Add main & ema weights for afr
Browse files- README.md +73 -0
- afr-2gpu-100steps.bin +3 -0
- afr-2gpu-100steps_ema.bin +3 -0
- config.json +33 -0
- configuration_gpt_bert.py +30 -0
- model.safetensors +3 -0
- model_ema.safetensors +3 -0
- modeling_gpt_bert.py +630 -0
- original_project_config.json +16 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +141 -0
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,73 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            library_name: transformers
         | 
| 3 | 
            +
            pipeline_tag: fill-mask
         | 
| 4 | 
            +
            tags: [gpt-bert, babylm, remote-code]
         | 
| 5 | 
            +
            license: other
         | 
| 6 | 
            +
            ---
         | 
| 7 | 
            +
            # jumelet/gptbert-afr-100steps-small
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            GPT-BERT style BabyBabyLLM model for language **afr**.
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            This repository may include both *main* and *EMA* variants.
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            **Default variant exposed to generic loaders:** `ema`
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            ## Variants Available
         | 
| 16 | 
            +
            ema, main
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            ## Files
         | 
| 19 | 
            +
            - model.safetensors (alias of default variant)
         | 
| 20 | 
            +
            - model_ema.safetensors
         | 
| 21 | 
            +
            - pytorch_model.bin (legacy PyTorch format)
         | 
| 22 | 
            +
            - afr-2gpu-100steps.bin (raw training checkpoint)
         | 
| 23 | 
            +
            - afr-2gpu-100steps_ema.bin (raw training checkpoint)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            ## Configuration
         | 
| 26 | 
            +
            ```json
         | 
| 27 | 
            +
            {
         | 
| 28 | 
            +
              "attention_probs_dropout_prob": 0.1,
         | 
| 29 | 
            +
              "hidden_dropout_prob": 0.1,
         | 
| 30 | 
            +
              "hidden_size": 384,
         | 
| 31 | 
            +
              "intermediate_size": 1280,
         | 
| 32 | 
            +
              "max_position_embeddings": 512,
         | 
| 33 | 
            +
              "position_bucket_size": 32,
         | 
| 34 | 
            +
              "num_attention_heads": 6,
         | 
| 35 | 
            +
              "num_hidden_layers": 12,
         | 
| 36 | 
            +
              "vocab_size": 8192,
         | 
| 37 | 
            +
              "layer_norm_eps": 1e-05,
         | 
| 38 | 
            +
              "force_causal_mask": true,
         | 
| 39 | 
            +
              "classifier_dropout": 0.1,
         | 
| 40 | 
            +
              "classifier_layer_norm_eps": 1e-05,
         | 
| 41 | 
            +
              "num_labels": 2
         | 
| 42 | 
            +
            }
         | 
| 43 | 
            +
            ```
         | 
| 44 | 
            +
            Tokenizer file: `tokenizer_afr_vs8192.json`
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            ## Quick Usage
         | 
| 47 | 
            +
            ```python
         | 
| 48 | 
            +
            from transformers import AutoTokenizer, AutoModelForMaskedLM
         | 
| 49 | 
            +
            model_id = 'jumelet/gptbert-afr-100steps-small'
         | 
| 50 | 
            +
            tok = AutoTokenizer.from_pretrained(model_id)
         | 
| 51 | 
            +
            model = AutoModelForMaskedLM.from_pretrained(model_id, trust_remote_code=True)
         | 
| 52 | 
            +
            out = model(**tok('Hello world', return_tensors='pt'))
         | 
| 53 | 
            +
            ```
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            ### Forced Causal Attention
         | 
| 56 | 
            +
            Causal attention is enforced during inference by applying a triangular future mask inside the remote code.
         | 
| 57 | 
            +
            This prevents the hybrid GPT-BERT layers from attending to future tokens even when a bidirectional mask is provided.
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            ### Sequence Classification
         | 
| 60 | 
            +
            `GPTBertForSequenceClassification` mirrors the original GLUE classifier head for downstream fine-tuning.
         | 
| 61 | 
            +
            ```python
         | 
| 62 | 
            +
            from transformers import AutoTokenizer, AutoModelForSequenceClassification
         | 
| 63 | 
            +
            model_id = 'jumelet/gptbert-afr-100steps-small'
         | 
| 64 | 
            +
            tok = AutoTokenizer.from_pretrained(model_id)
         | 
| 65 | 
            +
            model = AutoModelForSequenceClassification.from_pretrained(model_id, trust_remote_code=True)
         | 
| 66 | 
            +
            outputs = model(**tok('This movie was great!', return_tensors='pt'))
         | 
| 67 | 
            +
            print(outputs.logits)
         | 
| 68 | 
            +
            ```
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            ## Notes
         | 
| 71 | 
            +
            - Converted on 2025-10-04T20:19:00.375743+00:00
         | 
| 72 | 
            +
            - Weights are the exact trained parameters; no new layers were initialized.
         | 
| 73 | 
            +
            - Requires `trust_remote_code=True` due to custom architecture.
