Add main & ema weights for jpn
Browse files- README.md +73 -0
- config.json +33 -0
- configuration_gpt_bert.py +25 -0
- jpn-2gpu-250steps.bin +3 -0
- jpn-2gpu-250steps_ema.bin +3 -0
- model.safetensors +3 -0
- model_ema.safetensors +3 -0
- modeling_gpt_bert.py +630 -0
- original_project_config.json +16 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +141 -0
README.md
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
pipeline_tag: fill-mask
|
| 4 |
+
tags: [gpt-bert, babylm, remote-code]
|
| 5 |
+
license: other
|
| 6 |
+
---
|
| 7 |
+
# jumelet/gptbert-jpn-250steps-base
|
| 8 |
+
|
| 9 |
+
GPT-BERT style BabyBabyLLM model for language **jpn**.
|
| 10 |
+
|
| 11 |
+
This repository may include both *main* and *EMA* variants.
|
| 12 |
+
|
| 13 |
+
**Default variant exposed to generic loaders:** `ema`
|
| 14 |
+
|
| 15 |
+
## Variants Available
|
| 16 |
+
ema, main
|
| 17 |
+
|
| 18 |
+
## Files
|
| 19 |
+
- model.safetensors (alias of default variant)
|
| 20 |
+
- model_ema.safetensors
|
| 21 |
+
- pytorch_model.bin (legacy PyTorch format)
|
| 22 |
+
- jpn-2gpu-250steps.bin (raw training checkpoint)
|
| 23 |
+
- jpn-2gpu-250steps_ema.bin (raw training checkpoint)
|
| 24 |
+
|
| 25 |
+
## Configuration
|
| 26 |
+
```json
|
| 27 |
+
{
|
| 28 |
+
"attention_probs_dropout_prob": 0.1,
|
| 29 |
+
"hidden_dropout_prob": 0.1,
|
| 30 |
+
"hidden_size": 384,
|
| 31 |
+
"intermediate_size": 1280,
|
| 32 |
+
"max_position_embeddings": 512,
|
| 33 |
+
"position_bucket_size": 32,
|
| 34 |
+
"num_attention_heads": 6,
|
| 35 |
+
"num_hidden_layers": 12,
|
| 36 |
+
"vocab_size": 8192,
|
| 37 |
+
"layer_norm_eps": 1e-05,
|
| 38 |
+
"force_causal_mask": true,
|
| 39 |
+
"classifier_dropout": 0.1,
|
| 40 |
+
"classifier_layer_norm_eps": 1e-05,
|
| 41 |
+
"num_labels": 2
|
| 42 |
+
}
|
| 43 |
+
```
|
| 44 |
+
Tokenizer file: `tokenizer_jpn_vs8192.json`
|
| 45 |
+
|
| 46 |
+
## Quick Usage
|
| 47 |
+
```python
|
| 48 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
| 49 |
+
model_id = 'jumelet/gptbert-jpn-250steps-base'
|
| 50 |
+
tok = AutoTokenizer.from_pretrained(model_id)
|
| 51 |
+
model = AutoModelForMaskedLM.from_pretrained(model_id, trust_remote_code=True)
|
| 52 |
+
out = model(**tok('Hello world', return_tensors='pt'))
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
### Forced Causal Attention
|
| 56 |
+
Causal attention is enforced during inference by applying a triangular future mask inside the remote code.
|
| 57 |
+
This prevents the hybrid GPT-BERT layers from attending to future tokens even when a bidirectional mask is provided.
|
| 58 |
+
|
| 59 |
+
### Sequence Classification
|
| 60 |
+
`GPTBertForSequenceClassification` mirrors the original GLUE classifier head for downstream fine-tuning.
|
| 61 |
+
```python
|
| 62 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 63 |
+
model_id = 'jumelet/gptbert-jpn-250steps-base'
|
| 64 |
+
tok = AutoTokenizer.from_pretrained(model_id)
|
| 65 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id, trust_remote_code=True)
|
| 66 |
+
outputs = model(**tok('This movie was great!', return_tensors='pt'))
|
| 67 |
+
print(outputs.logits)
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
## Notes
|
| 71 |
+
- Converted on 2025-10-06T00:37:07.869908+00:00
|
| 72 |
+
- Weights are the exact trained parameters; no new layers were initialized.
|
| 73 |
+
- Requires `trust_remote_code=True` due to custom architecture.
