383,
997
+ "learning_rate": 2.4887690925426776e-05,
998
+ "loss": 0.9471842050552368,
999
+ "step": 278
1000
+ },
1001
+ {
1002
+ "epoch": 0.12081984897518878,
1003
+ "grad_norm": 2.0255353450775146,
1004
+ "learning_rate": 2.5067385444743935e-05,
1005
+ "loss": 0.805242657661438,
1006
+ "step": 280
1007
+ },
1008
+ {
1009
+ "epoch": 0.12168284789644013,
1010
+ "grad_norm": 1.9394105672836304,
1011
+ "learning_rate": 2.52470799640611e-05,
1012
+ "loss": 0.9008285999298096,
1013
+ "step": 282
1014
+ },
1015
+ {
1016
+ "epoch": 0.12254584681769148,
1017
+ "grad_norm": 2.2017428874969482,
1018
+ "learning_rate": 2.5426774483378258e-05,
1019
+ "loss": 0.950639009475708,
1020
+ "step": 284
1021
+ },
1022
+ {
1023
+ "epoch": 0.12340884573894283,
1024
+ "grad_norm": 4.048379421234131,
1025
+ "learning_rate": 2.5606469002695423e-05,
1026
+ "loss": 0.9673396944999695,
1027
+ "step": 286
1028
+ },
1029
+ {
1030
+ "epoch": 0.12427184466019417,
1031
+ "grad_norm": 1.812450647354126,
1032
+ "learning_rate": 2.578616352201258e-05,
1033
+ "loss": 0.8251164555549622,
1034
+ "step": 288
1035
+ },
1036
+ {
1037
+ "epoch": 0.12513484358144553,
1038
+ "grad_norm": 1.9298596382141113,
1039
+ "learning_rate": 2.596585804132974e-05,
1040
+ "loss": 0.9397821426391602,
1041
+ "step": 290
1042
+ },
1043
+ {
1044
+ "epoch": 0.12599784250269688,
1045
+ "grad_norm": 2.0862202644348145,
1046
+ "learning_rate": 2.61455525606469e-05,
1047
+ "loss": 0.95896315574646,
1048
+ "step": 292
1049
+ },
1050
+ {
1051
+ "epoch": 0.1268608414239482,
1052
+ "grad_norm": 2.113429307937622,
1053
+ "learning_rate": 2.632524707996406e-05,
1054
+ "loss": 0.9547653198242188,
1055
+ "step": 294
1056
+ },
1057
+ {
1058
+ "epoch": 0.12772384034519957,
1059
+ "grad_norm": 2.0666873455047607,
1060
+ "learning_rate": 2.6504941599281224e-05,
1061
+ "loss": 0.9351654052734375,
1062
+ "step": 296
1063
+ },
1064
+ {
1065
+ "epoch": 0.12858683926645093,
1066
+ "grad_norm": 2.0679547786712646,
1067
+ "learning_rate": 2.6684636118598382e-05,
1068
+ "loss": 0.9268350005149841,
1069
+ "step": 298
1070
+ },
1071
+ {
1072
+ "epoch": 0.12944983818770225,
1073
+ "grad_norm": 2.028594493865967,
1074
+ "learning_rate": 2.6864330637915547e-05,
1075
+ "loss": 0.8522316813468933,
1076
+ "step": 300
1077
+ },
1078
+ {
1079
+ "epoch": 0.12944983818770225,
1080
+ "eval_loss": 0.9384957551956177,
1081
+ "eval_runtime": 835.4727,
1082
+ "eval_samples_per_second": 2.466,
1083
+ "eval_steps_per_second": 2.466,
1084
+ "step": 300
1085
+ },
1086
+ {
1087
+ "epoch": 0.1303128371089536,
1088
+ "grad_norm": 2.1932919025421143,
1089
+ "learning_rate": 2.7044025157232706e-05,
1090
+ "loss": 0.9460103511810303,
1091
+ "step": 302
1092
+ },
1093
+ {
1094
+ "epoch": 0.13117583603020497,
1095
+ "grad_norm": 2.275789737701416,
1096
+ "learning_rate": 2.722371967654987e-05,
1097
+ "loss": 0.9642201662063599,
1098
+ "step": 304
1099
+ },
1100
+ {
1101
+ "epoch": 0.13203883495145632,
1102
+ "grad_norm": 1.9120908975601196,
1103
+ "learning_rate": 2.740341419586703e-05,
1104
+ "loss": 0.869883120059967,
1105
+ "step": 306
1106
+ },
1107
+ {
1108
+ "epoch": 0.13290183387270765,
1109
+ "grad_norm": 1.9676507711410522,
1110
+ "learning_rate": 2.7583108715184187e-05,
1111
+ "loss": 0.8595444560050964,
1112
+ "step": 308
1113
+ },
1114
+ {
1115
+ "epoch": 0.133764832793959,
1116
+ "grad_norm": 1.7901391983032227,
1117
+ "learning_rate": 2.776280323450135e-05,
1118
+ "loss": 0.8541103601455688,
1119
+ "step": 310
1120
+ },
1121
+ {
1122
+ "epoch": 0.13462783171521037,
1123
+ "grad_norm": 2.160867691040039,
1124
+ "learning_rate": 2.7942497753818507e-05,
1125
+ "loss": 1.0146855115890503,
1126
+ "step": 312
1127
+ },
1128
+ {
1129
+ "epoch": 0.1354908306364617,
1130
+ "grad_norm": 2.0809009075164795,
1131
+ "learning_rate": 2.8122192273135672e-05,
1132
+ "loss": 0.9228161573410034,
1133
+ "step": 314
1134
+ },
1135
+ {
1136
+ "epoch": 0.13635382955771305,
1137
+ "grad_norm": 1.9626725912094116,
1138
+ "learning_rate": 2.830188679245283e-05,
1139
+ "loss": 0.8527485132217407,
1140
+ "step": 316
1141
+ },
1142
+ {
1143
+ "epoch": 0.1372168284789644,
1144
+ "grad_norm": 1.9569967985153198,
1145
+ "learning_rate": 2.8481581311769995e-05,
1146
+ "loss": 0.8136687278747559,
1147
+ "step": 318
1148
+ },
1149
+ {
1150
+ "epoch": 0.13807982740021574,
1151
+ "grad_norm": 2.301692247390747,
1152
+ "learning_rate": 2.8661275831087153e-05,
1153
+ "loss": 0.8999513387680054,
1154
+ "step": 320
1155
+ },
1156
+ {
1157
+ "epoch": 0.1389428263214671,
1158
+ "grad_norm": 2.0247251987457275,
1159
+ "learning_rate": 2.884097035040431e-05,
1160
+ "loss": 0.9751577973365784,
1161
+ "step": 322
1162
+ },
1163
+ {
1164
+ "epoch": 0.13980582524271845,
1165
+ "grad_norm": 2.019547462463379,
1166
+ "learning_rate": 2.9020664869721477e-05,
1167
+ "loss": 0.8741729259490967,
1168
+ "step": 324
1169
+ },
1170
+ {
1171
+ "epoch": 0.1406688241639698,
1172
+ "grad_norm": 2.3503618240356445,
1173
+ "learning_rate": 2.9200359389038635e-05,
1174
+ "loss": 0.948066234588623,
1175
+ "step": 326
1176
+ },
1177
+ {
1178
+ "epoch": 0.14153182308522114,
1179
+ "grad_norm": 2.544365406036377,
1180
+ "learning_rate": 2.9380053908355796e-05,
1181
+ "loss": 1.008673906326294,
1182
+ "step": 328
1183
+ },
1184
+ {
1185
+ "epoch": 0.1423948220064725,
1186
+ "grad_norm": 3.1647145748138428,
1187
+ "learning_rate": 2.9559748427672958e-05,
1188
+ "loss": 0.9492161273956299,
1189
+ "step": 330
1190
+ },
1191
+ {
1192
+ "epoch": 0.14325782092772385,
1193
+ "grad_norm": 2.0551259517669678,
1194
+ "learning_rate": 2.973944294699012e-05,
1195
+ "loss": 0.9077466130256653,
1196
+ "step": 332
1197
+ },
1198
+ {
1199
+ "epoch": 0.14412081984897518,
1200
+ "grad_norm": 1.6792620420455933,
1201
+ "learning_rate": 2.9919137466307278e-05,
1202
+ "loss": 0.8839989304542542,
1203
+ "step": 334
1204
+ },
1205
+ {
1206
+ "epoch": 0.14498381877022654,
1207
+ "grad_norm": 1.7771215438842773,
1208
+ "learning_rate": 3.0098831985624436e-05,
1209
+ "loss": 0.855834424495697,
1210
+ "step": 336
1211
+ },
1212
+ {
1213
+ "epoch": 0.1458468176914779,
1214
+ "grad_norm": 2.030884027481079,
1215
+ "learning_rate": 3.02785265049416e-05,
1216
+ "loss": 0.8477111458778381,
1217
+ "step": 338
1218
+ },
1219
+ {
1220
+ "epoch": 0.14670981661272922,
1221
+ "grad_norm": 2.4177005290985107,
1222
+ "learning_rate": 3.045822102425876e-05,
1223
+ "loss": 0.9139004945755005,
1224
+ "step": 340
1225
+ },
1226
+ {
1227
+ "epoch": 0.14757281553398058,
1228
+ "grad_norm": 2.094775438308716,
1229
+ "learning_rate": 3.063791554357592e-05,
1230
+ "loss": 0.8836029767990112,
1231
+ "step": 342
1232
+ },
1233
+ {
1234
+ "epoch": 0.14843581445523193,
1235
+ "grad_norm": 2.0046238899230957,
1236
+ "learning_rate": 3.081761006289308e-05,
1237
+ "loss": 0.9318807125091553,
1238
+ "step": 344
1239
+ },
1240
+ {
1241
+ "epoch": 0.1492988133764833,
1242
+ "grad_norm": 2.40739369392395,
1243
+ "learning_rate": 3.0997304582210244e-05,
1244
+ "loss": 0.8916489481925964,
1245
+ "step": 346
1246
+ },
1247
+ {
1248
+ "epoch": 0.15016181229773462,
1249
+ "grad_norm": 2.1190497875213623,
1250
+ "learning_rate": 3.11769991015274e-05,
1251
+ "loss": 0.90766441822052,
1252
+ "step": 348
1253
+ },
1254
+ {
1255
+ "epoch": 0.15102481121898598,
1256
+ "grad_norm": 2.721255302429199,
1257
+ "learning_rate": 3.135669362084457e-05,
1258
+ "loss": 0.9210623502731323,
1259
+ "step": 350
1260
+ },
1261
+ {
1262
+ "epoch": 0.15188781014023733,
1263
+ "grad_norm": 2.4988787174224854,
1264
+ "learning_rate": 3.1536388140161726e-05,
1265
+ "loss": 0.9134353399276733,
1266
+ "step": 352
1267
+ },
1268
+ {
1269
+ "epoch": 0.15275080906148866,
1270
+ "grad_norm": 2.6075687408447266,
1271
+ "learning_rate": 3.1716082659478884e-05,
1272
+ "loss": 0.9127986431121826,
1273
+ "step": 354
1274
+ },
1275
+ {
1276
+ "epoch": 0.15361380798274002,
1277
+ "grad_norm": 1.9883074760437012,
1278
+ "learning_rate": 3.189577717879605e-05,
1279
+ "loss": 0.8019667863845825,
1280
+ "step": 356
1281
+ },
1282
+ {
1283
+ "epoch": 0.15447680690399138,
1284
+ "grad_norm": 2.058591365814209,
1285
+ "learning_rate": 3.207547169811321e-05,
1286
+ "loss": 0.8417298197746277,
1287
+ "step": 358
1288
+ },
1289
+ {
1290
+ "epoch": 0.1553398058252427,
1291
+ "grad_norm": 2.0510308742523193,
1292
+ "learning_rate": 3.225516621743037e-05,
1293
+ "loss": 0.909717321395874,
1294
+ "step": 360
1295
+ },
1296
+ {
1297
+ "epoch": 0.15620280474649406,
1298
+ "grad_norm": 2.3204104900360107,
1299
+ "learning_rate": 3.243486073674753e-05,
1300
+ "loss": 0.9414666295051575,
1301
+ "step": 362
1302
+ },
1303
+ {
1304
+ "epoch": 0.15706580366774542,
1305
+ "grad_norm": 1.9658725261688232,
1306
+ "learning_rate": 3.2614555256064695e-05,
1307
+ "loss": 0.8631396889686584,
1308
+ "step": 364
1309
+ },
1310
+ {
1311
+ "epoch": 0.15792880258899678,
1312
+ "grad_norm": 2.2223057746887207,
1313
+ "learning_rate": 3.2794249775381853e-05,
1314
+ "loss": 0.8996705412864685,
1315
+ "step": 366
1316
+ },
1317
+ {
1318
+ "epoch": 0.1587918015102481,
1319
+ "grad_norm": 1.9815107583999634,
1320
+ "learning_rate": 3.297394429469901e-05,
1321
+ "loss": 0.8185732364654541,
1322
+ "step": 368
1323
+ },
1324
+ {
1325
+ "epoch": 0.15965480043149946,
1326
+ "grad_norm": 2.319581985473633,
1327
+ "learning_rate": 3.315363881401618e-05,
1328
+ "loss": 0.9952898025512695,
1329
+ "step": 370
1330
+ },
1331
+ {
1332
+ "epoch": 0.16051779935275082,
1333
+ "grad_norm": 1.7916827201843262,
1334
+ "learning_rate": 3.3333333333333335e-05,
1335
+ "loss": 0.7604310512542725,
1336
+ "step": 372
1337
+ },
1338
+ {
1339
+ "epoch": 0.16138079827400215,
1340
+ "grad_norm": 1.955737590789795,
1341
+ "learning_rate": 3.35130278526505e-05,
1342
+ "loss": 0.7867834568023682,
1343
+ "step": 374
1344
+ },
1345
+ {
1346
+ "epoch": 0.1622437971952535,
1347
+ "grad_norm": 2.409783124923706,
1348
+ "learning_rate": 3.369272237196766e-05,
1349
+ "loss": 0.9106539487838745,
1350
+ "step": 376
1351
+ },
1352
+ {
1353
+ "epoch": 0.16310679611650486,
1354
+ "grad_norm": 2.2521097660064697,
1355
+ "learning_rate": 3.3872416891284816e-05,
1356
+ "loss": 0.8945732712745667,