         | 
    	
        afr-2gpu-100steps.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:55a95e9e8bc0a9e0580776b7347ecf41a948fea07498d16aafc1e6fc8ee70f4b
         | 
| 3 | 
            +
            size 144793266
         | 
    	
        afr-2gpu-100steps_ema.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:7d5c1602552c6dcfa69904007135f89d90e0ab7072fde937b124d5b12d24ed04
         | 
| 3 | 
            +
            size 144793966
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,33 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "architectures": [
         | 
| 3 | 
            +
                "GPTBertForMaskedLM",
         | 
| 4 | 
            +
                "GPTBertForCausalLM",
         | 
| 5 | 
            +
                "GPTBertForSequenceClassification"
         | 
| 6 | 
            +
              ],
         | 
| 7 | 
            +
              "attention_probs_dropout_prob": 0.1,
         | 
| 8 | 
            +
              "auto_map": {
         | 
| 9 | 
            +
                "AutoConfig": "configuration_gpt_bert.GPTBertConfig",
         | 
| 10 | 
            +
                "AutoModel": "modeling_gpt_bert.GPTBertForMaskedLM",
         | 
| 11 | 
            +
                "AutoModelForCausalLM": "modeling_gpt_bert.GPTBertForCausalLM",
         | 
| 12 | 
            +
                "AutoModelForMaskedLM": "modeling_gpt_bert.GPTBertForMaskedLM",
         | 
| 13 | 
            +
                "AutoModelForSequenceClassification": "modeling_gpt_bert.GPTBertForSequenceClassification"
         | 
| 14 | 
            +
              },
         | 
| 15 | 
            +
              "bos_token_id": 1,
         | 
| 16 | 
            +
              "classifier_dropout": 0.1,
         | 
| 17 | 
            +
              "classifier_layer_norm_eps": 1e-05,
         | 
| 18 | 
            +
              "eos_token_id": 2,
         | 
| 19 | 
            +
              "force_causal_mask": true,
         | 
| 20 | 
            +
              "hidden_dropout_prob": 0.1,
         | 
| 21 | 
            +
              "hidden_size": 384,
         | 
| 22 | 
            +
              "intermediate_size": 1280,
         | 
| 23 | 
            +
              "layer_norm_eps": 1e-05,
         | 
| 24 | 
            +
              "mask_token_id": 4,
         | 
| 25 | 
            +
              "max_position_embeddings": 512,
         | 
| 26 | 
            +
              "model_type": "gpt_bert",
         | 
| 27 | 
            +
              "num_attention_heads": 6,
         | 
| 28 | 
            +
              "num_hidden_layers": 12,
         | 
| 29 | 
            +
              "num_labels": 2,
         | 
| 30 | 
            +
              "pad_token_id": 3,
         | 
| 31 | 
            +
              "position_bucket_size": 32,
         | 
| 32 | 
            +
              "vocab_size": 8192
         | 
| 33 | 
            +
            }
         | 
    	
        configuration_gpt_bert.py
    ADDED
    
    | @@ -0,0 +1,30 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
             | 
| 2 | 
            +
            from transformers import PretrainedConfig
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            class GPTBertConfig(PretrainedConfig):
         | 
| 5 | 
            +
                model_type = 'gpt_bert'
         | 
| 6 | 
            +
             | 
| 7 | 
            +
                def __init__(self, **kwargs):
         | 
| 8 | 
            +
                    self.attention_probs_dropout_prob = kwargs.pop('attention_probs_dropout_prob', 0.1)
         | 
| 9 | 
            +
                    self.hidden_dropout_prob = kwargs.pop('hidden_dropout_prob', 0.1)
         | 
| 10 | 
            +
                    self.hidden_size = kwargs.pop('hidden_size', 768)
         | 
| 11 | 
            +
                    self.intermediate_size = kwargs.pop('intermediate_size', 2560)
         | 
| 12 | 
            +
                    self.max_position_embeddings = kwargs.pop('max_position_embeddings', 512)
         | 
| 13 | 
            +
                    self.position_bucket_size = kwargs.pop('position_bucket_size', 32)
         | 
| 14 | 
            +
                    self.num_attention_heads = kwargs.pop('num_attention_heads', 12)
         | 
| 15 | 
            +
                    self.num_hidden_layers = kwargs.pop('num_hidden_layers', 12)
         | 
| 16 | 
            +
                    self.vocab_size = kwargs.pop('vocab_size', 16384)
         | 
| 17 | 
            +
                    self.layer_norm_eps = kwargs.pop('layer_norm_eps', 1e-5)
         | 
| 18 | 
            +
                    self.force_causal_mask = kwargs.pop('force_causal_mask', True)
         | 
| 19 | 
            +
                    self.classifier_dropout = kwargs.pop('classifier_dropout', 0.1)
         | 
| 20 | 
            +
                    self.classifier_layer_norm_eps = kwargs.pop('classifier_layer_norm_eps', 1e-05)
         | 
| 21 | 
            +
                    self.num_labels = kwargs.pop('num_labels', 2)
         | 
| 22 | 
            +
                    self.problem_type = kwargs.pop('problem_type', None)
         | 
| 23 | 
            +
                    self.auto_map = {
         | 
| 24 | 
            +
                'AutoConfig': 'configuration_gpt_bert.GPTBertConfig',
         | 
| 25 | 
            +
                'AutoModel': 'modeling_gpt_bert.GPTBertForMaskedLM',
         | 
| 26 | 
            +
                'AutoModelForCausalLM': 'modeling_gpt_bert.GPTBertForCausalLM',
         | 
| 27 | 
            +
                'AutoModelForMaskedLM': 'modeling_gpt_bert.GPTBertForMaskedLM',
         | 
| 28 | 
            +
                'AutoModelForSequenceClassification': 'modeling_gpt_bert.GPTBertForSequenceClassification',
         | 
| 29 | 
            +
                    }
         | 
| 30 | 
            +
                    super().__init__(**kwargs)
         | 
    	
        model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:159489e7386396378b0660d719f538f4e4e70a33bc21c5c32e0da417554379da
         | 
| 3 | 
            +
            size 157333928
         | 
    	
        model_ema.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:159489e7386396378b0660d719f538f4e4e70a33bc21c5c32e0da417554379da
         | 
| 3 | 
            +
            size 157333928
         | 
    	
        modeling_gpt_bert.py
    ADDED
    
    | @@ -0,0 +1,630 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Original training architecture (verbatim)
         | 
| 2 | 
            +
            import math
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            import torch.nn as nn
         | 
| 6 | 
            +
            import torch.nn.functional as F
         | 
| 7 | 
            +
            from torch import _softmax_backward_data as _softmax_backward_data
         | 
| 8 | 
            +
             | 
| 9 | 