|
config.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"GPTBertForMaskedLM",
|
| 4 |
+
"GPTBertForCausalLM",
|
| 5 |
+
"GPTBertForSequenceClassification"
|
| 6 |
+
],
|
| 7 |
+
"attention_probs_dropout_prob": 0.1,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "configuration_gpt_bert.GPTBertConfig",
|
| 10 |
+
"AutoModel": "modeling_gpt_bert.GPTBertForMaskedLM",
|
| 11 |
+
"AutoModelForCausalLM": "modeling_gpt_bert.GPTBertForCausalLM",
|
| 12 |
+
"AutoModelForMaskedLM": "modeling_gpt_bert.GPTBertForMaskedLM",
|
| 13 |
+
"AutoModelForSequenceClassification": "modeling_gpt_bert.GPTBertForSequenceClassification"
|
| 14 |
+
},
|
| 15 |
+
"bos_token_id": 1,
|
| 16 |
+
"classifier_dropout": 0.1,
|
| 17 |
+
"classifier_layer_norm_eps": 1e-05,
|
| 18 |
+
"eos_token_id": 2,
|
| 19 |
+
"force_causal_mask": true,
|
| 20 |
+
"hidden_dropout_prob": 0.1,
|
| 21 |
+
"hidden_size": 384,
|
| 22 |
+
"intermediate_size": 1280,
|
| 23 |
+
"layer_norm_eps": 1e-05,
|
| 24 |
+
"mask_token_id": 4,
|
| 25 |
+
"max_position_embeddings": 512,
|
| 26 |
+
"model_type": "gpt_bert",
|
| 27 |
+
"num_attention_heads": 6,
|
| 28 |
+
"num_hidden_layers": 12,
|
| 29 |
+
"num_labels": 2,
|
| 30 |
+
"pad_token_id": 3,
|
| 31 |
+
"position_bucket_size": 32,
|
| 32 |
+
"vocab_size": 8192
|
| 33 |
+
}
|
configuration_gpt_bert.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from transformers import PretrainedConfig
|
| 3 |
+
|
| 4 |
+
class GPTBertConfig(PretrainedConfig):
|
| 5 |
+
model_type = 'gpt_bert'
|
| 6 |
+
|
| 7 |
+
def __init__(self, **kwargs):
|
| 8 |
+
self.attention_probs_dropout_prob = kwargs.pop('attention_probs_dropout_prob', 0.1)
|
| 9 |
+
self.hidden_dropout_prob = kwargs.pop('hidden_dropout_prob', 0.1)
|
| 10 |
+
self.hidden_size = kwargs.pop('hidden_size', 768)
|
| 11 |
+
self.intermediate_size = kwargs.pop('intermediate_size', 2560)
|
| 12 |
+
self.max_position_embeddings = kwargs.pop('max_position_embeddings', 512)
|
| 13 |
+
self.position_bucket_size = kwargs.pop('position_bucket_size', 32)
|
| 14 |
+
self.num_attention_heads = kwargs.pop('num_attention_heads', 12)
|
| 15 |
+
self.num_hidden_layers = kwargs.pop('num_hidden_layers', 12)
|
| 16 |
+
self.vocab_size = kwargs.pop('vocab_size', 16384)
|
| 17 |
+
self.layer_norm_eps = kwargs.pop('layer_norm_eps', 1e-5)
|
| 18 |
+
self.auto_map = {
|
| 19 |
+
'AutoConfig': 'configuration_gpt_bert.GPTBertConfig',
|
| 20 |
+
'AutoModel': 'modeling_gpt_bert.GPTBertForMaskedLM',
|
| 21 |
+
'AutoModelForCausalLM': 'modeling_gpt_bert.GPTBertForCausalLM',
|
| 22 |
+
'AutoModelForMaskedLM': 'modeling_gpt_bert.GPTBertForMaskedLM',
|
| 23 |
+
'AutoModelForSequenceClassification': 'modeling_gpt_bert.GPTBertForSequenceClassification',
|
| 24 |
+
}
|
| 25 |
+
super().__init__(**kwargs)
|
jpn-2gpu-250steps.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:83720f6e59065fce9406fef19b55e6b62dd8e0bf0408963d0263eed8e42bab73
|
| 3 |
+
size 503042738
|
jpn-2gpu-250steps_ema.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2a64afa378a69a12b08531b4b969c32a188189b11bcb8020d907af09e1bd8be1
|
| 3 |
+
size 503043438
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab5b76b5985c0f512922b608f154c4fca95ee75cddd095559a9776a2a55ef947
|
| 3 |
+
size 553332392
|
model_ema.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab5b76b5985c0f512922b608f154c4fca95ee75cddd095559a9776a2a55ef947
|
| 3 |
+
size 553332392
|
modeling_gpt_bert.py
ADDED
|
@@ -0,0 +1,630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Original training architecture (verbatim)
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from torch import _softmax_backward_data as _softmax_backward_data
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class Bert(nn.Module):
|
| 11 |
+
def __init__(self, config, activation_checkpointing=False):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.embedding = Embedding(config)
|
| 14 |
+
self.transformer = Encoder(config, activation_checkpointing)
|
| 15 |
+
self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight)
|
| 16 |
+
|
| 17 |
+
def get_contextualized(self, input_ids, attention_mask):
|
| 18 |
+
static_embeddings, relative_embedding = self.embedding(input_ids)
|
| 19 |
+
contextualized_embeddings = self.transformer(static_embeddings, attention_mask.unsqueeze(1), relative_embedding)
|
| 20 |
+
return contextualized_embeddings
|
| 21 |
+
|
| 22 |
+
def forward(self, input_ids, attention_mask, masked_lm_labels, num_masked=None, ratio=None):
|
| 23 |
+
contextualized_embeddings = self.get_contextualized(input_ids, attention_mask)
|
| 24 |
+
|
| 25 |
+
if num_masked is None:
|
| 26 |
+
subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked)
|
| 27 |
+
|
| 28 |
+
gold_labels = masked_lm_labels.flatten()
|
| 29 |
+
gold_labels = gold_labels[gold_labels != -100]
|
| 30 |
+
|
| 31 |
+
loss = F.cross_entropy(subword_prediction, gold_labels, reduction="none").mean()
|
| 32 |
+
z_loss = torch.logsumexp(subword_prediction, dim=-1).pow(2).mean()
|
| 33 |
+