1357
+ "step": 378
1358
+ },
1359
+ {
1360
+ "epoch": 0.16396979503775622,
1361
+ "grad_norm": 2.357815742492676,
1362
+ "learning_rate": 3.4052111410601975e-05,
1363
+ "loss": 0.8950189352035522,
1364
+ "step": 380
1365
+ },
1366
+ {
1367
+ "epoch": 0.16483279395900755,
1368
+ "grad_norm": 2.347301721572876,
1369
+ "learning_rate": 3.423180592991914e-05,
1370
+ "loss": 0.9965803623199463,
1371
+ "step": 382
1372
+ },
1373
+ {
1374
+ "epoch": 0.1656957928802589,
1375
+ "grad_norm": 2.054586887359619,
1376
+ "learning_rate": 3.44115004492363e-05,
1377
+ "loss": 0.9081383347511292,
1378
+ "step": 384
1379
+ },
1380
+ {
1381
+ "epoch": 0.16655879180151026,
1382
+ "grad_norm": 2.1550471782684326,
1383
+ "learning_rate": 3.4591194968553456e-05,
1384
+ "loss": 0.874001681804657,
1385
+ "step": 386
1386
+ },
1387
+ {
1388
+ "epoch": 0.1674217907227616,
1389
+ "grad_norm": 1.6929951906204224,
1390
+ "learning_rate": 3.477088948787062e-05,
1391
+ "loss": 0.9111959934234619,
1392
+ "step": 388
1393
+ },
1394
+ {
1395
+ "epoch": 0.16828478964401294,
1396
+ "grad_norm": 2.0102803707122803,
1397
+ "learning_rate": 3.495058400718778e-05,
1398
+ "loss": 0.8915985226631165,
1399
+ "step": 390
1400
+ },
1401
+ {
1402
+ "epoch": 0.1691477885652643,
1403
+ "grad_norm": 4.215941429138184,
1404
+ "learning_rate": 3.5130278526504944e-05,
1405
+ "loss": 1.0158213376998901,
1406
+ "step": 392
1407
+ },
1408
+ {
1409
+ "epoch": 0.17001078748651563,
1410
+ "grad_norm": 1.864119529724121,
1411
+ "learning_rate": 3.53099730458221e-05,
1412
+ "loss": 0.7811702489852905,
1413
+ "step": 394
1414
+ },
1415
+ {
1416
+ "epoch": 0.170873786407767,
1417
+ "grad_norm": 1.9778105020523071,
1418
+ "learning_rate": 3.548966756513927e-05,
1419
+ "loss": 0.931502103805542,
1420
+ "step": 396
1421
+ },
1422
+ {
1423
+ "epoch": 0.17173678532901834,
1424
+ "grad_norm": 2.0757675170898438,
1425
+ "learning_rate": 3.5669362084456426e-05,
1426
+ "loss": 0.9409074187278748,
1427
+ "step": 398
1428
+ },
1429
+ {
1430
+ "epoch": 0.1725997842502697,
1431
+ "grad_norm": 1.5847891569137573,
1432
+ "learning_rate": 3.5849056603773584e-05,
1433
+ "loss": 0.8159269094467163,
1434
+ "step": 400
1435
+ },
1436
+ {
1437
+ "epoch": 0.1725997842502697,
1438
+ "eval_loss": 0.9124138355255127,
1439
+ "eval_runtime": 832.6331,
1440
+ "eval_samples_per_second": 2.474,
1441
+ "eval_steps_per_second": 2.474,
1442
+ "step": 400
1443
+ },
1444
+ {
1445
+ "epoch": 0.17346278317152103,
1446
+ "grad_norm": 1.8158049583435059,
1447
+ "learning_rate": 3.602875112309075e-05,
1448
+ "loss": 0.8901475667953491,
1449
+ "step": 402
1450
+ },
1451
+ {
1452
+ "epoch": 0.17432578209277239,
1453
+ "grad_norm": 1.9448504447937012,
1454
+ "learning_rate": 3.620844564240791e-05,
1455
+ "loss": 0.8330907821655273,
1456
+ "step": 404
1457
+ },
1458
+ {
1459
+ "epoch": 0.17518878101402374,
1460
+ "grad_norm": 2.028280019760132,
1461
+ "learning_rate": 3.638814016172507e-05,
1462
+ "loss": 0.870513916015625,
1463
+ "step": 406
1464
+ },
1465
+ {
1466
+ "epoch": 0.17605177993527507,
1467
+ "grad_norm": 2.2005157470703125,
1468
+ "learning_rate": 3.656783468104223e-05,
1469
+ "loss": 0.8064979910850525,
1470
+ "step": 408
1471
+ },
1472
+ {
1473
+ "epoch": 0.17691477885652643,
1474
+ "grad_norm": 2.2756290435791016,
1475
+ "learning_rate": 3.6747529200359395e-05,
1476
+ "loss": 0.8457443714141846,
1477
+ "step": 410
1478
+ },
1479
+ {
1480
+ "epoch": 0.17777777777777778,
1481
+ "grad_norm": 2.0970261096954346,
1482
+ "learning_rate": 3.6927223719676554e-05,
1483
+ "loss": 0.7478897571563721,
1484
+ "step": 412
1485
+ },
1486
+ {
1487
+ "epoch": 0.1786407766990291,
1488
+ "grad_norm": 1.8917485475540161,
1489
+ "learning_rate": 3.710691823899371e-05,
1490
+ "loss": 0.863377034664154,
1491
+ "step": 414
1492
+ },
1493
+ {
1494
+ "epoch": 0.17950377562028047,
1495
+ "grad_norm": 2.0429933071136475,
1496
+ "learning_rate": 3.728661275831088e-05,
1497
+ "loss": 0.8654620051383972,
1498
+ "step": 416
1499
+ },
1500
+ {
1501
+ "epoch": 0.18036677454153183,
1502
+ "grad_norm": 2.005125045776367,
1503
+ "learning_rate": 3.7466307277628035e-05,
1504
+ "loss": 0.8295455574989319,
1505
+ "step": 418
1506
+ },
1507
+ {
1508
+ "epoch": 0.18122977346278318,
1509
+ "grad_norm": 2.3852169513702393,
1510
+ "learning_rate": 3.764600179694519e-05,
1511
+ "loss": 0.8728633522987366,
1512
+ "step": 420
1513
+ },
1514
+ {
1515
+ "epoch": 0.1820927723840345,
1516
+ "grad_norm": 1.8731592893600464,
1517
+ "learning_rate": 3.782569631626235e-05,
1518
+ "loss": 0.8217283487319946,
1519
+ "step": 422
1520
+ },
1521
+ {
1522
+ "epoch": 0.18295577130528587,
1523
+ "grad_norm": 2.2818236351013184,
1524
+ "learning_rate": 3.8005390835579516e-05,
1525
+ "loss": 0.8869860172271729,
1526
+ "step": 424
1527
+ },
1528
+ {
1529
+ "epoch": 0.18381877022653723,
1530
+ "grad_norm": 2.0646233558654785,
1531
+ "learning_rate": 3.8185085354896675e-05,
1532
+ "loss": 0.9732091426849365,
1533
+ "step": 426
1534
+ },
1535
+ {
1536
+ "epoch": 0.18468176914778855,
1537
+ "grad_norm": 1.9991949796676636,
1538
+ "learning_rate": 3.836477987421384e-05,
1539
+ "loss": 0.9012333154678345,
1540
+ "step": 428
1541
+ },
1542
+ {
1543
+ "epoch": 0.1855447680690399,
1544
+ "grad_norm": 2.209775447845459,
1545
+ "learning_rate": 3.8544474393531e-05,
1546
+ "loss": 0.867533802986145,
1547
+ "step": 430
1548
+ },
1549
+ {
1550
+ "epoch": 0.18640776699029127,
1551
+ "grad_norm": 2.1242146492004395,
1552
+ "learning_rate": 3.8724168912848156e-05,
1553
+ "loss": 0.8697446584701538,
1554
+ "step": 432
1555
+ },
1556
+ {
1557
+ "epoch": 0.1872707659115426,
1558
+ "grad_norm": 1.771337628364563,
1559
+ "learning_rate": 3.890386343216532e-05,
1560
+ "loss": 0.8712933659553528,
1561
+ "step": 434
1562
+ },
1563
+ {
1564
+ "epoch": 0.18813376483279395,
1565
+ "grad_norm": 2.133652925491333,
1566
+ "learning_rate": 3.908355795148248e-05,
1567
+ "loss": 0.8638070821762085,
1568
+ "step": 436
1569
+ },
1570
+ {
1571
+ "epoch": 0.1889967637540453,
1572
+ "grad_norm": 1.9354501962661743,
1573
+ "learning_rate": 3.9263252470799644e-05,
1574
+ "loss": 0.8255205750465393,
1575
+ "step": 438
1576
+ },
1577
+ {
1578
+ "epoch": 0.18985976267529667,
1579
+ "grad_norm": 1.9564658403396606,
1580
+ "learning_rate": 3.94429469901168e-05,
1581
+ "loss": 0.9652490019798279,
1582
+ "step": 440
1583
+ },
1584
+ {
1585
+ "epoch": 0.190722761596548,
1586
+ "grad_norm": 1.9733822345733643,
1587
+ "learning_rate": 3.962264150943397e-05,
1588
+ "loss": 0.8960518836975098,
1589
+ "step": 442
1590
+ },
1591
+ {
1592
+ "epoch": 0.19158576051779935,
1593
+ "grad_norm": 2.1670451164245605,
1594
+ "learning_rate": 3.9802336028751126e-05,
1595
+ "loss": 0.9555241465568542,
1596
+ "step": 444
1597
+ },
1598
+ {
1599
+ "epoch": 0.1924487594390507,
1600
+ "grad_norm": 2.0059614181518555,
1601
+ "learning_rate": 3.9982030548068284e-05,
1602
+ "loss": 0.8238654732704163,
1603
+ "step": 446
1604
+ },
1605
+ {
1606
+ "epoch": 0.19331175836030204,
1607
+ "grad_norm": 1.9803026914596558,
1608
+ "learning_rate": 4.016172506738545e-05,
1609
+ "loss": 0.8701026439666748,
1610
+ "step": 448
1611
+ },
1612
+ {
1613
+ "epoch": 0.1941747572815534,
1614
+ "grad_norm": 1.8800172805786133,
1615
+ "learning_rate": 4.034141958670261e-05,
1616
+ "loss": 0.8927714228630066,
1617
+ "step": 450
1618
+ },
1619
+ {
1620
+ "epoch": 0.19503775620280475,
1621
+ "grad_norm": 1.8555818796157837,
1622
+ "learning_rate": 4.052111410601977e-05,
1623
+ "loss": 0.8635751008987427,
1624
+ "step": 452
1625
+ },
1626
+ {
1627
+ "epoch": 0.1959007551240561,
1628
+ "grad_norm": 2.5119166374206543,
1629
+ "learning_rate": 4.070080862533693e-05,
1630
+ "loss": 0.925403892993927,
1631
+ "step": 454
1632
+ },
1633
+ {
1634
+ "epoch": 0.19676375404530744,
1635
+ "grad_norm": 2.0825788974761963,
1636
+ "learning_rate": 4.088050314465409e-05,
1637
+ "loss": 0.8917028307914734,
1638
+ "step": 456
1639
+ },
1640
+ {
1641
+ "epoch": 0.1976267529665588,
1642
+ "grad_norm": 2.4413394927978516,
1643
+ "learning_rate": 4.1060197663971254e-05,
1644
+ "loss": 0.9097893834114075,
1645
+ "step": 458
1646
+ },
1647
+ {
1648
+ "epoch": 0.19848975188781015,
1649
+ "grad_norm": 2.503617286682129,
1650
+ "learning_rate": 4.123989218328841e-05,
1651
+ "loss": 0.8284633755683899,
1652
+ "step": 460
1653
+ },
1654
+ {
1655
+ "epoch": 0.19935275080906148,
1656
+ "grad_norm": 1.9360398054122925,
1657
+ "learning_rate": 4.141958670260557e-05,
1658
+ "loss": 0.8743083477020264,
1659
+ "step": 462
1660
+ },
1661
+ {
1662
+ "epoch": 0.20021574973031284,
1663
+ "grad_norm": 1.9228297472000122,
1664
+ "learning_rate": 4.159928122192273e-05,
1665
+ "loss": 0.837934136390686,
1666
+ "step": 464
1667
+ },
1668
+ {
1669
+ "epoch": 0.2010787486515642,
1670
+ "grad_norm": 2.3240439891815186,
1671
+ "learning_rate": 4.1778975741239893e-05,
1672
+ "loss": 0.831945538520813,
1673
+ "step": 466
1674
+ },
1675
+ {
1676
+ "epoch": 0.20194174757281552,
1677
+ "grad_norm": 1.879684329032898,
1678
+ "learning_rate": 4.195867026055705e-05,
1679
+ "loss": 0.8012097477912903,
1680
+ "step": 468
1681
+ },
1682
+ {
1683
+ "epoch": 0.20280474649406688,
1684
+ "grad_norm": 2.2995200157165527,
1685
+ "learning_rate": 4.213836477987422e-05,
1686
+ "loss": 0.8670937418937683,
1687
+ "step": 470
1688
+ },
1689
+ {
1690
+ "epoch": 0.20366774541531824,
1691
+ "grad_norm": 2.098020553588867,
1692
+ "learning_rate": 4.2318059299191375e-05,
1693
+ "loss": 0.88299161195755,
1694
+ "step": 472
1695
+ },
1696
+ {
1697
+ "epoch": 0.2045307443365696,
1698
+ "grad_norm": 2.0588274002075195,
1699
+ "learning_rate": 4.249775381850854e-05,
1700
+ "loss": 0.9045401811599731,
1701
+ "step": 474
1702
+ },
1703
+ {
1704
+ "epoch": 0.20539374325782092,
1705
+ "grad_norm": 1.8832436800003052,
1706
+ "learning_rate": 4.26774483378257e-05,
1707
+ "loss": 0.9787635803222656,
1708
+ "step": 476
1709
+ },
1710
+ {
1711
+ "epoch": 0.20625674217907228,
1712
+ "grad_norm": 2.3451809883117676,
1713
+ "learning_rate": 4.2857142857142856e-05,
1714
+ "loss": 0.8874871730804443,
1715
+ "step": 478
1716
+ },
1717
+ {
1718
+ "epoch": 0.20711974110032363,