            +
             | 
| 10 | 
            +
            class Bert(nn.Module):
         | 
| 11 | 
            +
                def __init__(self, config, activation_checkpointing=False):
         | 
| 12 | 
            +
                    super().__init__()
         | 
| 13 | 
            +
                    self.embedding = Embedding(config)
         | 
| 14 | 
            +
                    self.transformer = Encoder(config, activation_checkpointing)
         | 
| 15 | 
            +
                    self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight)
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                def get_contextualized(self, input_ids, attention_mask):
         | 
| 18 | 
            +
                    static_embeddings, relative_embedding = self.embedding(input_ids)
         | 
| 19 | 
            +
                    contextualized_embeddings = self.transformer(static_embeddings, attention_mask.unsqueeze(1), relative_embedding)
         | 
| 20 | 
            +
                    return contextualized_embeddings
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                def forward(self, input_ids, attention_mask, masked_lm_labels, num_masked=None, ratio=None):
         | 
| 23 | 
            +
                    contextualized_embeddings = self.get_contextualized(input_ids, attention_mask)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                    if num_masked is None:
         | 
| 26 | 
            +
                        subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                        gold_labels = masked_lm_labels.flatten()
         | 
| 29 | 
            +
                        gold_labels = gold_labels[gold_labels != -100]
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                        loss = F.cross_entropy(subword_prediction, gold_labels, reduction="none").mean()
         | 
| 32 | 
            +
                        z_loss = torch.logsumexp(subword_prediction, dim=-1).pow(2).mean()
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                        with torch.no_grad():
         | 
| 35 | 
            +
                            accuracy = (subword_prediction.argmax(-1) == gold_labels).float().mean()
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                        num_tokens = gold_labels.size(0)
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                        return loss, accuracy, z_loss, num_tokens
         | 
| 40 | 
            +
                    else:
         | 
| 41 | 
            +
                        masked_subword_prediction, causal_subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                        if masked_subword_prediction is not None:
         | 
| 44 | 
            +
                            masked_gold_labels = masked_lm_labels[:, :num_masked].flatten()
         | 
| 45 | 
            +
                            masked_gold_labels = masked_gold_labels[masked_gold_labels != -100]
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                            masked_loss = F.cross_entropy(masked_subword_prediction, masked_gold_labels)
         | 
| 48 | 
            +
                            masked_z_loss = torch.logsumexp(masked_subword_prediction, dim=-1).pow(2).mean()
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                            with torch.no_grad():
         | 
| 51 | 
            +
                                masked_accuracy = (masked_subword_prediction.argmax(-1) == masked_gold_labels).float().mean()
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                            num_masked_tokens = masked_gold_labels.size(0)
         | 
| 54 | 
            +
                        else:
         | 
| 55 | 
            +
                            masked_loss = 0.0
         | 
| 56 | 
            +
                            masked_z_loss = 0.0
         | 
| 57 | 
            +
                            masked_accuracy = 0.0
         | 
| 58 | 
            +
                            num_masked_tokens = 0
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                        if causal_subword_prediction is not None:
         | 
| 61 | 
            +
                            causal_gold_labels = masked_lm_labels[:, num_masked:].flatten()
         | 
| 62 | 
            +
                            causal_gold_labels = causal_gold_labels[causal_gold_labels != -100]
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                            causal_loss = F.cross_entropy(causal_subword_prediction, causal_gold_labels)
         | 
| 65 | 
            +
                            causal_z_loss = torch.logsumexp(causal_subword_prediction, dim=-1).pow(2).mean()
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                            with torch.no_grad():
         | 
| 68 | 
            +
                                causal_accuracy = (causal_subword_prediction.argmax(-1) == causal_gold_labels).float().mean()
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                            num_causal_tokens = causal_gold_labels.size(0)
         | 
| 71 | 
            +
                        else:
         | 
| 72 | 
            +
                            causal_loss = 0.0
         | 
| 73 | 
            +
                            causal_z_loss = 0.0
         | 
| 74 | 
            +
                            causal_accuracy = 0.0
         | 
| 75 | 
            +
                            num_causal_tokens = 0
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                        loss = ratio * masked_loss + (1 - ratio) * causal_loss
         | 
| 78 | 
            +
                        z_loss = ratio * masked_z_loss + (1 - ratio) * causal_z_loss
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                        with torch.no_grad():
         | 
| 81 | 
            +
                            accuracy = ratio * masked_accuracy + (1 - ratio) * causal_accuracy
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                        num_tokens = num_masked_tokens + num_causal_tokens
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                        return loss, masked_loss, causal_loss, accuracy, masked_accuracy, causal_accuracy, z_loss, num_tokens
         | 
| 86 | 
            +
             | 
| 87 | 
            +
             | 
| 88 | 
            +
            # From https://github.com/epfml/DenseFormer
         | 
| 89 | 
            +
            class InPlaceSetSlice(torch.autograd.Function):
         | 
| 90 | 
            +
                @staticmethod
         | 
| 91 | 
            +
                def forward(ctx, full_tensor, last_slice, x_idx, x_val):
         | 
| 92 | 
            +
                    full_tensor[x_idx] = x_val
         | 
| 93 | 
            +
                    ctx.x_idx = x_idx
         | 
| 94 | 
            +
                    ret = torch.Tensor().to(full_tensor.device)