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
accuracy = (subword_prediction.argmax(-1) == gold_labels).float().mean()
|
| 36 |
+
|
| 37 |
+
num_tokens = gold_labels.size(0)
|
| 38 |
+
|
| 39 |
+
return loss, accuracy, z_loss, num_tokens
|
| 40 |
+
else:
|
| 41 |
+
masked_subword_prediction, causal_subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked)
|
| 42 |
+
|
| 43 |
+
if masked_subword_prediction is not None:
|
| 44 |
+
masked_gold_labels = masked_lm_labels[:, :num_masked].flatten()
|
| 45 |
+
masked_gold_labels = masked_gold_labels[masked_gold_labels != -100]
|
| 46 |
+
|
| 47 |
+
masked_loss = F.cross_entropy(masked_subword_prediction, masked_gold_labels)
|
| 48 |
+
masked_z_loss = torch.logsumexp(masked_subword_prediction, dim=-1).pow(2).mean()
|
| 49 |
+
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
masked_accuracy = (masked_subword_prediction.argmax(-1) == masked_gold_labels).float().mean()
|
| 52 |
+
|
| 53 |
+
num_masked_tokens = masked_gold_labels.size(0)
|
| 54 |
+
else:
|
| 55 |
+
masked_loss = 0.0
|
| 56 |
+
masked_z_loss = 0.0
|
| 57 |
+
masked_accuracy = 0.0
|
| 58 |
+
num_masked_tokens = 0
|
| 59 |
+
|
| 60 |
+
if causal_subword_prediction is not None:
|
| 61 |
+
causal_gold_labels = masked_lm_labels[:, num_masked:].flatten()
|
| 62 |
+
causal_gold_labels = causal_gold_labels[causal_gold_labels != -100]
|
| 63 |
+
|
| 64 |
+
causal_loss = F.cross_entropy(causal_subword_prediction, causal_gold_labels)
|
| 65 |
+
causal_z_loss = torch.logsumexp(causal_subword_prediction, dim=-1).pow(2).mean()
|
| 66 |
+
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
causal_accuracy = (causal_subword_prediction.argmax(-1) == causal_gold_labels).float().mean()
|
| 69 |
+
|
| 70 |
+
num_causal_tokens = causal_gold_labels.size(0)
|
| 71 |
+
else:
|
| 72 |
+
causal_loss = 0.0
|
| 73 |
+
causal_z_loss = 0.0
|
| 74 |
+
causal_accuracy = 0.0
|
| 75 |
+
num_causal_tokens = 0
|
| 76 |
+
|
| 77 |
+
loss = ratio * masked_loss + (1 - ratio) * causal_loss
|
| 78 |
+
z_loss = ratio * masked_z_loss + (1 - ratio) * causal_z_loss
|
| 79 |
+
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
accuracy = ratio * masked_accuracy + (1 - ratio) * causal_accuracy
|
| 82 |
+
|
| 83 |
+
num_tokens = num_masked_tokens + num_causal_tokens
|
| 84 |
+
|
| 85 |
+
return loss, masked_loss, causal_loss, accuracy, masked_accuracy, causal_accuracy, z_loss, num_tokens
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# From https://github.com/epfml/DenseFormer
|
| 89 |
+
class InPlaceSetSlice(torch.autograd.Function):
|
| 90 |
+
@staticmethod
|
| 91 |
+
def forward(ctx, full_tensor, last_slice, x_idx, x_val):
|
| 92 |
+
full_tensor[x_idx] = x_val
|
| 93 |
+
ctx.x_idx = x_idx
|
| 94 |
+
ret = torch.Tensor().to(full_tensor.device)
|
| 95 |
+
ret.set_(full_tensor[:x_idx + 1])
|
| 96 |
+
return ret
|
| 97 |
+
|
| 98 |
+
@staticmethod
|
| 99 |
+
def backward(ctx, grad_out):
|
| 100 |
+
if ctx.x_idx == 0:
|
| 101 |
+
return None, None, None, grad_out[ctx.x_idx]
|
| 102 |
+
else:
|
| 103 |
+
return None, grad_out[:ctx.x_idx], None, grad_out[ctx.x_idx]
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def apply_inplace_set(x_acc, x_idx, x_val):
|
| 107 |
+
full_tensor, last_slice = x_acc
|
| 108 |
+
new_slice = InPlaceSetSlice.apply(full_tensor, last_slice, x_idx, x_val)
|
| 109 |
+
return full_tensor, new_slice
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class DWAModules(torch.nn.Module):
|
| 113 |
+
def __init__(self, hidden_size, n_blocks):
|
| 114 |
+
super().__init__()
|
| 115 |
+
self.n_blocks = n_blocks
|
| 116 |
+
self.alphas = nn.ParameterList([nn.Parameter(torch.zeros(i + 2)) for i in range(n_blocks)])
|
| 117 |
+
self.accumulator = None
|
| 118 |
+
self._init_weights()
|
| 119 |
+
|
| 120 |
+
def _init_weights(self):
|
| 121 |
+
for module in self.alphas:
|
| 122 |
+
module.data.zero_()
|
| 123 |
+
module.data[-1] = 1.0
|
| 124 |
+
|
| 125 |
+
def init_accumulator(self, x):
|
| 126 |
+
self.accumulator = (torch.zeros((self.n_blocks + 1, *x.shape), device=x.device, dtype=x.dtype), None)
|
| 127 |
+
self.accumulator = apply_inplace_set(self.accumulator, 0, x)
|
| 128 |
+
|
| 129 |
+
def forward(self, x, block_idx):
|
| 130 |
+
assert self.accumulator is not None, "`init_accumulator(x)` needs to be called first"
|
| 131 |
+
self.accumulator = apply_inplace_set(
|
| 132 |
+
self.accumulator,
|
| 133 |
+
block_idx + 1,
|
| 134 |
+
x
|
| 135 |
+
)
|
| 136 |
+
x = torch.tensordot(self.alphas[block_idx], self.accumulator[1], dims=1)
|
| 137 |
+
return x
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
class Encoder(nn.Module):
|
| 141 |
+
def __init__(self, config, activation_checkpointing=False):
|
| 142 |
+
super().__init__()
|
| 143 |
+
self.attention_layers = nn.ModuleList([Attention(config) for _ in range(config.num_hidden_layers)])
|
| 144 |
+
self.mlp_layers = nn.ModuleList([FeedForward(config) for _ in range(config.num_hidden_layers)])
|
| 145 |
+
self.dwa_modules = DWAModules(config.hidden_size, config.num_hidden_layers * 2)