1719
+ "grad_norm": 1.8093878030776978,
1720
+ "learning_rate": 4.303683737646002e-05,
1721
+ "loss": 0.794157087802887,
1722
+ "step": 480
1723
+ },
1724
+ {
1725
+ "epoch": 0.20798274002157496,
1726
+ "grad_norm": 1.8396174907684326,
1727
+ "learning_rate": 4.321653189577718e-05,
1728
+ "loss": 0.792723536491394,
1729
+ "step": 482
1730
+ },
1731
+ {
1732
+ "epoch": 0.20884573894282632,
1733
+ "grad_norm": 2.3939783573150635,
1734
+ "learning_rate": 4.3396226415094345e-05,
1735
+ "loss": 0.9221814274787903,
1736
+ "step": 484
1737
+ },
1738
+ {
1739
+ "epoch": 0.20970873786407768,
1740
+ "grad_norm": 2.2652194499969482,
1741
+ "learning_rate": 4.35759209344115e-05,
1742
+ "loss": 0.8716039061546326,
1743
+ "step": 486
1744
+ },
1745
+ {
1746
+ "epoch": 0.210571736785329,
1747
+ "grad_norm": 2.068258762359619,
1748
+ "learning_rate": 4.375561545372867e-05,
1749
+ "loss": 0.8517807126045227,
1750
+ "step": 488
1751
+ },
1752
+ {
1753
+ "epoch": 0.21143473570658036,
1754
+ "grad_norm": 2.264620542526245,
1755
+ "learning_rate": 4.3935309973045826e-05,
1756
+ "loss": 0.8699264526367188,
1757
+ "step": 490
1758
+ },
1759
+ {
1760
+ "epoch": 0.21229773462783172,
1761
+ "grad_norm": 2.0821611881256104,
1762
+ "learning_rate": 4.4115004492362984e-05,
1763
+ "loss": 0.8760254383087158,
1764
+ "step": 492
1765
+ },
1766
+ {
1767
+ "epoch": 0.21316073354908308,
1768
+ "grad_norm": 1.9486546516418457,
1769
+ "learning_rate": 4.429469901168015e-05,
1770
+ "loss": 0.8957411050796509,
1771
+ "step": 494
1772
+ },
1773
+ {
1774
+ "epoch": 0.2140237324703344,
1775
+ "grad_norm": 2.092957019805908,
1776
+ "learning_rate": 4.447439353099731e-05,
1777
+ "loss": 0.981200635433197,
1778
+ "step": 496
1779
+ },
1780
+ {
1781
+ "epoch": 0.21488673139158576,
1782
+ "grad_norm": 2.325758218765259,
1783
+ "learning_rate": 4.4654088050314466e-05,
1784
+ "loss": 0.8295405507087708,
1785
+ "step": 498
1786
+ },
1787
+ {
1788
+ "epoch": 0.21574973031283712,
1789
+ "grad_norm": 2.251295566558838,
1790
+ "learning_rate": 4.4833782569631624e-05,
1791
+ "loss": 0.8463165163993835,
1792
+ "step": 500
1793
+ },
1794
+ {
1795
+ "epoch": 0.21574973031283712,
1796
+ "eval_loss": 0.8945327997207642,
1797
+ "eval_runtime": 822.9776,
1798
+ "eval_samples_per_second": 2.503,
1799
+ "eval_steps_per_second": 2.503,
1800
+ "step": 500
1801
+ },
1802
+ {
1803
+ "epoch": 0.21661272923408845,
1804
+ "grad_norm": 1.8110703229904175,
1805
+ "learning_rate": 4.501347708894879e-05,
1806
+ "loss": 0.9099015593528748,
1807
+ "step": 502
1808
+ },
1809
+ {
1810
+ "epoch": 0.2174757281553398,
1811
+ "grad_norm": 2.0977623462677,
1812
+ "learning_rate": 4.519317160826595e-05,
1813
+ "loss": 0.875080943107605,
1814
+ "step": 504
1815
+ },
1816
+ {
1817
+ "epoch": 0.21833872707659116,
1818
+ "grad_norm": 1.8648077249526978,
1819
+ "learning_rate": 4.537286612758311e-05,
1820
+ "loss": 0.8511829376220703,
1821
+ "step": 506
1822
+ },
1823
+ {
1824
+ "epoch": 0.2192017259978425,
1825
+ "grad_norm": 1.754744291305542,
1826
+ "learning_rate": 4.555256064690027e-05,
1827
+ "loss": 0.8408182859420776,
1828
+ "step": 508
1829
+ },
1830
+ {
1831
+ "epoch": 0.22006472491909385,
1832
+ "grad_norm": 1.9869136810302734,
1833
+ "learning_rate": 4.573225516621743e-05,
1834
+ "loss": 0.8824991583824158,
1835
+ "step": 510
1836
+ },
1837
+ {
1838
+ "epoch": 0.2209277238403452,
1839
+ "grad_norm": 2.4601082801818848,
1840
+ "learning_rate": 4.5911949685534594e-05,
1841
+ "loss": 0.9949447512626648,
1842
+ "step": 512
1843
+ },
1844
+ {
1845
+ "epoch": 0.22179072276159656,
1846
+ "grad_norm": 2.1224238872528076,
1847
+ "learning_rate": 4.609164420485175e-05,
1848
+ "loss": 0.8979368805885315,
1849
+ "step": 514
1850
+ },
1851
+ {
1852
+ "epoch": 0.2226537216828479,
1853
+ "grad_norm": 1.6812392473220825,
1854
+ "learning_rate": 4.627133872416892e-05,
1855
+ "loss": 0.8728249669075012,
1856
+ "step": 516
1857
+ },
1858
+ {
1859
+ "epoch": 0.22351672060409924,
1860
+ "grad_norm": 1.6505497694015503,
1861
+ "learning_rate": 4.6451033243486075e-05,
1862
+ "loss": 0.8083430528640747,
1863
+ "step": 518
1864
+ },
1865
+ {
1866
+ "epoch": 0.2243797195253506,
1867
+ "grad_norm": 1.6454377174377441,
1868
+ "learning_rate": 4.663072776280324e-05,
1869
+ "loss": 0.8042294383049011,
1870
+ "step": 520
1871
+ },
1872
+ {
1873
+ "epoch": 0.22524271844660193,
1874
+ "grad_norm": 2.0974535942077637,
1875
+ "learning_rate": 4.68104222821204e-05,
1876
+ "loss": 0.9263730049133301,
1877
+ "step": 522
1878
+ },
1879
+ {
1880
+ "epoch": 0.2261057173678533,
1881
+ "grad_norm": 1.90152108669281,
1882
+ "learning_rate": 4.6990116801437556e-05,
1883
+ "loss": 0.9090206623077393,
1884
+ "step": 524
1885
+ },
1886
+ {
1887
+ "epoch": 0.22696871628910464,
1888
+ "grad_norm": 1.9843928813934326,
1889
+ "learning_rate": 4.716981132075472e-05,
1890
+ "loss": 0.8310918807983398,
1891
+ "step": 526
1892
+ },
1893
+ {
1894
+ "epoch": 0.227831715210356,
1895
+ "grad_norm": 1.7880226373672485,
1896
+ "learning_rate": 4.734950584007188e-05,
1897
+ "loss": 0.8838925957679749,
1898
+ "step": 528
1899
+ },
1900
+ {
1901
+ "epoch": 0.22869471413160733,
1902
+ "grad_norm": 1.8534979820251465,
1903
+ "learning_rate": 4.7529200359389045e-05,
1904
+ "loss": 0.9431065917015076,
1905
+ "step": 530
1906
+ },
1907
+ {
1908
+ "epoch": 0.2295577130528587,
1909
+ "grad_norm": 1.8936293125152588,
1910
+ "learning_rate": 4.77088948787062e-05,
1911
+ "loss": 0.7988291382789612,
1912
+ "step": 532
1913
+ },
1914
+ {
1915
+ "epoch": 0.23042071197411004,
1916
+ "grad_norm": 1.919683814048767,
1917
+ "learning_rate": 4.788858939802337e-05,
1918
+ "loss": 0.8477044105529785,
1919
+ "step": 534
1920
+ },
1921
+ {
1922
+ "epoch": 0.23128371089536137,
1923
+ "grad_norm": 1.8022494316101074,
1924
+ "learning_rate": 4.8068283917340526e-05,
1925
+ "loss": 0.8482418060302734,
1926
+ "step": 536
1927
+ },
1928
+ {
1929
+ "epoch": 0.23214670981661273,
1930
+ "grad_norm": 1.8628984689712524,
1931
+ "learning_rate": 4.8247978436657684e-05,
1932
+ "loss": 0.8553584814071655,
1933
+ "step": 538
1934
+ },
1935
+ {
1936
+ "epoch": 0.23300970873786409,
1937
+ "grad_norm": 1.8644732236862183,
1938
+ "learning_rate": 4.842767295597484e-05,
1939
+ "loss": 0.8287713527679443,
1940
+ "step": 540
1941
+ },
1942
+ {
1943
+ "epoch": 0.23387270765911541,
1944
+ "grad_norm": 2.162926435470581,
1945
+ "learning_rate": 4.8607367475292e-05,
1946
+ "loss": 0.8984123468399048,
1947
+ "step": 542
1948
+ },
1949
+ {
1950
+ "epoch": 0.23473570658036677,
1951
+ "grad_norm": 1.453223466873169,
1952
+ "learning_rate": 4.8787061994609166e-05,
1953
+ "loss": 0.725272536277771,
1954
+ "step": 544
1955
+ },
1956
+ {
1957
+ "epoch": 0.23559870550161813,
1958
+ "grad_norm": 2.2145543098449707,
1959
+ "learning_rate": 4.8966756513926324e-05,
1960
+ "loss": 0.9128344655036926,
1961
+ "step": 546
1962
+ },
1963
+ {
1964
+ "epoch": 0.23646170442286948,
1965
+ "grad_norm": 1.7639187574386597,
1966
+ "learning_rate": 4.914645103324349e-05,
1967
+ "loss": 0.782098114490509,
1968
+ "step": 548
1969
+ },
1970
+ {
1971
+ "epoch": 0.2373247033441208,
1972
+ "grad_norm": 1.6597305536270142,
1973
+ "learning_rate": 4.932614555256065e-05,
1974
+ "loss": 0.8212350010871887,
1975
+ "step": 550
1976
+ },
1977
+ {
1978
+ "epoch": 0.23818770226537217,
1979
+ "grad_norm": 1.9441677331924438,
1980
+ "learning_rate": 4.950584007187781e-05,
1981
+ "loss": 0.9033122062683105,
1982
+ "step": 552
1983
+ },
1984
+ {
1985
+ "epoch": 0.23905070118662353,
1986
+ "grad_norm": 2.0332281589508057,
1987
+ "learning_rate": 4.968553459119497e-05,
1988
+ "loss": 0.9195884466171265,
1989
+ "step": 554
1990
+ },
1991
+ {
1992
+ "epoch": 0.23991370010787486,
1993
+ "grad_norm": 1.9222822189331055,
1994
+ "learning_rate": 4.986522911051213e-05,
1995
+ "loss": 0.8828456401824951,
1996
+ "step": 556
1997
+ },
1998
+ {
1999
+ "epoch": 0.2407766990291262,
2000
+ "grad_norm": 1.9830708503723145,
2001
+ "learning_rate": 5.004492362982929e-05,
2002
+ "loss": 0.9089829921722412,
2003
+ "step": 558
2004
+ },
2005
+ {
2006
+ "epoch": 0.24163969795037757,
2007
+ "grad_norm": 1.99044930934906,
2008
+ "learning_rate": 5.022461814914645e-05,
2009
+ "loss": 0.8747812509536743,
2010
+ "step": 560
2011
+ },
2012
+ {
2013
+ "epoch": 0.2425026968716289,
2014
+ "grad_norm": 1.7961562871932983,
2015
+ "learning_rate": 5.040431266846362e-05,
2016
+ "loss": 0.8421230912208557,
2017
+ "step": 562
2018
+ },
2019
+ {
2020
+ "epoch": 0.24336569579288025,
2021
+ "grad_norm": 1.9798882007598877,
2022
+ "learning_rate": 5.058400718778078e-05,
2023
+ "loss": 0.8669922351837158,
2024
+ "step": 564
2025
+ },
2026
+ {
2027
+ "epoch": 0.2442286947141316,
2028
+ "grad_norm": 2.0138750076293945,
2029
+ "learning_rate": 5.076370170709793e-05,
2030
+ "loss": 0.8596820831298828,
2031
+ "step": 566
2032
+ },
2033
+ {
2034
+ "epoch": 0.24509169363538297,
2035
+ "grad_norm": 2.069021701812744,
2036
+ "learning_rate": 5.09433962264151e-05,
2037
+ "loss": 0.8288601636886597,
2038
+ "step": 568
2039
+ },
2040
+ {
2041
+ "epoch": 0.2459546925566343,
2042
+ "grad_norm": 2.6913585662841797,
2043
+ "learning_rate": 5.112309074573226e-05,
2044
+ "loss": 0.8321394324302673,
2045
+ "step": 570
2046
+ },
2047
+ {
2048
+ "epoch": 0.24681769147788565,
2049
+ "grad_norm": 1.8057955503463745,
2050
+ "learning_rate": 5.1302785265049415e-05,
2051
+ "loss": 0.842660129070282,
2052
+ "step": 572
2053
+ },
2054
+ {
2055
+ "epoch": 0.247680690399137,
2056
+ "grad_norm": 1.5741548538208008,
2057
+ "learning_rate": 5.148247978436658e-05,
2058
+ "loss": 0.8431437015533447,
2059
+ "step": 574
2060
+ },
2061
+ {
2062
+ "epoch": 0.24854368932038834,
2063
+ "grad_norm": 2.0329413414001465,
2064
+ "learning_rate": 5.166217430368374e-05,
2065
+ "loss": 0.9046191573143005,
2066
+ "step": 576
2067
+ },
2068
+ {
2069
+ "epoch": 0.2494066882416397,
2070
+ "grad_norm": 1.7638250589370728,
2071
+ "learning_rate": 5.18418688230009e-05,
2072
+ "loss": 0.8108726739883423,
2073
+ "step": 578
2074
+ },
2075
+ {
2076
+ "epoch": 0.25026968716289105,
2077
+ "grad_norm": 2.1088576316833496,
2078
+ "learning_rate": 5.202156334231806e-05,