         | 
| 95 | 
            +
                    ret.set_(full_tensor[:x_idx + 1])
         | 
| 96 | 
            +
                    return ret
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                @staticmethod
         | 
| 99 | 
            +
                def backward(ctx, grad_out):
         | 
| 100 | 
            +
                    if ctx.x_idx == 0:
         | 
| 101 | 
            +
                        return None, None, None, grad_out[ctx.x_idx]
         | 
| 102 | 
            +
                    else:
         | 
| 103 | 
            +
                        return None, grad_out[:ctx.x_idx], None, grad_out[ctx.x_idx]
         | 
| 104 | 
            +
             | 
| 105 | 
            +
             | 
| 106 | 
            +
            def apply_inplace_set(x_acc, x_idx, x_val):
         | 
| 107 | 
            +
                full_tensor, last_slice = x_acc
         | 
| 108 | 
            +
                new_slice = InPlaceSetSlice.apply(full_tensor, last_slice, x_idx, x_val)
         | 
| 109 | 
            +
                return full_tensor, new_slice
         | 
| 110 | 
            +
             | 
| 111 | 
            +
             | 
| 112 | 
            +
            class DWAModules(torch.nn.Module):
         | 
| 113 | 
            +
                def __init__(self, hidden_size, n_blocks):
         | 
| 114 | 
            +
                    super().__init__()
         | 
| 115 | 
            +
                    self.n_blocks = n_blocks
         | 
| 116 | 
            +
                    self.alphas = nn.ParameterList([nn.Parameter(torch.zeros(i + 2)) for i in range(n_blocks)])
         | 
| 117 | 
            +
                    self.accumulator = None
         | 
| 118 | 
            +
                    self._init_weights()
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                def _init_weights(self):
         | 
| 121 | 
            +
                    for module in self.alphas:
         | 
| 122 | 
            +
                        module.data.zero_()
         | 
| 123 | 
            +
                        module.data[-1] = 1.0
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                def init_accumulator(self, x):
         | 
| 126 | 
            +
                    self.accumulator = (torch.zeros((self.n_blocks + 1, *x.shape), device=x.device, dtype=x.dtype), None)
         | 
| 127 | 
            +
                    self.accumulator = apply_inplace_set(self.accumulator, 0, x)
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                def forward(self, x, block_idx):
         | 
| 130 | 
            +
                    assert self.accumulator is not None, "`init_accumulator(x)` needs to be called first"
         | 
| 131 | 
            +
                    self.accumulator = apply_inplace_set(
         | 
| 132 | 
            +
                        self.accumulator,
         | 
| 133 | 
            +
                        block_idx + 1,
         | 
| 134 | 
            +
                        x
         | 
| 135 | 
            +
                    )
         | 
| 136 | 
            +
                    x = torch.tensordot(self.alphas[block_idx], self.accumulator[1], dims=1)
         | 
| 137 | 
            +
                    return x
         | 
| 138 | 
            +
             | 
| 139 | 
            +
             | 
| 140 | 
            +
            class Encoder(nn.Module):
         | 
| 141 | 
            +
                def __init__(self, config, activation_checkpointing=False):
         | 
| 142 | 
            +
                    super().__init__()
         | 
| 143 | 
            +
                    self.attention_layers = nn.ModuleList([Attention(config) for _ in range(config.num_hidden_layers)])
         | 
| 144 | 
            +
                    self.mlp_layers = nn.ModuleList([FeedForward(config) for _ in range(config.num_hidden_layers)])
         | 
| 145 | 
            +
                    self.dwa_modules = DWAModules(config.hidden_size, config.num_hidden_layers * 2)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    for i, layer in enumerate(self.mlp_layers):
         | 
| 148 | 
            +
                        layer.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
         | 
| 149 | 
            +
                        layer.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    self.activation_checkpointing = activation_checkpointing
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                def forward(self, x, attention_mask, relative_embedding):
         | 
| 154 | 
            +
                    self.dwa_modules.init_accumulator(x)
         | 
| 155 | 
            +
                    for i, (attention_layer, mlp_layer) in enumerate(zip(self.attention_layers, self.mlp_layers)):
         | 
| 156 | 
            +
                        x = x + attention_layer(x, attention_mask, relative_embedding)
         | 
| 157 | 
            +
                        x = self.dwa_modules(x, block_idx=i * 2)
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                        x = x + mlp_layer(x)
         | 
| 160 | 
            +
                        x = self.dwa_modules(x, block_idx=i * 2 + 1)
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                    return x
         | 
| 163 | 
            +
             | 
| 164 | 
            +
             | 
| 165 | 
            +
            class MaskClassifier(nn.Module):
         | 
| 166 | 
            +
                def __init__(self, config, subword_embedding):
         | 
| 167 | 
            +
                    super().__init__()
         | 
| 168 | 
            +
                    self.nonlinearity = nn.Sequential(
         | 
| 169 | 
            +
                        nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
         | 
| 170 | 
            +
                        nn.Linear(config.hidden_size, config.hidden_size),
         | 
| 171 | 
            +
                        nn.GELU(),
         | 
| 172 | 
            +
                        nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
         | 
| 173 | 
            +
                        nn.Dropout(config.hidden_dropout_prob),
         | 
| 174 | 
            +
                        nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
         | 
| 175 | 
            +
                    )
         | 
| 176 | 
            +
                    self.initialize(config.hidden_size, subword_embedding)
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                def initialize(self, hidden_size, embedding):
         | 
| 179 | 
            +
                    std = math.sqrt(2.0 / (5.0 * hidden_size))
         | 
| 180 | 
            +
                    nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
         | 
| 181 | 
            +
                    self.nonlinearity[-1].weight = embedding