|
| 146 |
+
|
| 147 |
+
for i, layer in enumerate(self.mlp_layers):
|
| 148 |
+
layer.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
|
| 149 |
+
layer.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
|
| 150 |
+
|
| 151 |
+
self.activation_checkpointing = activation_checkpointing
|
| 152 |
+
|
| 153 |
+
def forward(self, x, attention_mask, relative_embedding):
|
| 154 |
+
self.dwa_modules.init_accumulator(x)
|
| 155 |
+
for i, (attention_layer, mlp_layer) in enumerate(zip(self.attention_layers, self.mlp_layers)):
|
| 156 |
+
x = x + attention_layer(x, attention_mask, relative_embedding)
|
| 157 |
+
x = self.dwa_modules(x, block_idx=i * 2)
|
| 158 |
+
|
| 159 |
+
x = x + mlp_layer(x)
|
| 160 |
+
x = self.dwa_modules(x, block_idx=i * 2 + 1)
|
| 161 |
+
|
| 162 |
+
return x
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class MaskClassifier(nn.Module):
|
| 166 |
+
def __init__(self, config, subword_embedding):
|
| 167 |
+
super().__init__()
|
| 168 |
+
self.nonlinearity = nn.Sequential(
|
| 169 |
+
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
|
| 170 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 171 |
+
nn.GELU(),
|
| 172 |
+
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
|
| 173 |
+
nn.Dropout(config.hidden_dropout_prob),
|
| 174 |
+
nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
|
| 175 |
+
)
|
| 176 |
+
self.initialize(config.hidden_size, subword_embedding)
|
| 177 |
+
|
| 178 |
+
def initialize(self, hidden_size, embedding):
|
| 179 |
+
std = math.sqrt(2.0 / (5.0 * hidden_size))
|
| 180 |
+
nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 181 |
+
self.nonlinearity[-1].weight = embedding
|
| 182 |
+
self.nonlinearity[1].bias.data.zero_()
|
| 183 |
+
self.nonlinearity[-1].bias.data.zero_()
|
| 184 |
+
|
| 185 |
+
def forward(self, x, masked_lm_labels, num_masked=None):
|
| 186 |
+
if num_masked is None:
|
| 187 |
+
x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
|
| 188 |
+
x = self.nonlinearity(x)
|
| 189 |
+
return x
|
| 190 |
+
else:
|
| 191 |
+
masked_x, causal_x = torch.tensor_split(x, (num_masked,), dim=1)
|
| 192 |
+
mntp_masked_lm_labels, causal_masked_lm_labels = torch.tensor_split(masked_lm_labels, (num_masked,), dim=1)
|
| 193 |
+
|
| 194 |
+
if masked_x.size(1) != 0:
|
| 195 |
+
masked_x = torch.index_select(masked_x.flatten(0, 1), 0, torch.nonzero(mntp_masked_lm_labels.flatten() != -100).squeeze())
|
| 196 |
+
masked_x = self.nonlinearity(masked_x)
|
| 197 |
+
else:
|
| 198 |
+
masked_x = None
|
| 199 |
+
|
| 200 |
+
if causal_x.size(1) != 0:
|
| 201 |
+
causal_x = torch.index_select(causal_x.flatten(0, 1), 0, torch.nonzero(causal_masked_lm_labels.flatten() != -100).squeeze())
|
| 202 |
+
causal_x = self.nonlinearity(causal_x)
|
| 203 |
+
else:
|
| 204 |
+
causal_x = None
|
| 205 |
+
|
| 206 |
+
return masked_x, causal_x
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
class GeGLU(nn.Module):
|
| 210 |
+
def forward(self, x):
|
| 211 |
+
x, gate = x.chunk(2, dim=-1)
|
| 212 |
+
x = x * F.gelu(gate, approximate='tanh')
|
| 213 |
+
return x
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
class FeedForward(nn.Module):
|
| 217 |
+
def __init__(self, config):
|
| 218 |
+
super().__init__()
|
| 219 |
+
self.mlp = nn.Sequential(
|
| 220 |
+
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
|
| 221 |
+
nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
|
| 222 |
+
GeGLU(),
|
| 223 |
+
nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
|
| 224 |
+
nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
|
| 225 |
+
nn.Dropout(config.hidden_dropout_prob)
|
| 226 |
+
)
|
| 227 |
+
self.initialize(config.hidden_size)
|
| 228 |
+
|
| 229 |
+
def initialize(self, hidden_size):
|
| 230 |
+
std = math.sqrt(2.0 / (5.0 * hidden_size))
|
| 231 |
+
nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 232 |
+
nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 233 |
+
|
| 234 |
+
def forward(self, x):
|
| 235 |
+
return self.mlp(x)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
class MaskedSoftmax(torch.autograd.Function):
|
| 239 |
+
@staticmethod
|
| 240 |
+
def forward(self, x, mask, dim):
|
| 241 |
+
self.dim = dim
|
| 242 |
+
x.masked_fill_(mask, float('-inf'))
|
| 243 |
+
x = torch.softmax(x, self.dim)
|
| 244 |
+
x.masked_fill_(mask, 0.0)
|
| 245 |
+
self.save_for_backward(x)
|
| 246 |
+
return x
|
| 247 |
+
|
| 248 |
+
@staticmethod
|
| 249 |
+
def backward(self, grad_output):
|
| 250 |
+
output, = self.saved_tensors
|
| 251 |
+
inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
|
| 252 |
+
return inputGrad, None, None
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
class Attention(nn.Module):
|
| 256 |
+
def __init__(self, config):
|
| 257 |
+
super().__init__()
|
| 258 |
+
|
| 259 |
+
self.config = config
|
| 260 |
+
|
| 261 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
| 262 |
+
raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
|
| 263 |
+
|
| 264 |
+