2079
+ "loss": 0.8621282577514648,
2080
+ "step": 580
2081
+ },
2082
+ {
2083
+ "epoch": 0.2511326860841424,
2084
+ "grad_norm": 2.072145462036133,
2085
+ "learning_rate": 5.220125786163522e-05,
2086
+ "loss": 0.8774182200431824,
2087
+ "step": 582
2088
+ },
2089
+ {
2090
+ "epoch": 0.25199568500539377,
2091
+ "grad_norm": 1.8093693256378174,
2092
+ "learning_rate": 5.2380952380952384e-05,
2093
+ "loss": 0.863322377204895,
2094
+ "step": 584
2095
+ },
2096
+ {
2097
+ "epoch": 0.25285868392664507,
2098
+ "grad_norm": 1.7119505405426025,
2099
+ "learning_rate": 5.2560646900269536e-05,
2100
+ "loss": 0.8493514657020569,
2101
+ "step": 586
2102
+ },
2103
+ {
2104
+ "epoch": 0.2537216828478964,
2105
+ "grad_norm": 2.042052745819092,
2106
+ "learning_rate": 5.27403414195867e-05,
2107
+ "loss": 0.8278731107711792,
2108
+ "step": 588
2109
+ },
2110
+ {
2111
+ "epoch": 0.2545846817691478,
2112
+ "grad_norm": 1.9019906520843506,
2113
+ "learning_rate": 5.2920035938903866e-05,
2114
+ "loss": 0.8388869166374207,
2115
+ "step": 590
2116
+ },
2117
+ {
2118
+ "epoch": 0.25544768069039914,
2119
+ "grad_norm": 1.8072630167007446,
2120
+ "learning_rate": 5.309973045822103e-05,
2121
+ "loss": 0.8666917085647583,
2122
+ "step": 592
2123
+ },
2124
+ {
2125
+ "epoch": 0.2563106796116505,
2126
+ "grad_norm": 1.7099417448043823,
2127
+ "learning_rate": 5.327942497753818e-05,
2128
+ "loss": 0.8114299774169922,
2129
+ "step": 594
2130
+ },
2131
+ {
2132
+ "epoch": 0.25717367853290185,
2133
+ "grad_norm": 1.8132266998291016,
2134
+ "learning_rate": 5.345911949685535e-05,
2135
+ "loss": 0.8842664361000061,
2136
+ "step": 596
2137
+ },
2138
+ {
2139
+ "epoch": 0.2580366774541532,
2140
+ "grad_norm": 1.9578651189804077,
2141
+ "learning_rate": 5.363881401617251e-05,
2142
+ "loss": 0.7954385876655579,
2143
+ "step": 598
2144
+ },
2145
+ {
2146
+ "epoch": 0.2588996763754045,
2147
+ "grad_norm": 1.832077145576477,
2148
+ "learning_rate": 5.381850853548968e-05,
2149
+ "loss": 0.912541925907135,
2150
+ "step": 600
2151
+ },
2152
+ {
2153
+ "epoch": 0.2588996763754045,
2154
+ "eval_loss": 0.8770867586135864,
2155
+ "eval_runtime": 827.8893,
2156
+ "eval_samples_per_second": 2.488,
2157
+ "eval_steps_per_second": 2.488,
2158
+ "step": 600
2159
+ },
2160
+ {
2161
+ "epoch": 0.25976267529665586,
2162
+ "grad_norm": 1.7565301656723022,
2163
+ "learning_rate": 5.399820305480683e-05,
2164
+ "loss": 0.8436558246612549,
2165
+ "step": 602
2166
+ },
2167
+ {
2168
+ "epoch": 0.2606256742179072,
2169
+ "grad_norm": 1.9199552536010742,
2170
+ "learning_rate": 5.4177897574123994e-05,
2171
+ "loss": 0.9384433031082153,
2172
+ "step": 604
2173
+ },
2174
+ {
2175
+ "epoch": 0.2614886731391586,
2176
+ "grad_norm": 1.7609341144561768,
2177
+ "learning_rate": 5.435759209344116e-05,
2178
+ "loss": 0.8695753812789917,
2179
+ "step": 606
2180
+ },
2181
+ {
2182
+ "epoch": 0.26235167206040994,
2183
+ "grad_norm": 1.771958589553833,
2184
+ "learning_rate": 5.453728661275831e-05,
2185
+ "loss": 0.8462895154953003,
2186
+ "step": 608
2187
+ },
2188
+ {
2189
+ "epoch": 0.2632146709816613,
2190
+ "grad_norm": 1.8958079814910889,
2191
+ "learning_rate": 5.4716981132075475e-05,
2192
+ "loss": 0.9074611663818359,
2193
+ "step": 610
2194
+ },
2195
+ {
2196
+ "epoch": 0.26407766990291265,
2197
+ "grad_norm": 1.8668403625488281,
2198
+ "learning_rate": 5.489667565139264e-05,
2199
+ "loss": 0.8603307008743286,
2200
+ "step": 612
2201
+ },
2202
+ {
2203
+ "epoch": 0.26494066882416395,
2204
+ "grad_norm": 1.8902733325958252,
2205
+ "learning_rate": 5.50763701707098e-05,
2206
+ "loss": 0.8925216794013977,
2207
+ "step": 614
2208
+ },
2209
+ {
2210
+ "epoch": 0.2658036677454153,
2211
+ "grad_norm": 1.7172386646270752,
2212
+ "learning_rate": 5.525606469002696e-05,
2213
+ "loss": 0.7872517704963684,
2214
+ "step": 616
2215
+ },
2216
+ {
2217
+ "epoch": 0.26666666666666666,
2218
+ "grad_norm": 1.7814518213272095,
2219
+ "learning_rate": 5.5435759209344115e-05,
2220
+ "loss": 0.7951212525367737,
2221
+ "step": 618
2222
+ },
2223
+ {
2224
+ "epoch": 0.267529665587918,
2225
+ "grad_norm": 1.8714463710784912,
2226
+ "learning_rate": 5.561545372866128e-05,
2227
+ "loss": 0.859940230846405,
2228
+ "step": 620
2229
+ },
2230
+ {
2231
+ "epoch": 0.2683926645091694,
2232
+ "grad_norm": 1.9614174365997314,
2233
+ "learning_rate": 5.579514824797844e-05,
2234
+ "loss": 0.8953307867050171,
2235
+ "step": 622
2236
+ },
2237
+ {
2238
+ "epoch": 0.26925566343042073,
2239
+ "grad_norm": 1.7190991640090942,
2240
+ "learning_rate": 5.5974842767295596e-05,
2241
+ "loss": 0.8346402645111084,
2242
+ "step": 624
2243
+ },
2244
+ {
2245
+ "epoch": 0.27011866235167203,
2246
+ "grad_norm": 1.981070876121521,
2247
+ "learning_rate": 5.615453728661276e-05,
2248
+ "loss": 0.8545536398887634,
2249
+ "step": 626
2250
+ },
2251
+ {
2252
+ "epoch": 0.2709816612729234,
2253
+ "grad_norm": 1.9186289310455322,
2254
+ "learning_rate": 5.6334231805929926e-05,
2255
+ "loss": 0.9064128398895264,
2256
+ "step": 628
2257
+ },
2258
+ {
2259
+ "epoch": 0.27184466019417475,
2260
+ "grad_norm": 1.9937374591827393,
2261
+ "learning_rate": 5.651392632524708e-05,
2262
+ "loss": 0.883073627948761,
2263
+ "step": 630
2264
+ },
2265
+ {
2266
+ "epoch": 0.2727076591154261,
2267
+ "grad_norm": 1.800236701965332,
2268
+ "learning_rate": 5.669362084456424e-05,
2269
+ "loss": 0.8777942657470703,
2270
+ "step": 632
2271
+ },
2272
+ {
2273
+ "epoch": 0.27357065803667746,
2274
+ "grad_norm": 1.9164050817489624,
2275
+ "learning_rate": 5.687331536388141e-05,
2276
+ "loss": 0.8527862429618835,
2277
+ "step": 634
2278
+ },
2279
+ {
2280
+ "epoch": 0.2744336569579288,
2281
+ "grad_norm": 1.7494043111801147,
2282
+ "learning_rate": 5.705300988319856e-05,
2283
+ "loss": 0.881090521812439,
2284
+ "step": 636
2285
+ },
2286
+ {
2287
+ "epoch": 0.2752966558791802,
2288
+ "grad_norm": 1.9433623552322388,
2289
+ "learning_rate": 5.7232704402515724e-05,
2290
+ "loss": 0.8547250628471375,
2291
+ "step": 638
2292
+ },
2293
+ {
2294
+ "epoch": 0.2761596548004315,
2295
+ "grad_norm": 1.7539145946502686,
2296
+ "learning_rate": 5.741239892183289e-05,
2297
+ "loss": 0.8429408073425293,
2298
+ "step": 640
2299
+ },
2300
+ {
2301
+ "epoch": 0.27702265372168283,
2302
+ "grad_norm": 1.904911756515503,
2303
+ "learning_rate": 5.7592093441150054e-05,
2304
+ "loss": 0.8587079644203186,
2305
+ "step": 642
2306
+ },
2307
+ {
2308
+ "epoch": 0.2778856526429342,
2309
+ "grad_norm": 1.5534838438034058,
2310
+ "learning_rate": 5.7771787960467206e-05,
2311
+ "loss": 0.7795872688293457,
2312
+ "step": 644
2313
+ },
2314
+ {
2315
+ "epoch": 0.27874865156418555,
2316
+ "grad_norm": 1.704798698425293,
2317
+ "learning_rate": 5.795148247978437e-05,
2318
+ "loss": 0.7657744884490967,
2319
+ "step": 646
2320
+ },
2321
+ {
2322
+ "epoch": 0.2796116504854369,
2323
+ "grad_norm": 1.8432048559188843,
2324
+ "learning_rate": 5.8131176999101536e-05,
2325
+ "loss": 0.8119702935218811,
2326
+ "step": 648
2327
+ },
2328
+ {
2329
+ "epoch": 0.28047464940668826,
2330
+ "grad_norm": 1.9495919942855835,
2331
+ "learning_rate": 5.831087151841869e-05,
2332
+ "loss": 0.8846080899238586,
2333
+ "step": 650
2334
+ },
2335
+ {
2336
+ "epoch": 0.2813376483279396,
2337
+ "grad_norm": 1.9626739025115967,
2338
+ "learning_rate": 5.849056603773585e-05,
2339
+ "loss": 0.854324460029602,
2340
+ "step": 652
2341
+ },
2342
+ {
2343
+ "epoch": 0.2822006472491909,
2344
+ "grad_norm": 1.767221212387085,
2345
+ "learning_rate": 5.867026055705302e-05,
2346
+ "loss": 0.7908785939216614,
2347
+ "step": 654
2348
+ },
2349
+ {
2350
+ "epoch": 0.2830636461704423,
2351
+ "grad_norm": 1.8866491317749023,
2352
+ "learning_rate": 5.8849955076370175e-05,
2353
+ "loss": 0.8155530691146851,
2354
+ "step": 656
2355
+ },
2356
+ {
2357
+ "epoch": 0.28392664509169363,
2358
+ "grad_norm": 1.9543417692184448,
2359
+ "learning_rate": 5.9029649595687334e-05,
2360
+ "loss": 0.9833307266235352,
2361
+ "step": 658
2362
+ },
2363
+ {
2364
+ "epoch": 0.284789644012945,
2365
+ "grad_norm": 1.867039680480957,
2366
+ "learning_rate": 5.920934411500449e-05,
2367
+ "loss": 0.7991418242454529,
2368
+ "step": 660
2369
+ },
2370
+ {
2371
+ "epoch": 0.28565264293419634,
2372
+ "grad_norm": 1.8487379550933838,
2373
+ "learning_rate": 5.938903863432166e-05,
2374
+ "loss": 0.8232532143592834,
2375
+ "step": 662
2376
+ },
2377
+ {
2378
+ "epoch": 0.2865156418554477,
2379
+ "grad_norm": 1.5015742778778076,
2380
+ "learning_rate": 5.956873315363881e-05,
2381
+ "loss": 0.76528000831604,
2382
+ "step": 664
2383
+ },
2384
+ {
2385
+ "epoch": 0.287378640776699,
2386
+ "grad_norm": 2.726778268814087,
2387
+ "learning_rate": 5.974842767295597e-05,
2388
+ "loss": 0.8220192790031433,
2389
+ "step": 666
2390
+ },
2391
+ {
2392
+ "epoch": 0.28824163969795036,
2393
+ "grad_norm": 1.6754003763198853,
2394
+ "learning_rate": 5.992812219227314e-05,
2395
+ "loss": 0.7534968256950378,
2396
+ "step": 668
2397
+ },
2398
+ {
2399
+ "epoch": 0.2891046386192017,
2400
+ "grad_norm": 1.9948434829711914,
2401
+ "learning_rate": 6.01078167115903e-05,
2402
+ "loss": 0.8405768871307373,
2403
+ "step": 670
2404
+ },
2405
+ {
2406
+ "epoch": 0.28996763754045307,
2407
+ "grad_norm": 1.7982401847839355,
2408
+ "learning_rate": 6.0287511230907455e-05,
2409
+ "loss": 0.8143276572227478,
2410
+ "step": 672
2411
+ },
2412
+ {
2413
+ "epoch": 0.29083063646170443,
2414
+ "grad_norm": 1.7311779260635376,
2415
+ "learning_rate": 6.046720575022462e-05,
2416
+ "loss": 0.9602267742156982,
2417
+ "step": 674
2418
+ },
2419
+ {
2420
+ "epoch": 0.2916936353829558,
2421
+ "grad_norm": 1.9906021356582642,
2422
+ "learning_rate": 6.0646900269541785e-05,
2423
+ "loss": 0.8628544807434082,
2424
+ "step": 676
2425
+ },
2426
+ {
2427
+ "epoch": 0.29255663430420714,
2428
+ "grad_norm": 1.7477494478225708,
2429
+ "learning_rate": 6.082659478885895e-05,
2430
+ "loss": 0.7800343632698059,
2431
+ "step": 678
2432
+ },
2433
+ {
2434
+ "epoch": 0.29341963322545844,
2435
+ "grad_norm": 1.7978737354278564,
2436
+ "learning_rate": 6.10062893081761e-05,
2437
+ "loss": 0.8722298741340637,
2438
+ "step": 680
2439
+ },
2440
+ {
2441