         | 
| 182 | 
            +
                    self.nonlinearity[1].bias.data.zero_()
         | 
| 183 | 
            +
                    self.nonlinearity[-1].bias.data.zero_()
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                def forward(self, x, masked_lm_labels, num_masked=None):
         | 
| 186 | 
            +
                    if num_masked is None:
         | 
| 187 | 
            +
                        x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
         | 
| 188 | 
            +
                        x = self.nonlinearity(x)
         | 
| 189 | 
            +
                        return x
         | 
| 190 | 
            +
                    else:
         | 
| 191 | 
            +
                        masked_x, causal_x = torch.tensor_split(x, (num_masked,), dim=1)
         | 
| 192 | 
            +
                        mntp_masked_lm_labels, causal_masked_lm_labels = torch.tensor_split(masked_lm_labels, (num_masked,), dim=1)
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                        if masked_x.size(1) != 0:
         | 
| 195 | 
            +
                            masked_x = torch.index_select(masked_x.flatten(0, 1), 0, torch.nonzero(mntp_masked_lm_labels.flatten() != -100).squeeze())
         | 
| 196 | 
            +
                            masked_x = self.nonlinearity(masked_x)
         | 
| 197 | 
            +
                        else:
         | 
| 198 | 
            +
                            masked_x = None
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                        if causal_x.size(1) != 0:
         | 
| 201 | 
            +
                            causal_x = torch.index_select(causal_x.flatten(0, 1), 0, torch.nonzero(causal_masked_lm_labels.flatten() != -100).squeeze())
         | 
| 202 | 
            +
                            causal_x = self.nonlinearity(causal_x)
         | 
| 203 | 
            +
                        else:
         | 
| 204 | 
            +
                            causal_x = None
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                        return masked_x, causal_x
         | 
| 207 | 
            +
             | 
| 208 | 
            +
             | 
| 209 | 
            +
            class GeGLU(nn.Module):
         | 
| 210 | 
            +
                def forward(self, x):
         | 
| 211 | 
            +
                    x, gate = x.chunk(2, dim=-1)
         | 
| 212 | 
            +
                    x = x * F.gelu(gate, approximate='tanh')
         | 
| 213 | 
            +
                    return x
         | 
| 214 | 
            +
             | 
| 215 | 
            +
             | 
| 216 | 
            +
            class FeedForward(nn.Module):
         | 
| 217 | 
            +
                def __init__(self, config):
         | 
| 218 | 
            +
                    super().__init__()
         | 
| 219 | 
            +
                    self.mlp = nn.Sequential(
         | 
| 220 | 
            +
                        nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
         | 
| 221 | 
            +
                        nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
         | 
| 222 | 
            +
                        GeGLU(),
         | 
| 223 | 
            +
                        nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
         | 
| 224 | 
            +
                        nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
         | 
| 225 | 
            +
                        nn.Dropout(config.hidden_dropout_prob)
         | 
| 226 | 
            +
                    )
         | 
| 227 | 
            +
                    self.initialize(config.hidden_size)
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                def initialize(self, hidden_size):
         | 
| 230 | 
            +
                    std = math.sqrt(2.0 / (5.0 * hidden_size))
         | 
| 231 | 
            +
                    nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
         | 
| 232 | 
            +
                    nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                def forward(self, x):
         | 
| 235 | 
            +
                    return self.mlp(x)
         | 
| 236 | 
            +
             | 
| 237 | 
            +
             | 
| 238 | 
            +
            class MaskedSoftmax(torch.autograd.Function):
         | 
| 239 | 
            +
                @staticmethod
         | 
| 240 | 
            +
                def forward(self, x, mask, dim):
         | 
| 241 | 
            +
                    self.dim = dim
         | 
| 242 | 
            +
                    x.masked_fill_(mask, float('-inf'))
         | 
| 243 | 
            +
                    x = torch.softmax(x, self.dim)
         | 
| 244 | 
            +
                    x.masked_fill_(mask, 0.0)
         | 
| 245 | 
            +
                    self.save_for_backward(x)
         | 
| 246 | 
            +
                    return x
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                @staticmethod
         | 
| 249 | 
            +
                def backward(self, grad_output):
         | 
| 250 | 
            +
                    output, = self.saved_tensors
         | 
| 251 | 
            +
                    inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
         | 
| 252 | 
            +
                    return inputGrad, None, None
         | 
| 253 | 
            +
             | 
| 254 | 
            +
             | 
| 255 | 
            +
            class Attention(nn.Module):
         | 
| 256 | 
            +
                def __init__(self, config):
         | 
| 257 | 
            +
                    super().__init__()
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    self.config = config
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    if config.hidden_size % config.num_attention_heads != 0:
         | 
| 262 | 
            +
                        raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 265 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 266 | 
            +
                    self.head_size = config.hidden_size // config.num_attention_heads
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                    self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
         | 
| 269 | 
            +
                    self.in_proj_vg = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
         | 
| 270 | 
            +
                    self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                    self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
         | 
| 273 | 
            +
                    self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                    position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
         | 
| 276 | 
            +