self.hidden_size = config.hidden_size
|
| 265 |
+
self.num_heads = config.num_attention_heads
|
| 266 |
+
self.head_size = config.hidden_size // config.num_attention_heads
|
| 267 |
+
|
| 268 |
+
self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
|
| 269 |
+
self.in_proj_vg = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
|
| 270 |
+
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
| 271 |
+
|
| 272 |
+
self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
|
| 273 |
+
self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
|
| 274 |
+
|
| 275 |
+
position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
|
| 276 |
+
- torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
|
| 277 |
+
position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
|
| 278 |
+
position_indices = config.position_bucket_size - 1 + position_indices
|
| 279 |
+
self.register_buffer("position_indices", position_indices, persistent=True)
|
| 280 |
+
|
| 281 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 282 |
+
self.scale = 1.0 / math.sqrt(3 * self.head_size)
|
| 283 |
+
self.initialize()
|
| 284 |
+
|
| 285 |
+
def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
|
| 286 |
+
sign = torch.sign(relative_pos)
|
| 287 |
+
mid = bucket_size // 2
|
| 288 |
+
abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
|
| 289 |
+
log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
|
| 290 |
+
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
|
| 291 |
+
return bucket_pos
|
| 292 |
+
|
| 293 |
+
def initialize(self):
|
| 294 |
+
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
| 295 |
+
nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 296 |
+
nn.init.trunc_normal_(self.in_proj_vg.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 297 |
+
nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 298 |
+
self.in_proj_qk.bias.data.zero_()
|
| 299 |
+
self.in_proj_vg.bias.data.zero_()
|
| 300 |
+
self.out_proj.bias.data.zero_()
|
| 301 |
+
|
| 302 |
+
def forward(self, hidden_states, attention_mask, relative_embedding):
|
| 303 |
+
key_len, batch_size, _ = hidden_states.size()
|
| 304 |
+
query_len = key_len
|
| 305 |
+
|
| 306 |
+
if self.position_indices.size(0) < query_len:
|
| 307 |
+
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
|
| 308 |
+
- torch.arange(query_len, dtype=torch.long).unsqueeze(0)
|
| 309 |
+
position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
|
| 310 |
+
position_indices = self.config.position_bucket_size - 1 + position_indices
|
| 311 |
+
self.register_buffer("position_indices", position_indices.to(hidden_states.device), persistent=True)
|
| 312 |
+
|
| 313 |
+
hidden_states = self.pre_layer_norm(hidden_states)
|
| 314 |
+
query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
|
| 315 |
+
value, gate = self.in_proj_vg(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
|
| 316 |
+
gate = F.gelu(gate)
|
| 317 |
+
|
| 318 |
+
pos = self.in_proj_qk(self.dropout(relative_embedding)) # shape: [2T-1, 2D]
|
| 319 |
+
pos = F.embedding(self.position_indices[:query_len, :key_len], pos) # shape: [T, T, 2D]
|
| 320 |
+
query_pos, key_pos = pos.chunk(2, dim=-1)
|
| 321 |
+
query_pos = query_pos.view(query_len, key_len, self.num_heads, self.head_size)
|
| 322 |
+
key_pos = key_pos.view(query_len, key_len, self.num_heads, self.head_size)
|
| 323 |
+
|
| 324 |
+
query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
|
| 325 |
+
key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
|
| 326 |
+
value = value.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
|
| 327 |
+
|
| 328 |
+
attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
|
| 329 |
+
|
| 330 |
+
query = query.view(batch_size, self.num_heads, query_len, self.head_size)
|
| 331 |
+
key = key.view(batch_size, self.num_heads, query_len, self.head_size)
|
| 332 |
+
attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
|
| 333 |
+
attention_scores.add_(torch.einsum("bhqd,qkhd->bhqk", query, key_pos * self.scale))
|
| 334 |
+
attention_scores.add_(torch.einsum("bhkd,qkhd->bhqk", key * self.scale, query_pos))
|
| 335 |
+
|
| 336 |
+
attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
|
| 337 |
+
|
| 338 |
+
attention_probs = self.dropout(attention_probs)
|
| 339 |
+
context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
|
| 340 |
+
context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
|
| 341 |
+
context = context * gate
|
| 342 |
+
context = self.post_layer_norm(context)
|
| 343 |
+
context = self.out_proj(context)
|
| 344 |
+
context = self.dropout(context)
|
| 345 |
+
|
| 346 |
+
return context
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
class Embedding(nn.Module):
|
| 350 |
+
def __init__(self, config):
|
| 351 |
+
super().__init__()
|
| 352 |
+
self.hidden_size = config.hidden_size
|
| 353 |
+
|
| 354 |
+
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 355 |
+
self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
|
| 356 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 357 |