+ "epoch": 0.2942826321467098,
2442
+ "grad_norm": 2.1463348865509033,
2443
+ "learning_rate": 6.118598382749326e-05,
2444
+ "loss": 0.8895675539970398,
2445
+ "step": 682
2446
+ },
2447
+ {
2448
+ "epoch": 0.29514563106796116,
2449
+ "grad_norm": 1.9256783723831177,
2450
+ "learning_rate": 6.136567834681042e-05,
2451
+ "loss": 0.8579491972923279,
2452
+ "step": 684
2453
+ },
2454
+ {
2455
+ "epoch": 0.2960086299892125,
2456
+ "grad_norm": 1.4459543228149414,
2457
+ "learning_rate": 6.154537286612758e-05,
2458
+ "loss": 0.7811232805252075,
2459
+ "step": 686
2460
+ },
2461
+ {
2462
+ "epoch": 0.29687162891046387,
2463
+ "grad_norm": 1.6202397346496582,
2464
+ "learning_rate": 6.172506738544474e-05,
2465
+ "loss": 0.7827678322792053,
2466
+ "step": 688
2467
+ },
2468
+ {
2469
+ "epoch": 0.2977346278317152,
2470
+ "grad_norm": 2.0524775981903076,
2471
+ "learning_rate": 6.19047619047619e-05,
2472
+ "loss": 0.8186459541320801,
2473
+ "step": 690
2474
+ },
2475
+ {
2476
+ "epoch": 0.2985976267529666,
2477
+ "grad_norm": 1.7867428064346313,
2478
+ "learning_rate": 6.208445642407907e-05,
2479
+ "loss": 0.8691027760505676,
2480
+ "step": 692
2481
+ },
2482
+ {
2483
+ "epoch": 0.2994606256742179,
2484
+ "grad_norm": 1.9605737924575806,
2485
+ "learning_rate": 6.226415094339622e-05,
2486
+ "loss": 0.8233416080474854,
2487
+ "step": 694
2488
+ },
2489
+ {
2490
+ "epoch": 0.30032362459546924,
2491
+ "grad_norm": 1.7035984992980957,
2492
+ "learning_rate": 6.244384546271339e-05,
2493
+ "loss": 0.8493421077728271,
2494
+ "step": 696
2495
+ },
2496
+ {
2497
+ "epoch": 0.3011866235167206,
2498
+ "grad_norm": 1.9402128458023071,
2499
+ "learning_rate": 6.262353998203055e-05,
2500
+ "loss": 0.8114250302314758,
2501
+ "step": 698
2502
+ },
2503
+ {
2504
+ "epoch": 0.30204962243797195,
2505
+ "grad_norm": 1.8533520698547363,
2506
+ "learning_rate": 6.28032345013477e-05,
2507
+ "loss": 0.8996106386184692,
2508
+ "step": 700
2509
+ },
2510
+ {
2511
+ "epoch": 0.30204962243797195,
2512
+ "eval_loss": 0.8631294369697571,
2513
+ "eval_runtime": 839.6269,
2514
+ "eval_samples_per_second": 2.453,
2515
+ "eval_steps_per_second": 2.453,
2516
+ "step": 700
2517
+ },
2518
+ {
2519
+ "epoch": 0.3029126213592233,
2520
+ "grad_norm": 1.727793574333191,
2521
+ "learning_rate": 6.298292902066487e-05,
2522
+ "loss": 0.7978370189666748,
2523
+ "step": 702
2524
+ },
2525
+ {
2526
+ "epoch": 0.30377562028047467,
2527
+ "grad_norm": 1.9601492881774902,
2528
+ "learning_rate": 6.316262353998203e-05,
2529
+ "loss": 0.8120381236076355,
2530
+ "step": 704
2531
+ },
2532
+ {
2533
+ "epoch": 0.304638619201726,
2534
+ "grad_norm": 1.8380948305130005,
2535
+ "learning_rate": 6.33423180592992e-05,
2536
+ "loss": 0.8005605340003967,
2537
+ "step": 706
2538
+ },
2539
+ {
2540
+ "epoch": 0.3055016181229773,
2541
+ "grad_norm": 1.8210986852645874,
2542
+ "learning_rate": 6.352201257861635e-05,
2543
+ "loss": 0.8967245817184448,
2544
+ "step": 708
2545
+ },
2546
+ {
2547
+ "epoch": 0.3063646170442287,
2548
+ "grad_norm": 3.5359878540039062,
2549
+ "learning_rate": 6.370170709793352e-05,
2550
+ "loss": 0.8271524906158447,
2551
+ "step": 710
2552
+ },
2553
+ {
2554
+ "epoch": 0.30722761596548004,
2555
+ "grad_norm": 1.7943733930587769,
2556
+ "learning_rate": 6.388140161725068e-05,
2557
+ "loss": 0.8759040236473083,
2558
+ "step": 712
2559
+ },
2560
+ {
2561
+ "epoch": 0.3080906148867314,
2562
+ "grad_norm": 1.5483570098876953,
2563
+ "learning_rate": 6.406109613656783e-05,
2564
+ "loss": 0.7872476577758789,
2565
+ "step": 714
2566
+ },
2567
+ {
2568
+ "epoch": 0.30895361380798275,
2569
+ "grad_norm": 1.8044816255569458,
2570
+ "learning_rate": 6.4240790655885e-05,
2571
+ "loss": 0.849986732006073,
2572
+ "step": 716
2573
+ },
2574
+ {
2575
+ "epoch": 0.3098166127292341,
2576
+ "grad_norm": 1.548281192779541,
2577
+ "learning_rate": 6.442048517520216e-05,
2578
+ "loss": 0.8292878866195679,
2579
+ "step": 718
2580
+ },
2581
+ {
2582
+ "epoch": 0.3106796116504854,
2583
+ "grad_norm": 1.643020749092102,
2584
+ "learning_rate": 6.460017969451933e-05,
2585
+ "loss": 0.8796502351760864,
2586
+ "step": 720
2587
+ },
2588
+ {
2589
+ "epoch": 0.31154261057173677,
2590
+ "grad_norm": 1.633881688117981,
2591
+ "learning_rate": 6.477987421383648e-05,
2592
+ "loss": 0.806233286857605,
2593
+ "step": 722
2594
+ },
2595
+ {
2596
+ "epoch": 0.3124056094929881,
2597
+ "grad_norm": 1.7712864875793457,
2598
+ "learning_rate": 6.495956873315364e-05,
2599
+ "loss": 0.802722156047821,
2600
+ "step": 724
2601
+ },
2602
+ {
2603
+ "epoch": 0.3132686084142395,
2604
+ "grad_norm": 1.9158337116241455,
2605
+ "learning_rate": 6.513926325247081e-05,
2606
+ "loss": 0.8735752105712891,
2607
+ "step": 726
2608
+ },
2609
+ {
2610
+ "epoch": 0.31413160733549084,
2611
+ "grad_norm": 1.8648416996002197,
2612
+ "learning_rate": 6.531895777178796e-05,
2613
+ "loss": 0.793403148651123,
2614
+ "step": 728
2615
+ },
2616
+ {
2617
+ "epoch": 0.3149946062567422,
2618
+ "grad_norm": 1.5917021036148071,
2619
+ "learning_rate": 6.549865229110512e-05,
2620
+ "loss": 0.7772542834281921,
2621
+ "step": 730
2622
+ },
2623
+ {
2624
+ "epoch": 0.31585760517799355,
2625
+ "grad_norm": 1.8560330867767334,
2626
+ "learning_rate": 6.567834681042229e-05,
2627
+ "loss": 0.8731698989868164,
2628
+ "step": 732
2629
+ },
2630
+ {
2631
+ "epoch": 0.31672060409924485,
2632
+ "grad_norm": 1.6038225889205933,
2633
+ "learning_rate": 6.585804132973945e-05,
2634
+ "loss": 0.8167505264282227,
2635
+ "step": 734
2636
+ },
2637
+ {
2638
+ "epoch": 0.3175836030204962,
2639
+ "grad_norm": 1.6221873760223389,
2640
+ "learning_rate": 6.60377358490566e-05,
2641
+ "loss": 0.7810112237930298,
2642
+ "step": 736
2643
+ },
2644
+ {
2645
+ "epoch": 0.31844660194174756,
2646
+ "grad_norm": 1.8528746366500854,
2647
+ "learning_rate": 6.621743036837377e-05,
2648
+ "loss": 0.8735228776931763,
2649
+ "step": 738
2650
+ },
2651
+ {
2652
+ "epoch": 0.3193096008629989,
2653
+ "grad_norm": 1.473233938217163,
2654
+ "learning_rate": 6.639712488769094e-05,
2655
+ "loss": 0.8231552243232727,
2656
+ "step": 740
2657
+ },
2658
+ {
2659
+ "epoch": 0.3201725997842503,
2660
+ "grad_norm": 1.7726222276687622,
2661
+ "learning_rate": 6.657681940700809e-05,
2662
+ "loss": 0.8400886058807373,
2663
+ "step": 742
2664
+ },
2665
+ {
2666
+ "epoch": 0.32103559870550163,
2667
+ "grad_norm": 1.7245025634765625,
2668
+ "learning_rate": 6.675651392632525e-05,
2669
+ "loss": 0.7371112108230591,
2670
+ "step": 744
2671
+ },
2672
+ {
2673
+ "epoch": 0.321898597626753,
2674
+ "grad_norm": 1.6225395202636719,
2675
+ "learning_rate": 6.693620844564242e-05,
2676
+ "loss": 0.8057155013084412,
2677
+ "step": 746
2678
+ },
2679
+ {
2680
+ "epoch": 0.3227615965480043,
2681
+ "grad_norm": 1.607007384300232,
2682
+ "learning_rate": 6.711590296495958e-05,
2683
+ "loss": 0.8471131324768066,
2684
+ "step": 748
2685
+ },
2686
+ {
2687
+ "epoch": 0.32362459546925565,
2688
+ "grad_norm": 1.760038137435913,
2689
+ "learning_rate": 6.729559748427673e-05,
2690
+ "loss": 0.8251315951347351,
2691
+ "step": 750
2692
+ },
2693
+ {
2694
+ "epoch": 0.324487594390507,
2695
+ "grad_norm": 1.8012818098068237,
2696
+ "learning_rate": 6.74752920035939e-05,
2697
+ "loss": 0.8215667605400085,
2698
+ "step": 752
2699
+ },
2700
+ {
2701
+ "epoch": 0.32535059331175836,
2702
+ "grad_norm": 1.769614815711975,
2703
+ "learning_rate": 6.765498652291105e-05,
2704
+ "loss": 0.8113123178482056,
2705
+ "step": 754
2706
+ },
2707
+ {
2708
+ "epoch": 0.3262135922330097,
2709
+ "grad_norm": 1.7554916143417358,
2710
+ "learning_rate": 6.783468104222822e-05,
2711
+ "loss": 0.8893613219261169,
2712
+ "step": 756
2713
+ },
2714
+ {
2715
+ "epoch": 0.3270765911542611,
2716
+ "grad_norm": 1.5720254182815552,
2717
+ "learning_rate": 6.801437556154538e-05,
2718
+ "loss": 0.8165010809898376,
2719
+ "step": 758
2720
+ },
2721
+ {
2722
+ "epoch": 0.32793959007551243,
2723
+ "grad_norm": 2.1887543201446533,
2724
+ "learning_rate": 6.819407008086253e-05,
2725
+ "loss": 0.8800036311149597,
2726
+ "step": 760
2727
+ },
2728
+ {
2729
+ "epoch": 0.32880258899676373,
2730
+ "grad_norm": 1.63350510597229,
2731
+ "learning_rate": 6.83737646001797e-05,
2732
+ "loss": 0.7268908619880676,
2733
+ "step": 762
2734
+ },
2735
+ {
2736
+ "epoch": 0.3296655879180151,
2737
+ "grad_norm": 1.5838189125061035,
2738
+ "learning_rate": 6.855345911949685e-05,
2739
+ "loss": 0.7695913910865784,
2740
+ "step": 764
2741
+ },
2742
+ {
2743
+ "epoch": 0.33052858683926645,
2744
+ "grad_norm": 1.8752859830856323,
2745
+ "learning_rate": 6.873315363881401e-05,
2746
+ "loss": 0.9005667567253113,
2747
+ "step": 766
2748
+ },
2749
+ {
2750
+ "epoch": 0.3313915857605178,
2751
+ "grad_norm": 1.4201446771621704,
2752
+ "learning_rate": 6.891284815813118e-05,
2753
+ "loss": 0.7960113883018494,
2754
+ "step": 768
2755
+ },
2756
+ {
2757
+ "epoch": 0.33225458468176916,
2758
+ "grad_norm": 1.6665233373641968,
2759
+ "learning_rate": 6.909254267744834e-05,
2760
+ "loss": 0.851472020149231,
2761
+ "step": 770
2762
+ },
2763
+ {
2764
+ "epoch": 0.3331175836030205,
2765
+ "grad_norm": 1.72721266746521,
2766
+ "learning_rate": 6.92722371967655e-05,
2767
+ "loss": 0.8403398990631104,
2768
+ "step": 772
2769
+ },
2770
+ {
2771
+ "epoch": 0.3339805825242718,
2772
+ "grad_norm": 1.648680567741394,
2773
+ "learning_rate": 6.945193171608266e-05,
2774
+ "loss": 0.7582393884658813,
2775
+ "step": 774
2776
+ },
2777
+ {
2778
+ "epoch": 0.3348435814455232,
2779
+ "grad_norm": 1.89604651927948,
2780
+ "learning_rate": 6.963162623539982e-05,
2781
+ "loss": 0.8250385522842407,
2782
+ "step": 776
2783
+ },
2784
+ {
2785
+ "epoch": 0.33570658036677453,
2786
+ "grad_norm": 1.4748259782791138,
2787
+ "learning_rate": 6.981132075471698e-05,
2788
+ "loss": 0.7916358709335327,
2789
+ "step": 778
2790
+ },
2791
+ {
2792
+ "epoch": 0.3365695792880259,
2793
+ "grad_norm": 1.4885735511779785,
2794
+ "learning_rate": 6.999101527403414e-05,
2795
+ "loss": 0.7432135939598083,
2796
+ "step": 780
2797
+ },
2798
+ {
2799
+ "epoch": 0.33743257820927725,
2800
+ "grad_norm": 1.5150227546691895,
2801
+ "learning_rate": 7.01707097933513e-05,