                        - torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
         | 
| 277 | 
            +
                    position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
         | 
| 278 | 
            +
                    position_indices = config.position_bucket_size - 1 + position_indices
         | 
| 279 | 
            +
                    self.register_buffer("position_indices", position_indices, persistent=True)
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                    self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
         | 
| 282 | 
            +
                    self.scale = 1.0 / math.sqrt(3 * self.head_size)
         | 
| 283 | 
            +
                    self.initialize()
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
         | 
| 286 | 
            +
                    sign = torch.sign(relative_pos)
         | 
| 287 | 
            +
                    mid = bucket_size // 2
         | 
| 288 | 
            +
                    abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
         | 
| 289 | 
            +
                    log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
         | 
| 290 | 
            +
                    bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
         | 
| 291 | 
            +
                    return bucket_pos
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                def initialize(self):
         | 
| 294 | 
            +
                    std = math.sqrt(2.0 / (5.0 * self.hidden_size))
         | 
| 295 | 
            +
                    nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
         | 
| 296 | 
            +
                    nn.init.trunc_normal_(self.in_proj_vg.weight, mean=0.0, std=std, a=-2*std, b=2*std)
         | 
| 297 | 
            +
                    nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
         | 
| 298 | 
            +
                    self.in_proj_qk.bias.data.zero_()
         | 
| 299 | 
            +
                    self.in_proj_vg.bias.data.zero_()
         | 
| 300 | 
            +
                    self.out_proj.bias.data.zero_()
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                def forward(self, hidden_states, attention_mask, relative_embedding):
         | 
| 303 | 
            +
                    key_len, batch_size, _ = hidden_states.size()
         | 
| 304 | 
            +
                    query_len = key_len
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                    if self.position_indices.size(0) < query_len:
         | 
| 307 | 
            +
                        position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
         | 
| 308 | 
            +
                            - torch.arange(query_len, dtype=torch.long).unsqueeze(0)
         | 
| 309 | 
            +
                        position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
         | 
| 310 | 
            +
                        position_indices = self.config.position_bucket_size - 1 + position_indices
         | 
| 311 | 
            +
                        self.register_buffer("position_indices", position_indices.to(hidden_states.device), persistent=True)
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                    hidden_states = self.pre_layer_norm(hidden_states)
         | 
| 314 | 
            +
                    query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2)  # shape: [T, B, D]
         | 
| 315 | 
            +
                    value, gate = self.in_proj_vg(hidden_states).chunk(2, dim=2)  # shape: [T, B, D]
         | 
| 316 | 
            +
                    gate = F.gelu(gate)
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                    pos = self.in_proj_qk(self.dropout(relative_embedding))  # shape: [2T-1, 2D]
         | 
| 319 | 
            +
                    pos = F.embedding(self.position_indices[:query_len, :key_len], pos)  # shape: [T, T, 2D]
         | 
| 320 | 
            +
                    query_pos, key_pos = pos.chunk(2, dim=-1)
         | 
| 321 | 
            +
                    query_pos = query_pos.view(query_len, key_len, self.num_heads, self.head_size)
         | 
| 322 | 
            +
                    key_pos = key_pos.view(query_len, key_len, self.num_heads, self.head_size)
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                    query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
         | 
| 325 | 
            +
                    key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
         | 
| 326 | 
            +
                    value = value.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                    attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                    query = query.view(batch_size, self.num_heads, query_len, self.head_size)
         | 
| 331 | 
            +
                    key = key.view(batch_size, self.num_heads, query_len, self.head_size)
         | 
| 332 | 
            +
                    attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
         | 
| 333 | 
            +
                    attention_scores.add_(torch.einsum("bhqd,qkhd->bhqk", query, key_pos * self.scale))
         | 
| 334 | 
            +
                    attention_scores.add_(torch.einsum("bhkd,qkhd->bhqk", key * self.scale, query_pos))
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                    attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    attention_probs = self.dropout(attention_probs)
         | 
| 339 | 
            +
                    context = torch.bmm(attention_probs.flatten(0, 1), value)  # shape: [B*H, Q, D]
         | 
| 340 | 
            +
                    context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size)  # shape: [Q, B, H*D]
         | 
| 341 | 
            +
                    context = context * gate
         | 
| 342 | 
            +
                    context = self.post_layer_norm(context)
         | 
| 343 | 
            +
                    context = self.out_proj(context)
         | 
| 344 | 
            +
                    context = self.dropout(context)
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                    return context
         | 
| 347 | 
            +
             | 
| 348 | 
            +
             | 
| 349 | 
            +
            class Embedding(nn.Module):
         | 
| 350 | 
            +
                def __init__(self, config):
         | 
| 351 | 
            +
                    super().__init__()
         | 
| 352 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                    self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
         | 
| 355 | 
            +
                    self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
         | 
| 356 | 
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                    self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