+
|
| 358 |
+
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
|
| 359 |
+
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 360 |
+
|
| 361 |
+
self.initialize()
|
| 362 |
+
|
| 363 |
+
def initialize(self):
|
| 364 |
+
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
| 365 |
+
nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 366 |
+
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 367 |
+
|
| 368 |
+
def forward(self, input_ids):
|
| 369 |
+
word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
|
| 370 |
+
relative_embeddings = self.relative_layer_norm(self.relative_embedding)
|
| 371 |
+
return word_embedding, relative_embeddings
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
# HF wrappers that preserve state dict keys and behavior
|
| 375 |
+
|
| 376 |
+
from transformers import PreTrainedModel
|
| 377 |
+
from transformers.modeling_outputs import MaskedLMOutput, CausalLMOutputWithCrossAttentions, SequenceClassifierOutput
|
| 378 |
+
from .configuration_gpt_bert import GPTBertConfig
|
| 379 |
+
import torch
|
| 380 |
+
import torch.nn as nn
|
| 381 |
+
|
| 382 |
+
DEFAULT_FORCE_CAUSAL_MASK = True
|
| 383 |
+
EMIT_HIDDEN_STATES_DEFAULT = True
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
def _normalize_mask_tensor(mask):
|
| 387 |
+
if mask.dtype == torch.bool:
|
| 388 |
+
if mask.numel() == 0:
|
| 389 |
+
return mask
|
| 390 |
+
true_fraction = mask.float().mean().item()
|
| 391 |
+
if true_fraction > 0.5:
|
| 392 |
+
mask = ~mask
|
| 393 |
+
else:
|
| 394 |
+
mask = mask <= 0
|
| 395 |
+
return mask.to(torch.bool)
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
def _ensure_valid_rows(mask):
|
| 399 |
+
row_masked = mask.all(dim=-1)
|
| 400 |
+
if row_masked.any():
|
| 401 |
+
idx = row_masked.nonzero(as_tuple=False)
|
| 402 |
+
mask[idx[:, 0], idx[:, 1], idx[:, 1]] = False
|
| 403 |
+
return mask
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
def _build_future_causal_mask(batch_size, seq_len, device):
|
| 407 |
+
base = torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device), diagonal=1)
|
| 408 |
+
return base.unsqueeze(0).expand(batch_size, -1, -1)
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
def _build_babylm_attention_mask(input_ids, attention_mask, force_causal=False):
|
| 412 |
+
batch_size, seq_len = input_ids.shape[:2]
|
| 413 |
+
device = input_ids.device
|
| 414 |
+
if attention_mask is None:
|
| 415 |
+
mask = torch.zeros(batch_size, seq_len, seq_len, dtype=torch.bool, device=device)
|
| 416 |
+
else:
|
| 417 |
+
mask = attention_mask
|
| 418 |
+
if mask.dim() == 0:
|
| 419 |
+
mask = mask.unsqueeze(0)
|
| 420 |
+
if mask.dim() == 1:
|
| 421 |
+
mask = mask.unsqueeze(0)
|
| 422 |
+
if mask.dim() == 2:
|
| 423 |
+
mask = _normalize_mask_tensor(mask)
|
| 424 |
+
mask = mask.unsqueeze(1) | mask.unsqueeze(2)
|
| 425 |
+
elif mask.dim() == 3:
|
| 426 |
+
if mask.size(1) == 1 and mask.size(2) == seq_len:
|
| 427 |
+
mask = _normalize_mask_tensor(mask.squeeze(1))
|
| 428 |
+
mask = mask.unsqueeze(1) | mask.unsqueeze(2)
|
| 429 |
+
elif mask.size(1) == seq_len and mask.size(2) == 1:
|
| 430 |
+
mask = _normalize_mask_tensor(mask.squeeze(2))
|
| 431 |
+
mask = mask.unsqueeze(1) | mask.unsqueeze(2)
|
| 432 |
+
else:
|
| 433 |
+
mask = _normalize_mask_tensor(mask)
|
| 434 |
+
elif mask.dim() == 4:
|
| 435 |
+
if mask.size(1) == 1:
|
| 436 |
+
mask = mask[:, 0]
|
| 437 |
+
else:
|
| 438 |
+
mask = mask.any(dim=1)
|
| 439 |
+
mask = _normalize_mask_tensor(mask)
|
| 440 |
+
else:
|
| 441 |
+
raise ValueError("Unsupported attention_mask dimensions: {}".format(mask.dim()))
|
| 442 |
+
mask = mask.to(device=device, dtype=torch.bool)
|
| 443 |
+
if mask.dim() == 2:
|
| 444 |
+
mask = mask.unsqueeze(1) | mask.unsqueeze(2)
|
| 445 |
+
if mask.dim() != 3:
|
| 446 |
+
raise ValueError("attention_mask must broadcast to a square matrix")
|
| 447 |
+
if mask.size(0) == 1 and batch_size > 1:
|
| 448 |
+
mask = mask.expand(batch_size, -1, -1).clone()
|
| 449 |
+
elif mask.size(0) != batch_size:
|
| 450 |
+
raise ValueError("attention_mask batch dimension {} does not match inputs {}".format(mask.size(0), batch_size))
|
| 451 |
+
rows = min(mask.size(1), seq_len)
|
| 452 |
+
cols = min(mask.size(2), seq_len)
|
| 453 |
+
if mask.size(1) != seq_len or mask.size(2) != seq_len:
|
| 454 |
+
new_mask = torch.ones(batch_size, seq_len, seq_len, dtype=torch.bool, device=device)
|
| 455 |
+
new_mask[:, :rows, :cols] = mask[:, :rows, :cols]
|
| 456 |
+
mask = new_mask
|
| 457 |
+
if force_causal:
|
| 458 |
+
future_mask = _build_future_causal_mask(mask.size(0), seq_len, device)
|
| 459 |
+
mask = mask | future_mask
|
| 460 |
+
mask = _ensure_valid_rows(mask)
|
| 461 |
+
return mask.unsqueeze(1)
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
class GPTBertForMaskedLM(PreTrainedModel):
|
| 465 |
+
config_class = GPTBertConfig
|
| 466 |
+
base_model_prefix = 'gpt_bert'
|
| 467 |
+
|
| 468 |
+
def __init__(self, config: GPTBertConfig):