2802
+ "loss": 0.7369741201400757,
2803
+ "step": 782
2804
+ },
2805
+ {
2806
+ "epoch": 0.3382955771305286,
2807
+ "grad_norm": 2.0702431201934814,
2808
+ "learning_rate": 7.035040431266847e-05,
2809
+ "loss": 0.8347548246383667,
2810
+ "step": 784
2811
+ },
2812
+ {
2813
+ "epoch": 0.33915857605177996,
2814
+ "grad_norm": 1.8330671787261963,
2815
+ "learning_rate": 7.053009883198562e-05,
2816
+ "loss": 0.7757654190063477,
2817
+ "step": 786
2818
+ },
2819
+ {
2820
+ "epoch": 0.34002157497303126,
2821
+ "grad_norm": 1.6809033155441284,
2822
+ "learning_rate": 7.070979335130279e-05,
2823
+ "loss": 0.7966224551200867,
2824
+ "step": 788
2825
+ },
2826
+ {
2827
+ "epoch": 0.3408845738942826,
2828
+ "grad_norm": 1.5811399221420288,
2829
+ "learning_rate": 7.088948787061995e-05,
2830
+ "loss": 0.7977543473243713,
2831
+ "step": 790
2832
+ },
2833
+ {
2834
+ "epoch": 0.341747572815534,
2835
+ "grad_norm": 1.6572248935699463,
2836
+ "learning_rate": 7.10691823899371e-05,
2837
+ "loss": 0.7842527627944946,
2838
+ "step": 792
2839
+ },
2840
+ {
2841
+ "epoch": 0.34261057173678533,
2842
+ "grad_norm": 1.6138155460357666,
2843
+ "learning_rate": 7.124887690925427e-05,
2844
+ "loss": 0.7586495876312256,
2845
+ "step": 794
2846
+ },
2847
+ {
2848
+ "epoch": 0.3434735706580367,
2849
+ "grad_norm": 1.9198144674301147,
2850
+ "learning_rate": 7.142857142857143e-05,
2851
+ "loss": 0.9010837078094482,
2852
+ "step": 796
2853
+ },
2854
+ {
2855
+ "epoch": 0.34433656957928804,
2856
+ "grad_norm": 1.6212328672409058,
2857
+ "learning_rate": 7.16082659478886e-05,
2858
+ "loss": 0.7857459783554077,
2859
+ "step": 798
2860
+ },
2861
+ {
2862
+ "epoch": 0.3451995685005394,
2863
+ "grad_norm": 2.1088991165161133,
2864
+ "learning_rate": 7.178796046720575e-05,
2865
+ "loss": 0.9087778925895691,
2866
+ "step": 800
2867
+ },
2868
+ {
2869
+ "epoch": 0.3451995685005394,
2870
+ "eval_loss": 0.8476243615150452,
2871
+ "eval_runtime": 831.6735,
2872
+ "eval_samples_per_second": 2.477,
2873
+ "eval_steps_per_second": 2.477,
2874
+ "step": 800
2875
+ },
2876
+ {
2877
+ "epoch": 0.3460625674217907,
2878
+ "grad_norm": 1.6325052976608276,
2879
+ "learning_rate": 7.196765498652292e-05,
2880
+ "loss": 0.7561838626861572,
2881
+ "step": 802
2882
+ },
2883
+ {
2884
+ "epoch": 0.34692556634304206,
2885
+ "grad_norm": 1.8044698238372803,
2886
+ "learning_rate": 7.214734950584008e-05,
2887
+ "loss": 0.7940152883529663,
2888
+ "step": 804
2889
+ },
2890
+ {
2891
+ "epoch": 0.3477885652642934,
2892
+ "grad_norm": 1.4942690134048462,
2893
+ "learning_rate": 7.232704402515723e-05,
2894
+ "loss": 0.8002730011940002,
2895
+ "step": 806
2896
+ },
2897
+ {
2898
+ "epoch": 0.34865156418554477,
2899
+ "grad_norm": 1.5209156274795532,
2900
+ "learning_rate": 7.25067385444744e-05,
2901
+ "loss": 0.8211291432380676,
2902
+ "step": 808
2903
+ },
2904
+ {
2905
+ "epoch": 0.34951456310679613,
2906
+ "grad_norm": 1.662622094154358,
2907
+ "learning_rate": 7.268643306379156e-05,
2908
+ "loss": 0.8690080642700195,
2909
+ "step": 810
2910
+ },
2911
+ {
2912
+ "epoch": 0.3503775620280475,
2913
+ "grad_norm": 1.4452823400497437,
2914
+ "learning_rate": 7.286612758310873e-05,
2915
+ "loss": 0.8259872794151306,
2916
+ "step": 812
2917
+ },
2918
+ {
2919
+ "epoch": 0.3512405609492988,
2920
+ "grad_norm": 1.6030809879302979,
2921
+ "learning_rate": 7.304582210242588e-05,
2922
+ "loss": 0.7973082661628723,
2923
+ "step": 814
2924
+ },
2925
+ {
2926
+ "epoch": 0.35210355987055014,
2927
+ "grad_norm": 1.5944641828536987,
2928
+ "learning_rate": 7.322551662174304e-05,
2929
+ "loss": 0.8258423805236816,
2930
+ "step": 816
2931
+ },
2932
+ {
2933
+ "epoch": 0.3529665587918015,
2934
+ "grad_norm": 1.6284228563308716,
2935
+ "learning_rate": 7.340521114106021e-05,
2936
+ "loss": 0.8570499420166016,
2937
+ "step": 818
2938
+ },
2939
+ {
2940
+ "epoch": 0.35382955771305286,
2941
+ "grad_norm": 1.399397373199463,
2942
+ "learning_rate": 7.358490566037736e-05,
2943
+ "loss": 0.7808573842048645,
2944
+ "step": 820
2945
+ },
2946
+ {
2947
+ "epoch": 0.3546925566343042,
2948
+ "grad_norm": 1.6233313083648682,
2949
+ "learning_rate": 7.376460017969452e-05,
2950
+ "loss": 0.7514002323150635,
2951
+ "step": 822
2952
+ },
2953
+ {
2954
+ "epoch": 0.35555555555555557,
2955
+ "grad_norm": 3.1610822677612305,
2956
+ "learning_rate": 7.394429469901169e-05,
2957
+ "loss": 0.8392049670219421,
2958
+ "step": 824
2959
+ },
2960
+ {
2961
+ "epoch": 0.3564185544768069,
2962
+ "grad_norm": 1.5170103311538696,
2963
+ "learning_rate": 7.412398921832885e-05,
2964
+ "loss": 0.7574125528335571,
2965
+ "step": 826
2966
+ },
2967
+ {
2968
+ "epoch": 0.3572815533980582,
2969
+ "grad_norm": 1.687654733657837,
2970
+ "learning_rate": 7.4303683737646e-05,
2971
+ "loss": 0.8394677639007568,
2972
+ "step": 828
2973
+ },
2974
+ {
2975
+ "epoch": 0.3581445523193096,
2976
+ "grad_norm": 1.6306912899017334,
2977
+ "learning_rate": 7.448337825696317e-05,
2978
+ "loss": 0.7760812044143677,
2979
+ "step": 830
2980
+ },
2981
+ {
2982
+ "epoch": 0.35900755124056094,
2983
+ "grad_norm": 1.4824501276016235,
2984
+ "learning_rate": 7.466307277628034e-05,
2985
+ "loss": 0.8146010041236877,
2986
+ "step": 832
2987
+ },
2988
+ {
2989
+ "epoch": 0.3598705501618123,
2990
+ "grad_norm": 1.962728500366211,
2991
+ "learning_rate": 7.484276729559749e-05,
2992
+ "loss": 0.7824002504348755,
2993
+ "step": 834
2994
+ },
2995
+ {
2996
+ "epoch": 0.36073354908306365,
2997
+ "grad_norm": 1.805561900138855,
2998
+ "learning_rate": 7.502246181491465e-05,
2999
+ "loss": 0.8955144882202148,
3000
+ "step": 836
3001
+ },
3002
+ {
3003
+ "epoch": 0.361596548004315,
3004
+ "grad_norm": 1.6058090925216675,
3005
+ "learning_rate": 7.52021563342318e-05,
3006
+ "loss": 0.7638000249862671,
3007
+ "step": 838
3008
+ },
3009
+ {
3010
+ "epoch": 0.36245954692556637,
3011
+ "grad_norm": 1.5326330661773682,
3012
+ "learning_rate": 7.538185085354897e-05,
3013
+ "loss": 0.8465489745140076,
3014
+ "step": 840
3015
+ },
3016
+ {
3017
+ "epoch": 0.36332254584681767,
3018
+ "grad_norm": 1.563953161239624,
3019
+ "learning_rate": 7.556154537286612e-05,
3020
+ "loss": 0.7809846997261047,
3021
+ "step": 842
3022
+ },
3023
+ {
3024
+ "epoch": 0.364185544768069,
3025
+ "grad_norm": 1.3842798471450806,
3026
+ "learning_rate": 7.574123989218329e-05,
3027
+ "loss": 0.7431546449661255,
3028
+ "step": 844
3029
+ },
3030
+ {
3031
+ "epoch": 0.3650485436893204,
3032
+ "grad_norm": 1.843582272529602,
3033
+ "learning_rate": 7.592093441150045e-05,
3034
+ "loss": 0.8984674215316772,
3035
+ "step": 846
3036
+ },
3037
+ {
3038
+ "epoch": 0.36591154261057174,
3039
+ "grad_norm": 1.7077877521514893,
3040
+ "learning_rate": 7.610062893081762e-05,
3041
+ "loss": 0.7809584736824036,
3042
+ "step": 848
3043
+ },
3044
+ {
3045
+ "epoch": 0.3667745415318231,
3046
+ "grad_norm": 1.3528809547424316,
3047
+ "learning_rate": 7.628032345013477e-05,
3048
+ "loss": 0.7576664090156555,
3049
+ "step": 850
3050
+ },
3051
+ {
3052
+ "epoch": 0.36763754045307445,
3053
+ "grad_norm": 1.4391332864761353,
3054
+ "learning_rate": 7.646001796945193e-05,
3055
+ "loss": 0.7666721940040588,
3056
+ "step": 852
3057
+ },
3058
+ {
3059
+ "epoch": 0.3685005393743258,
3060
+ "grad_norm": 1.626839518547058,
3061
+ "learning_rate": 7.66397124887691e-05,
3062
+ "loss": 0.8356342911720276,
3063
+ "step": 854
3064
+ },
3065
+ {
3066
+ "epoch": 0.3693635382955771,
3067
+ "grad_norm": 1.5550813674926758,
3068
+ "learning_rate": 7.681940700808625e-05,
3069
+ "loss": 0.7766274809837341,
3070
+ "step": 856
3071
+ },
3072
+ {
3073
+ "epoch": 0.37022653721682847,
3074
+ "grad_norm": 1.4684302806854248,
3075
+ "learning_rate": 7.699910152740341e-05,
3076
+ "loss": 0.7646660804748535,
3077
+ "step": 858
3078
+ },
3079
+ {
3080
+ "epoch": 0.3710895361380798,
3081
+ "grad_norm": 1.6446272134780884,
3082
+ "learning_rate": 7.717879604672058e-05,
3083
+ "loss": 0.8716844916343689,
3084
+ "step": 860
3085
+ },
3086
+ {
3087
+ "epoch": 0.3719525350593312,
3088
+ "grad_norm": 1.5995690822601318,
3089
+ "learning_rate": 7.735849056603774e-05,
3090
+ "loss": 0.8561879992485046,
3091
+ "step": 862
3092
+ },
3093
+ {
3094
+ "epoch": 0.37281553398058254,
3095
+ "grad_norm": 1.632079839706421,
3096
+ "learning_rate": 7.75381850853549e-05,
3097
+ "loss": 0.8795325756072998,
3098
+ "step": 864
3099
+ },
3100
+ {
3101
+ "epoch": 0.3736785329018339,
3102
+ "grad_norm": 1.7169907093048096,
3103
+ "learning_rate": 7.771787960467206e-05,
3104
+ "loss": 0.8779821991920471,
3105
+ "step": 866
3106
+ },
3107
+ {
3108
+ "epoch": 0.3745415318230852,
3109
+ "grad_norm": 1.8590933084487915,
3110
+ "learning_rate": 7.789757412398922e-05,
3111
+ "loss": 0.8811644911766052,
3112
+ "step": 868
3113
+ },
3114
+ {
3115
+ "epoch": 0.37540453074433655,
3116
+ "grad_norm": 1.804978370666504,
3117
+ "learning_rate": 7.807726864330638e-05,
3118
+ "loss": 0.8391726016998291,
3119
+ "step": 870
3120
+ },
3121
+ {
3122
+ "epoch": 0.3762675296655879,
3123
+ "grad_norm": 2.2929575443267822,
3124
+ "learning_rate": 7.825696316262354e-05,
3125
+ "loss": 0.8425854444503784,
3126
+ "step": 872
3127
+ },
3128
+ {
3129
+ "epoch": 0.37713052858683926,
3130
+ "grad_norm": 1.551804780960083,
3131
+ "learning_rate": 7.84366576819407e-05,
3132
+ "loss": 0.8409838080406189,
3133
+ "step": 874
3134
+ },
3135
+ {
3136
+ "epoch": 0.3779935275080906,
3137
+ "grad_norm": 1.4655314683914185,
3138
+ "learning_rate": 7.861635220125787e-05,
3139
+ "loss": 0.7441553473472595,
3140
+ "step": 876
3141
+ },
3142
+ {
3143
+ "epoch": 0.378856526429342,
3144
+ "grad_norm": 1.7886772155761719,
3145
+ "learning_rate": 7.879604672057502e-05,
3146
+ "loss": 0.8850297331809998,
3147
+ "step": 878
3148
+ },
3149
+ {
3150
+ "epoch": 0.37971952535059333,
3151
+ "grad_norm": 1.4744676351547241,
3152
+ "learning_rate": 7.897574123989219e-05,
3153
+ "loss": 0.7991185188293457,
3154
+ "step": 880
3155
+ },
3156
+ {
3157
+ "epoch": 0.38058252427184464,
3158
+ "grad_norm": 1.6844931840896606,
3159
+ "learning_rate": 7.915543575920935e-05,
3160
+ "loss": 0.7903867363929749,
3161
+ "step": 882
3162
+ },
3163
+ {
3164