         | 
| 359 | 
            +
                    self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                    self.initialize()
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                def initialize(self):
         | 
| 364 | 
            +
                    std = math.sqrt(2.0 / (5.0 * self.hidden_size))
         | 
| 365 | 
            +
                    nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
         | 
| 366 | 
            +
                    nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                def forward(self, input_ids):
         | 
| 369 | 
            +
                    word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
         | 
| 370 | 
            +
                    relative_embeddings = self.relative_layer_norm(self.relative_embedding)
         | 
| 371 | 
            +
                    return word_embedding, relative_embeddings
         | 
| 372 | 
            +
             | 
| 373 | 
            +
             | 
| 374 | 
            +
            # HF wrappers that preserve state dict keys and behavior
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                    from transformers import PreTrainedModel
         | 
| 377 | 
            +
                    from transformers.modeling_outputs import MaskedLMOutput, CausalLMOutputWithCrossAttentions, SequenceClassifierOutput
         | 
| 378 | 
            +
                    from .configuration_gpt_bert import GPTBertConfig
         | 
| 379 | 
            +
                    import torch
         | 
| 380 | 
            +
                    import torch.nn as nn
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                    DEFAULT_FORCE_CAUSAL_MASK = True
         | 
| 383 | 
            +
                    EMIT_HIDDEN_STATES_DEFAULT = True
         | 
| 384 | 
            +
             | 
| 385 | 
            +
             | 
| 386 | 
            +
                    def _normalize_mask_tensor(mask):
         | 
| 387 | 
            +
                        if mask.dtype == torch.bool:
         | 
| 388 | 
            +
                            if mask.numel() == 0:
         | 
| 389 | 
            +
                                return mask
         | 
| 390 | 
            +
                            true_fraction = mask.float().mean().item()
         | 
| 391 | 
            +
                            if true_fraction > 0.5:
         | 
| 392 | 
            +
                                mask = ~mask
         | 
| 393 | 
            +
                        else:
         | 
| 394 | 
            +
                            mask = mask <= 0
         | 
| 395 | 
            +
                        return mask.to(torch.bool)
         | 
| 396 | 
            +
             | 
| 397 | 
            +
             | 
| 398 | 
            +
                    def _ensure_valid_rows(mask):
         | 
| 399 | 
            +
                        row_masked = mask.all(dim=-1)
         | 
| 400 | 
            +
                        if row_masked.any():
         | 
| 401 | 
            +
                            idx = row_masked.nonzero(as_tuple=False)
         | 
| 402 | 
            +
                            mask[idx[:, 0], idx[:, 1], idx[:, 1]] = False
         | 
| 403 | 
            +
                        return mask
         | 
| 404 | 
            +
             | 
| 405 | 
            +
             | 
| 406 | 
            +
                    def _build_future_causal_mask(batch_size, seq_len, device):
         | 
| 407 | 
            +
                        base = torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device), diagonal=1)
         | 
| 408 | 
            +
                        return base.unsqueeze(0).expand(batch_size, -1, -1)
         | 
| 409 | 
            +
             | 
| 410 | 
            +
             | 
| 411 | 
            +
                    def _build_babylm_attention_mask(input_ids, attention_mask, force_causal=False):
         | 
| 412 | 
            +
                        batch_size, seq_len = input_ids.shape[:2]
         | 
| 413 | 
            +
                        device = input_ids.device
         | 
| 414 | 
            +
                        if attention_mask is None:
         | 
| 415 | 
            +
                            mask = torch.zeros(batch_size, seq_len, seq_len, dtype=torch.bool, device=device)
         | 
| 416 | 
            +
                        else:
         | 
| 417 | 
            +
                            mask = attention_mask
         | 
| 418 | 
            +
                            if mask.dim() == 0:
         | 
| 419 | 
            +
                                mask = mask.unsqueeze(0)
         | 
| 420 | 
            +
                            if mask.dim() == 1:
         | 
| 421 | 
            +
                                mask = mask.unsqueeze(0)
         | 
| 422 | 
            +
                            if mask.dim() == 2:
         | 
| 423 | 
            +
                                mask = _normalize_mask_tensor(mask)
         | 
| 424 | 
            +
                                mask = mask.unsqueeze(1) | mask.unsqueeze(2)
         | 
| 425 | 
            +
                            elif mask.dim() == 3:
         | 
| 426 | 
            +
                                if mask.size(1) == 1 and mask.size(2) == seq_len:
         | 
| 427 | 
            +
                                    mask = _normalize_mask_tensor(mask.squeeze(1))
         | 
| 428 | 
            +
                                    mask = mask.unsqueeze(1) | mask.unsqueeze(2)
         | 
| 429 | 
            +
                                elif mask.size(1) == seq_len and mask.size(2) == 1:
         | 
| 430 | 
            +
                                    mask = _normalize_mask_tensor(mask.squeeze(2))
         | 
| 431 | 
            +
                                    mask = mask.unsqueeze(1) | mask.unsqueeze(2)
         | 
| 432 | 
            +
                                else:
         | 
| 433 | 
            +
                                    mask = _normalize_mask_tensor(mask)
         | 
| 434 | 
            +
                            elif mask.dim() == 4:
         | 
| 435 | 
            +
                                if mask.size(1) == 1:
         | 
| 436 | 
            +
                                    mask = mask[:, 0]
         | 
| 437 | 
            +
                                else:
         | 
| 438 | 
            +
                                    mask = mask.any(dim=1)
         | 
| 439 | 
            +
                                mask = _normalize_mask_tensor(mask)
         | 
| 440 | 
            +
                            else:
         | 
| 441 | 
            +
                                raise ValueError("Unsupported attention_mask dimensions: {}".format(mask.dim()))