|
| 469 |
+
super().__init__(config)
|
| 470 |
+
self.model = Bert(config)
|
| 471 |
+
self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK)
|
| 472 |
+
|
| 473 |
+
def tie_weights(self):
|
| 474 |
+
try:
|
| 475 |
+
self.model.classifier.nonlinearity[-1].weight = self.model.embedding.word_embedding.weight
|
| 476 |
+
except Exception:
|
| 477 |
+
pass
|
| 478 |
+
return super().tie_weights()
|
| 479 |
+
|
| 480 |
+
def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None):
|
| 481 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT)
|
| 482 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 483 |
+
|
| 484 |
+
mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask)
|
| 485 |
+
static_embeddings, relative_embedding = self.model.embedding(input_ids)
|
| 486 |
+
if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
|
| 487 |
+
static_embeddings = static_embeddings.transpose(0, 1)
|
| 488 |
+
contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding)
|
| 489 |
+
hs = contextualized.transpose(0, 1)
|
| 490 |
+
B, S, H = hs.shape
|
| 491 |
+
flat = hs.reshape(B * S, H)
|
| 492 |
+
logits_flat = self.model.classifier.nonlinearity(flat)
|
| 493 |
+
vocab = logits_flat.size(-1)
|
| 494 |
+
logits = logits_flat.view(B, S, vocab)
|
| 495 |
+
|
| 496 |
+
loss = None
|
| 497 |
+
if labels is not None:
|
| 498 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
|
| 499 |
+
loss = loss_fct(logits.view(-1, vocab), labels.view(-1))
|
| 500 |
+
|
| 501 |
+
hidden_states = (hs,) if output_hidden_states else None
|
| 502 |
+
|
| 503 |
+
if not return_dict:
|
| 504 |
+
outputs = (logits,)
|
| 505 |
+
if hidden_states is not None:
|
| 506 |
+
outputs = outputs + (hidden_states,)
|
| 507 |
+
return ((loss,) + outputs) if loss is not None else outputs
|
| 508 |
+
|
| 509 |
+
return MaskedLMOutput(loss=loss, logits=logits, hidden_states=hidden_states)
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
class GPTBertForCausalLM(PreTrainedModel):
|
| 513 |
+
config_class = GPTBertConfig
|
| 514 |
+
base_model_prefix = 'gpt_bert'
|
| 515 |
+
|
| 516 |
+
def __init__(self, config: GPTBertConfig):
|
| 517 |
+
super().__init__(config)
|
| 518 |
+
self.model = Bert(config)
|
| 519 |
+
self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK)
|
| 520 |
+
|
| 521 |
+
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
| 522 |
+
return {'input_ids': input_ids, 'attention_mask': kwargs.get('attention_mask', None)}
|
| 523 |
+
|
| 524 |
+
def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None):
|
| 525 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT)
|
| 526 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 527 |
+
|
| 528 |
+
mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask)
|
| 529 |
+
static_embeddings, relative_embedding = self.model.embedding(input_ids)
|
| 530 |
+
if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
|
| 531 |
+
static_embeddings = static_embeddings.transpose(0, 1)
|
| 532 |
+
contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding)
|
| 533 |
+
hs = contextualized.transpose(0, 1)
|
| 534 |
+
B, S, H = hs.shape
|
| 535 |
+
flat = hs.reshape(B * S, H)
|
| 536 |
+
logits_flat = self.model.classifier.nonlinearity(flat)
|
| 537 |
+
vocab = logits_flat.size(-1)
|
| 538 |
+
logits = logits_flat.view(B, S, vocab)
|
| 539 |
+
|
| 540 |
+
loss = None
|
| 541 |
+
if labels is not None:
|
| 542 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 543 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 544 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
|
| 545 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 546 |
+
|
| 547 |
+
hidden_states = (hs,) if output_hidden_states else None
|
| 548 |
+
|
| 549 |
+
if not return_dict:
|
| 550 |
+
outputs = (logits,)
|
| 551 |
+
if hidden_states is not None:
|
| 552 |
+
outputs = outputs + (hidden_states,)
|
| 553 |
+
return ((loss,) + outputs) if loss is not None else outputs
|
| 554 |
+
|
| 555 |
+
return CausalLMOutputWithCrossAttentions(loss=loss, logits=logits, hidden_states=hidden_states)
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
class ClassifierHead(nn.Module):
|
| 560 |
+
def __init__(self, config):
|
| 561 |
+
super().__init__()
|
| 562 |
+
self.nonlinearity = nn.Sequential(
|
| 563 |
+
nn.LayerNorm(config.hidden_size, config.classifier_layer_norm_eps, elementwise_affine=False),
|
| 564 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 565 |
+
nn.GELU(),
|
| 566 |
+
nn.LayerNorm(config.hidden_size, config.classifier_layer_norm_eps, elementwise_affine=False),
|
| 567 |
+
nn.Dropout(config.classifier_dropout),
|
| 568 |
+
nn.Linear(config.hidden_size, config.num_labels)
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
def forward(self, embeddings):
|
| 572 |
+
return self.nonlinearity(embeddings)
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
class GPTBertForSequenceClassification(PreTrainedModel):
|
| 576 |
+
config_class = GPTBertConfig
|
| 577 |
+
base_model_prefix = 'gpt_bert'