+ "epoch": 0.381445523193096,
3165
+ "grad_norm": 1.674704909324646,
3166
+ "learning_rate": 7.93351302785265e-05,
3167
+ "loss": 0.812190592288971,
3168
+ "step": 884
3169
+ },
3170
+ {
3171
+ "epoch": 0.38230852211434735,
3172
+ "grad_norm": 1.6548097133636475,
3173
+ "learning_rate": 7.951482479784367e-05,
3174
+ "loss": 0.781878650188446,
3175
+ "step": 886
3176
+ },
3177
+ {
3178
+ "epoch": 0.3831715210355987,
3179
+ "grad_norm": 1.3750375509262085,
3180
+ "learning_rate": 7.969451931716083e-05,
3181
+ "loss": 0.8223106861114502,
3182
+ "step": 888
3183
+ },
3184
+ {
3185
+ "epoch": 0.38403451995685006,
3186
+ "grad_norm": 1.42178475856781,
3187
+ "learning_rate": 7.9874213836478e-05,
3188
+ "loss": 0.7170665860176086,
3189
+ "step": 890
3190
+ },
3191
+ {
3192
+ "epoch": 0.3848975188781014,
3193
+ "grad_norm": 1.7126129865646362,
3194
+ "learning_rate": 8.005390835579515e-05,
3195
+ "loss": 0.8533666133880615,
3196
+ "step": 892
3197
+ },
3198
+ {
3199
+ "epoch": 0.3857605177993528,
3200
+ "grad_norm": 1.552474856376648,
3201
+ "learning_rate": 8.023360287511232e-05,
3202
+ "loss": 0.8799889087677002,
3203
+ "step": 894
3204
+ },
3205
+ {
3206
+ "epoch": 0.3866235167206041,
3207
+ "grad_norm": 1.2612507343292236,
3208
+ "learning_rate": 8.041329739442948e-05,
3209
+ "loss": 0.7968940734863281,
3210
+ "step": 896
3211
+ },
3212
+ {
3213
+ "epoch": 0.38748651564185543,
3214
+ "grad_norm": 1.4770987033843994,
3215
+ "learning_rate": 8.059299191374663e-05,
3216
+ "loss": 0.7910935282707214,
3217
+ "step": 898
3218
+ },
3219
+ {
3220
+ "epoch": 0.3883495145631068,
3221
+ "grad_norm": 1.4640419483184814,
3222
+ "learning_rate": 8.07726864330638e-05,
3223
+ "loss": 0.7873474955558777,
3224
+ "step": 900
3225
+ },
3226
+ {
3227
+ "epoch": 0.3883495145631068,
3228
+ "eval_loss": 0.8351938128471375,
3229
+ "eval_runtime": 823.5649,
3230
+ "eval_samples_per_second": 2.501,
3231
+ "eval_steps_per_second": 2.501,
3232
+ "step": 900
3233
+ },
3234
+ {
3235
+ "epoch": 0.38921251348435815,
3236
+ "grad_norm": 1.3780814409255981,
3237
+ "learning_rate": 8.095238095238096e-05,
3238
+ "loss": 0.8183950185775757,
3239
+ "step": 902
3240
+ },
3241
+ {
3242
+ "epoch": 0.3900755124056095,
3243
+ "grad_norm": 1.5895066261291504,
3244
+ "learning_rate": 8.113207547169813e-05,
3245
+ "loss": 0.786055326461792,
3246
+ "step": 904
3247
+ },
3248
+ {
3249
+ "epoch": 0.39093851132686086,
3250
+ "grad_norm": 1.6340118646621704,
3251
+ "learning_rate": 8.131176999101528e-05,
3252
+ "loss": 0.8638336658477783,
3253
+ "step": 906
3254
+ },
3255
+ {
3256
+ "epoch": 0.3918015102481122,
3257
+ "grad_norm": 1.3990486860275269,
3258
+ "learning_rate": 8.149146451033244e-05,
3259
+ "loss": 0.702790379524231,
3260
+ "step": 908
3261
+ },
3262
+ {
3263
+ "epoch": 0.3926645091693635,
3264
+ "grad_norm": 1.3703010082244873,
3265
+ "learning_rate": 8.167115902964961e-05,
3266
+ "loss": 0.7845349907875061,
3267
+ "step": 910
3268
+ },
3269
+ {
3270
+ "epoch": 0.3935275080906149,
3271
+ "grad_norm": 1.4194090366363525,
3272
+ "learning_rate": 8.185085354896676e-05,
3273
+ "loss": 0.8117155432701111,
3274
+ "step": 912
3275
+ },
3276
+ {
3277
+ "epoch": 0.39439050701186623,
3278
+ "grad_norm": 1.4716848134994507,
3279
+ "learning_rate": 8.203054806828392e-05,
3280
+ "loss": 0.8229454755783081,
3281
+ "step": 914
3282
+ },
3283
+ {
3284
+ "epoch": 0.3952535059331176,
3285
+ "grad_norm": 1.51328706741333,
3286
+ "learning_rate": 8.221024258760108e-05,
3287
+ "loss": 0.698765218257904,
3288
+ "step": 916
3289
+ },
3290
+ {
3291
+ "epoch": 0.39611650485436894,
3292
+ "grad_norm": 1.4755173921585083,
3293
+ "learning_rate": 8.238993710691824e-05,
3294
+ "loss": 0.7694190144538879,
3295
+ "step": 918
3296
+ },
3297
+ {
3298
+ "epoch": 0.3969795037756203,
3299
+ "grad_norm": 1.5302451848983765,
3300
+ "learning_rate": 8.25696316262354e-05,
3301
+ "loss": 0.779274046421051,
3302
+ "step": 920
3303
+ },
3304
+ {
3305
+ "epoch": 0.3978425026968716,
3306
+ "grad_norm": 1.474968433380127,
3307
+ "learning_rate": 8.274932614555256e-05,
3308
+ "loss": 0.713699221611023,
3309
+ "step": 922
3310
+ },
3311
+ {
3312
+ "epoch": 0.39870550161812296,
3313
+ "grad_norm": 1.4024375677108765,
3314
+ "learning_rate": 8.292902066486972e-05,
3315
+ "loss": 0.7869517803192139,
3316
+ "step": 924
3317
+ },
3318
+ {
3319
+ "epoch": 0.3995685005393743,
3320
+ "grad_norm": 1.5729585886001587,
3321
+ "learning_rate": 8.310871518418689e-05,
3322
+ "loss": 0.9040259718894958,
3323
+ "step": 926
3324
+ },
3325
+ {
3326
+ "epoch": 0.4004314994606257,
3327
+ "grad_norm": 1.609850525856018,
3328
+ "learning_rate": 8.328840970350404e-05,
3329
+ "loss": 0.7589567303657532,
3330
+ "step": 928
3331
+ },
3332
+ {
3333
+ "epoch": 0.40129449838187703,
3334
+ "grad_norm": 1.778781533241272,
3335
+ "learning_rate": 8.34681042228212e-05,
3336
+ "loss": 0.8725809454917908,
3337
+ "step": 930
3338
+ },
3339
+ {
3340
+ "epoch": 0.4021574973031284,
3341
+ "grad_norm": 1.6333881616592407,
3342
+ "learning_rate": 8.364779874213837e-05,
3343
+ "loss": 0.8280068039894104,
3344
+ "step": 932
3345
+ },
3346
+ {
3347
+ "epoch": 0.40302049622437974,
3348
+ "grad_norm": 1.6444122791290283,
3349
+ "learning_rate": 8.382749326145552e-05,
3350
+ "loss": 0.8293300867080688,
3351
+ "step": 934
3352
+ },
3353
+ {
3354
+ "epoch": 0.40388349514563104,
3355
+ "grad_norm": 1.2815860509872437,
3356
+ "learning_rate": 8.400718778077269e-05,
3357
+ "loss": 0.7628244161605835,
3358
+ "step": 936
3359
+ },
3360
+ {
3361
+ "epoch": 0.4047464940668824,
3362
+ "grad_norm": 1.7849020957946777,
3363
+ "learning_rate": 8.418688230008985e-05,
3364
+ "loss": 0.8951035141944885,
3365
+ "step": 938
3366
+ },
3367
+ {
3368
+ "epoch": 0.40560949298813376,
3369
+ "grad_norm": 1.800937294960022,
3370
+ "learning_rate": 8.436657681940702e-05,
3371
+ "loss": 0.7677619457244873,
3372
+ "step": 940
3373
+ },
3374
+ {
3375
+ "epoch": 0.4064724919093851,
3376
+ "grad_norm": 1.5004104375839233,
3377
+ "learning_rate": 8.454627133872417e-05,
3378
+ "loss": 0.8553397059440613,
3379
+ "step": 942
3380
+ },
3381
+ {
3382
+ "epoch": 0.40733549083063647,
3383
+ "grad_norm": 1.3399486541748047,
3384
+ "learning_rate": 8.472596585804133e-05,
3385
+ "loss": 0.7110850811004639,
3386
+ "step": 944
3387
+ },
3388
+ {
3389
+ "epoch": 0.4081984897518878,
3390
+ "grad_norm": 1.8936012983322144,
3391
+ "learning_rate": 8.49056603773585e-05,
3392
+ "loss": 0.9379971623420715,
3393
+ "step": 946
3394
+ },
3395
+ {
3396
+ "epoch": 0.4090614886731392,
3397
+ "grad_norm": 1.2648893594741821,
3398
+ "learning_rate": 8.508535489667565e-05,
3399
+ "loss": 0.7492738366127014,
3400
+ "step": 948
3401
+ },
3402
+ {
3403
+ "epoch": 0.4099244875943905,
3404
+ "grad_norm": 1.5587494373321533,
3405
+ "learning_rate": 8.526504941599281e-05,
3406
+ "loss": 0.7922301292419434,
3407
+ "step": 950
3408
+ },
3409
+ {
3410
+ "epoch": 0.41078748651564184,
3411
+ "grad_norm": 1.5042990446090698,
3412
+ "learning_rate": 8.544474393530998e-05,
3413
+ "loss": 0.7494275569915771,
3414
+ "step": 952
3415
+ },
3416
+ {
3417
+ "epoch": 0.4116504854368932,
3418
+ "grad_norm": 1.4338537454605103,
3419
+ "learning_rate": 8.562443845462714e-05,
3420
+ "loss": 0.7983633279800415,
3421
+ "step": 954
3422
+ },
3423
+ {
3424
+ "epoch": 0.41251348435814456,
3425
+ "grad_norm": 1.6135673522949219,
3426
+ "learning_rate": 8.58041329739443e-05,
3427
+ "loss": 0.813288152217865,
3428
+ "step": 956
3429
+ },
3430
+ {
3431
+ "epoch": 0.4133764832793959,
3432
+ "grad_norm": 1.3761460781097412,
3433
+ "learning_rate": 8.598382749326146e-05,
3434
+ "loss": 0.7794904708862305,
3435
+ "step": 958
3436
+ },
3437
+ {
3438
+ "epoch": 0.41423948220064727,
3439
+ "grad_norm": 1.51504385471344,
3440
+ "learning_rate": 8.616352201257863e-05,
3441
+ "loss": 0.7544562816619873,
3442
+ "step": 960
3443
+ },
3444
+ {
3445
+ "epoch": 0.41510248112189857,
3446
+ "grad_norm": 1.3698909282684326,
3447
+ "learning_rate": 8.634321653189578e-05,
3448
+ "loss": 0.8151395916938782,
3449
+ "step": 962
3450
+ },
3451
+ {
3452
+ "epoch": 0.4159654800431499,
3453
+ "grad_norm": 1.5509650707244873,
3454
+ "learning_rate": 8.652291105121294e-05,
3455
+ "loss": 0.7997464537620544,
3456
+ "step": 964
3457
+ },
3458
+ {
3459
+ "epoch": 0.4168284789644013,
3460
+ "grad_norm": 1.2967383861541748,
3461
+ "learning_rate": 8.67026055705301e-05,
3462
+ "loss": 0.767808735370636,
3463
+ "step": 966
3464
+ },
3465
+ {
3466
+ "epoch": 0.41769147788565264,
3467
+ "grad_norm": 1.2444552183151245,
3468
+ "learning_rate": 8.688230008984727e-05,
3469
+ "loss": 0.7537208795547485,
3470
+ "step": 968
3471
+ },
3472
+ {
3473
+ "epoch": 0.418554476806904,
3474
+ "grad_norm": 1.4390850067138672,
3475
+ "learning_rate": 8.706199460916442e-05,
3476
+ "loss": 0.7796021103858948,
3477
+ "step": 970
3478
+ },
3479
+ {
3480
+ "epoch": 0.41941747572815535,
3481
+ "grad_norm": 1.4822322130203247,
3482
+ "learning_rate": 8.724168912848159e-05,
3483
+ "loss": 0.7812987565994263,
3484
+ "step": 972
3485
+ },
3486
+ {
3487
+ "epoch": 0.4202804746494067,
3488
+ "grad_norm": 1.3770837783813477,
3489
+ "learning_rate": 8.742138364779875e-05,
3490
+ "loss": 0.7396363019943237,
3491
+ "step": 974
3492
+ },
3493
+ {
3494
+ "epoch": 0.421143473570658,
3495
+ "grad_norm": 1.5534236431121826,
3496
+ "learning_rate": 8.76010781671159e-05,
3497
+ "loss": 0.8390982151031494,
3498
+ "step": 976
3499
+ },
3500
+ {
3501
+ "epoch": 0.42200647249190937,
3502
+ "grad_norm": 1.5428354740142822,
3503
+ "learning_rate": 8.778077268643307e-05,
3504
+ "loss": 0.8368987441062927,
3505
+ "step": 978
3506
+ },
3507
+ {
3508
+ "epoch": 0.4228694714131607,
3509
+ "grad_norm": 1.3579497337341309,
3510
+ "learning_rate": 8.796046720575023e-05,
3511
+ "loss": 0.8203011155128479,
3512
+ "step": 980
3513
+ },
3514
+ {
3515
+ "epoch": 0.4237324703344121,
3516
+ "grad_norm": 1.5543184280395508,
3517
+ "learning_rate": 8.81401617250674e-05,
3518
+ "loss": 0.7622520923614502,
3519
+ "step": 982
3520
+ },
3521
+ {
3522
+ "epoch": 0.42459546925566344,
3523
+ "grad_norm": 1.5728850364685059,
3524
+ "learning_rate": 8.831985624438455e-05,
3525
+ "loss": 0.7764845490455627,
3526
+ "step": 984
3527
+ },
3528
+ {
3529
+ "epoch": 0.4254584681769148,
3530
+ "grad_norm": 1.5842933654785156,
3531
+ "learning_rate": 8.849955076370172e-05,
3532
+ "loss": 0.8136081099510193,
3533
+ "step": 986
3534
+ },
3535
+ {
3536
+ "epoch": 0.42632146709816615,
3537
+ "grad_norm": 1.5721858739852905,
3538
+ "learning_rate": 8.867924528301888e-05,
3539
+ "loss": 0.8388259410858154,
3540
+ "step": 988
3541
+ },
3542
+ {
3543
+ "epoch": 0.42718446601941745,
3544
+ "grad_norm": 1.6682584285736084,
3545
+ "learning_rate": 8.885893980233603e-05,
3546
+ "loss": 0.8829372525215149,
3547
+ "step": 990
3548
+ },
3549
+ {
3550
+ "epoch": 0.4280474649406688,
3551
+ "grad_norm": 1.7098870277404785,
3552
+ "learning_rate": 8.90386343216532e-05,
3553
+ "loss": 0.8545100688934326,
3554
+ "step": 992
3555
+ },
3556
+ {
3557
+ "epoch": 0.42891046386192017,
3558
+ "grad_norm": 1.5161751508712769,
3559
+ "learning_rate": 8.921832884097035e-05,
3560
+ "loss": 0.8233623504638672,
3561
+ "step": 994
3562
+ },
3563
+ {
3564
+ "epoch": 0.4297734627831715,
3565
+ "grad_norm": 1.457794189453125,
3566
+ "learning_rate": 8.939802336028751e-05,
3567
+ "loss": 0.7576998472213745,
3568
+ "step": 996
3569
+ },
3570
+ {
3571
+ "epoch": 0.4306364617044229,
3572
+ "grad_norm": 1.6383825540542603,
3573
+ "learning_rate": 8.957771787960468e-05,
3574
+ "loss": 0.8089564442634583,
3575
+ "step": 998
3576
+ },
3577
+ {
3578
+ "epoch": 0.43149946062567424,
3579
+ "grad_norm": 1.4149754047393799,
3580
+ "learning_rate": 8.975741239892183e-05,
3581
+ "loss": 0.7791779637336731,
3582
+ "step": 1000
3583
+ },
3584
+ {
3585
+ "epoch": 0.43149946062567424,
3586
+ "eval_loss": 0.8266019821166992,
3587
+ "eval_runtime": 835.0044,
3588
+ "eval_samples_per_second": 2.467,
3589
+ "eval_steps_per_second": 2.467,
3590
+ "step": 1000
3591
+ }
3592
+ ],
3593
+ "logging_steps": 2,
3594
+ "max_steps": 13908,
3595
+ "num_input_tokens_seen": 0,
3596
+ "num_train_epochs": 6,
3597
+ "save_steps": 500,
3598
+ "stateful_callbacks": {
3599
+ "EarlyStoppingCallback": {
3600
+ "args": {
3601
+ "early_stopping_patience": 3,
3602
+ "early_stopping_threshold": 0.001
3603
+ },
3604
+ "attributes": {
3605
+ "early_stopping_patience_counter": 0
3606
+ }
3607
+ },
3608
+ "TrainerControl": {
3609
+ "args": {
3610
+ "should_epoch_stop": false,
3611
+ "should_evaluate": false,
3612
+ "should_log": false,
3613
+ "should_save": true,
3614
+ "should_training_stop": false
3615
+ },
3616
+ "attributes": {}
3617
+ }
3618
+ },
3619
+ "total_flos": 1.0412690692397507e+18,
3620
+ "train_batch_size": 1,
3621
+ "trial_name": null,
3622
+ "trial_params": null
3623
+ }
sft_devstral_24B/checkpoints/checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67cec3db40d9b4bcc81f7a80aeef5218639d2e42b1c9e2f551945abddeb1ff4d
3
+ size 5201
sft_devstral_24B/checkpoints/checkpoint-1500/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CPT/runs/cpt_run_v1/merged_24b_cpt_lora
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:CPT/runs/cpt_run_v1/merged_24b_cpt_lora
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B/checkpoints/checkpoint-1500/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "CPT/runs/cpt_run_v1/merged_24b_cpt_lora",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "k_proj",
34
+ "q_proj",
35
+ "o_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B/checkpoints/checkpoint-1500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20fd579a68196fbf4f469c8f239ce89f433a5edc4747b2e6061e6ba08299082c
3
+ size 45690960
sft_devstral_24B/checkpoints/checkpoint-1500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0eed4f313d3dc98c58cb77b09f35e4f0561e4ef87cc09b34da341b229d42dc7
3
+ size 78912907
sft_devstral_24B/checkpoints/checkpoint-1500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4655532fe7fb62f39c418f0d96c32a9b86cae1ff752e2a984ec0fc714cf3c30
3
+ size 14645
sft_devstral_24B/checkpoints/checkpoint-1500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32e80aa3f12daa32611e34f457685e6959d7a8561803cf45e2d67dae6fd24c81
3
+ size 1465
sft_devstral_24B/checkpoints/checkpoint-1500/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
sft_devstral_24B/checkpoints/checkpoint-1500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67cec3db40d9b4bcc81f7a80aeef5218639d2e42b1c9e2f551945abddeb1ff4d
3
+ size 5201
sft_devstral_24B/checkpoints/checkpoint-2000/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CPT/runs/cpt_run_v1/merged_24b_cpt_lora
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:CPT/runs/cpt_run_v1/merged_24b_cpt_lora
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B/checkpoints/checkpoint-2000/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "CPT/runs/cpt_run_v1/merged_24b_cpt_lora",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "k_proj",
34
+ "q_proj",
35
+ "o_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B/checkpoints/checkpoint-2000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:225825667e56783844ed24014e00a49b1af502ff61db12a0b15f467261ca070a
3
+ size 45690960
sft_devstral_24B/checkpoints/checkpoint-2000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1a5e7f450f3d05374406f39347483741e5ea3c9643beba9b397429a88c41c4c
3
+ size 78912907
sft_devstral_24B/checkpoints/checkpoint-2000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01e13f651f318fbe600e3a90939a92c9240e80e5bb9954f55c343c0abfb99e48
3
+ size 14645
sft_devstral_24B/checkpoints/checkpoint-2000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4207b23446848036378cf48f5d44035986145025a9cf3c265ffcfe1a8e01a20d
3
+ size 1465
sft_devstral_24B/checkpoints/checkpoint-2000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
sft_devstral_24B/checkpoints/checkpoint-2000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67cec3db40d9b4bcc81f7a80aeef5218639d2e42b1c9e2f551945abddeb1ff4d
3
+ size 5201
sft_devstral_24B/checkpoints/checkpoint-2500/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CPT/runs/cpt_run_v1/merged_24b_cpt_lora
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:CPT/runs/cpt_run_v1/merged_24b_cpt_lora
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B/checkpoints/checkpoint-2500/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "CPT/runs/cpt_run_v1/merged_24b_cpt_lora",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "k_proj",
34
+ "q_proj",
35
+ "o_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B/checkpoints/checkpoint-2500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6662a9047a1361809c0185e7b56691647d652fb4382248cd93082d3d414cccb4
3
+ size 45690960
sft_devstral_24B/checkpoints/checkpoint-2500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e94c2bbf28c8c1a731dfa40610e905a42511196ee74c7ba0e4172c06c06eb1d2
3
+ size 78912907
sft_devstral_24B/checkpoints/checkpoint-2500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07b985c4a415c8b2261a9cb466d19c38f17bfc709c9097c70384d541f09c4622
3
+ size 14645
sft_devstral_24B/checkpoints/checkpoint-2500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e6c35cfc5291bd34cd8a1e5ad2eb46c14099936b3b296d64c77317879166e9d
3
+ size 1465
sft_devstral_24B/checkpoints/checkpoint-2500/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
sft_devstral_24B/checkpoints/checkpoint-2500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67cec3db40d9b4bcc81f7a80aeef5218639d2e42b1c9e2f551945abddeb1ff4d
3
+ size 5201
sft_devstral_24B/checkpoints/checkpoint-3000/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CPT/runs/cpt_run_v1/merged_24b_cpt_lora
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:CPT/runs/cpt_run_v1/merged_24b_cpt_lora
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B/checkpoints/checkpoint-3000/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "CPT/runs/cpt_run_v1/merged_24b_cpt_lora",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "k_proj",
34
+ "q_proj",
35
+ "o_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B/checkpoints/checkpoint-3000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c65bd77c337a84a22331e5bd51cae1ec67e256cc5aa979340e08d04ed1698f42
3
+ size 45690960
sft_devstral_24B/checkpoints/checkpoint-3000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdbb0fa9f482cc96353567c4495b179ffe630b391696a98582d4f48909ae95c9
3
+ size 78912907
sft_devstral_24B/checkpoints/checkpoint-3000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fca7fac4d0a11bc61b7275b19317a4ac989211962bde4cc5c60457d1857a0d66
3
+ size 14645
sft_devstral_24B/checkpoints/checkpoint-3000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43b30e8668249f758637a580360e1d462fc9a0aaee4f333dc3ff507e3a0646c0
3
+ size 1465
sft_devstral_24B/checkpoints/checkpoint-3000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
sft_devstral_24B/checkpoints/checkpoint-3000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67cec3db40d9b4bcc81f7a80aeef5218639d2e42b1c9e2f551945abddeb1ff4d
3
+ size 5201
sft_devstral_24B/checkpoints/checkpoint-3500/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CPT/runs/cpt_run_v1/merged_24b_cpt_lora
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:CPT/runs/cpt_run_v1/merged_24b_cpt_lora
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.18.0
sft_devstral_24B/checkpoints/checkpoint-3500/adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "CPT/runs/cpt_run_v1/merged_24b_cpt_lora",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "v_proj",
33
+ "k_proj",
34
+ "q_proj",
35
+ "o_proj"
36
+ ],
37
+ "target_parameters": null,
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_qalora": false,
42
+ "use_rslora": false
43
+ }
sft_devstral_24B/checkpoints/checkpoint-3500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed4f0946d7554d2eb8dc25ff656bda1bc499858c3b08b2d09e9b3c13e41ad4b8
3
+ size 45690960
sft_devstral_24B/checkpoints/checkpoint-3500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:339367ba5676b49a084955aff2688d0f4f258b3db053f8a02ce2b85942acedcf
3
+ size 78912907
sft_devstral_24B/checkpoints/checkpoint-3500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecad9507556708b06aaa4af823c254c9618f43d9383dcf7f8d3563bdd2adf264
3
+ size 14645