|
| 578 |
+
|
| 579 |
+
def __init__(self, config: GPTBertConfig):
|
| 580 |
+
super().__init__(config)
|
| 581 |
+
self.model = Bert(config)
|
| 582 |
+
self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK)
|
| 583 |
+
self.sequence_classifier = ClassifierHead(config)
|
| 584 |
+
|
| 585 |
+
def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None):
|
| 586 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT)
|
| 587 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 588 |
+
|
| 589 |
+
mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask)
|
| 590 |
+
static_embeddings, relative_embedding = self.model.embedding(input_ids)
|
| 591 |
+
if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
|
| 592 |
+
static_embeddings = static_embeddings.transpose(0, 1)
|
| 593 |
+
contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding)
|
| 594 |
+
hs = contextualized.transpose(0, 1)
|
| 595 |
+
pooled_output = hs[:, 0, :]
|
| 596 |
+
logits = self.sequence_classifier(pooled_output)
|
| 597 |
+
|
| 598 |
+
loss = None
|
| 599 |
+
if labels is not None:
|
| 600 |
+
labels = labels.to(logits.device)
|
| 601 |
+
problem_type = self.config.problem_type
|
| 602 |
+
if problem_type is None:
|
| 603 |
+
if self.config.num_labels == 1:
|
| 604 |
+
problem_type = "regression"
|
| 605 |
+
elif labels.dtype in (torch.long, torch.int):
|
| 606 |
+
problem_type = "single_label_classification"
|
| 607 |
+
else:
|
| 608 |
+
problem_type = "multilabel_classification"
|
| 609 |
+
|
| 610 |
+
if problem_type == "regression":
|
| 611 |
+
logits = logits.squeeze(-1)
|
| 612 |
+
loss_fct = nn.MSELoss()
|
| 613 |
+
loss = loss_fct(logits, labels.float())
|
| 614 |
+
elif problem_type == "single_label_classification":
|
| 615 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 616 |
+
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
|
| 617 |
+
else:
|
| 618 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
| 619 |
+
loss = loss_fct(logits, labels.float())
|
| 620 |
+
|
| 621 |
+
hidden_states = (hs,) if output_hidden_states else None
|
| 622 |
+
|
| 623 |
+
if not return_dict:
|
| 624 |
+
outputs = (logits,)
|
| 625 |
+
if hidden_states is not None:
|
| 626 |
+
outputs = outputs + (hidden_states,)
|
| 627 |
+
return ((loss,) + outputs) if loss is not None else outputs
|
| 628 |
+
|
| 629 |
+
return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=hidden_states)
|
| 630 |
+
|
original_project_config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_probs_dropout_prob": 0.1,
|
| 3 |
+
"hidden_dropout_prob": 0.1,
|
| 4 |
+
"hidden_size": 384,
|
| 5 |
+
"intermediate_size": 1280,
|
| 6 |
+
"max_position_embeddings": 512,
|
| 7 |
+
"position_bucket_size": 32,
|
| 8 |
+
"num_attention_heads": 6,
|
| 9 |
+
"num_hidden_layers": 12,
|
| 10 |
+
"vocab_size": 8192,
|
| 11 |
+
"layer_norm_eps": 1e-05,
|
| 12 |
+
"force_causal_mask": true,
|
| 13 |
+
"classifier_dropout": 0.1,
|
| 14 |
+
"classifier_layer_norm_eps": 1e-05,
|
| 15 |
+
"num_labels": 2
|
| 16 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4462e964cf00ec32e745e3f89f60d755476453e010a2033bd91aaa5a2f178df
|
| 3 |
+
size 503029622
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"eos_token": "</s>",
|
| 4 |
+
"mask_token": "<mask>",
|
| 5 |
+
"pad_token": "<pad>",
|
| 6 |
+
"unk_token": "<unk>"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<unk>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<s>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<pad>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"5": {
|
| 44 |
+
"content": "<special_0>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"6": {
|
| 52 |
+
"content": "<special_1>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"7": {
|
| 60 |
+
"content": "<special_2>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"8": {
|
| 68 |
+
"content": "<special_3>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"9": {
|
| 76 |
+
"content": "<special_4>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"10": {
|
| 84 |
+
"content": "<special_5>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"11": {
|
| 92 |
+
"content": "<special_6>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"12": {
|
| 100 |
+
"content": "<special_7>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"13": {
|
| 108 |
+
"content": "<special_8>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"14": {
|
| 116 |
+
"content": "<special_9>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"15": {
|
| 124 |
+
"content": "<special_10>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
}
|
| 131 |
+
},
|
| 132 |
+
"bos_token": "<s>",
|
| 133 |
+
"clean_up_tokenization_spaces": false,
|
| 134 |
+
"eos_token": "</s>",
|
| 135 |
+
"extra_special_tokens": {},
|
| 136 |
+
"mask_token": "<mask>",
|
| 137 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 138 |
+
"pad_token": "<pad>",
|
| 139 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 140 |
+
"unk_token": "<unk>"
|
| 141 |
+
}
|