         | 
| 442 | 
            +
                            mask = mask.to(device=device, dtype=torch.bool)
         | 
| 443 | 
            +
                            if mask.dim() == 2:
         | 
| 444 | 
            +
                                mask = mask.unsqueeze(1) | mask.unsqueeze(2)
         | 
| 445 | 
            +
                            if mask.dim() != 3:
         | 
| 446 | 
            +
                                raise ValueError("attention_mask must broadcast to a square matrix")
         | 
| 447 | 
            +
                            if mask.size(0) == 1 and batch_size > 1:
         | 
| 448 | 
            +
                                mask = mask.expand(batch_size, -1, -1).clone()
         | 
| 449 | 
            +
                            elif mask.size(0) != batch_size:
         | 
| 450 | 
            +
                                raise ValueError("attention_mask batch dimension {} does not match inputs {}".format(mask.size(0), batch_size))
         | 
| 451 | 
            +
                            rows = min(mask.size(1), seq_len)
         | 
| 452 | 
            +
                            cols = min(mask.size(2), seq_len)
         | 
| 453 | 
            +
                            if mask.size(1) != seq_len or mask.size(2) != seq_len:
         | 
| 454 | 
            +
                                new_mask = torch.ones(batch_size, seq_len, seq_len, dtype=torch.bool, device=device)
         | 
| 455 | 
            +
                                new_mask[:, :rows, :cols] = mask[:, :rows, :cols]
         | 
| 456 | 
            +
                                mask = new_mask
         | 
| 457 | 
            +
                        if force_causal:
         | 
| 458 | 
            +
                            future_mask = _build_future_causal_mask(mask.size(0), seq_len, device)
         | 
| 459 | 
            +
                            mask = mask | future_mask
         | 
| 460 | 
            +
                        mask = _ensure_valid_rows(mask)
         | 
| 461 | 
            +
                        return mask.unsqueeze(1)
         | 
| 462 | 
            +
             | 
| 463 | 
            +
             | 
| 464 | 
            +
                    class GPTBertForMaskedLM(PreTrainedModel):
         | 
| 465 | 
            +
                        config_class = GPTBertConfig
         | 
| 466 | 
            +
                        base_model_prefix = 'gpt_bert'
         | 
| 467 | 
            +
             | 
| 468 | 
            +
                        def __init__(self, config: GPTBertConfig):
         | 
| 469 | 
            +
                            super().__init__(config)
         | 
| 470 | 
            +
                            self.model = Bert(config)
         | 
| 471 | 
            +
                            self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK)
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                        def tie_weights(self):
         | 
| 474 | 
            +
                            try:
         | 
| 475 | 
            +
                                self.model.classifier.nonlinearity[-1].weight = self.model.embedding.word_embedding.weight
         | 
| 476 | 
            +
                            except Exception:
         | 
| 477 | 
            +
                                pass
         | 
| 478 | 
            +
                            return super().tie_weights()
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                        def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None):
         | 
| 481 | 
            +
                            output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT)
         | 
| 482 | 
            +
                            return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 483 | 
            +
             | 
| 484 | 
            +
                            mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask)
         | 
| 485 | 
            +
                            static_embeddings, relative_embedding = self.model.embedding(input_ids)
         | 
| 486 | 
            +
                            if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
         | 
| 487 | 
            +
                                static_embeddings = static_embeddings.transpose(0, 1)
         | 
| 488 | 
            +
                            contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding)
         | 
| 489 | 
            +
                            hs = contextualized.transpose(0, 1)
         | 
| 490 | 
            +
                            B, S, H = hs.shape
         | 
| 491 | 
            +
                            flat = hs.reshape(B * S, H)
         | 
| 492 | 
            +
                            logits_flat = self.model.classifier.nonlinearity(flat)
         | 
| 493 | 
            +
                            vocab = logits_flat.size(-1)
         | 
| 494 | 
            +
                            logits = logits_flat.view(B, S, vocab)
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                            loss = None
         | 
| 497 | 
            +
                            if labels is not None:
         | 
| 498 | 
            +
                                loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
         | 
| 499 | 
            +
                                loss = loss_fct(logits.view(-1, vocab), labels.view(-1))
         | 
| 500 | 
            +
             | 
| 501 | 
            +
                            hidden_states = (hs,) if output_hidden_states else None
         | 
| 502 | 
            +
             | 
| 503 | 
            +
                            if not return_dict:
         | 
| 504 | 
            +
                                outputs = (logits,)
         | 
| 505 | 
            +
                                if hidden_states is not None:
         | 
| 506 | 
            +
                                    outputs = outputs + (hidden_states,)
         | 
| 507 | 
            +
                                return ((loss,) + outputs) if loss is not None else outputs
         | 
| 508 | 
            +
             | 
| 509 | 
            +
                            return MaskedLMOutput(loss=loss, logits=logits, hidden_states=hidden_states)
         | 
| 510 | 
            +
             | 
| 511 | 
            +
             | 
| 512 | 
            +
                    class GPTBertForCausalLM(PreTrainedModel):
         | 
| 513 | 
            +
                        config_class = GPTBertConfig
         | 
| 514 | 
            +
                        base_model_prefix = 'gpt_bert'
         | 
| 515 | 
            +
             | 
| 516 | 
            +
                        def __init__(self, config: GPTBertConfig):
         | 
| 517 | 
            +
                            super().__init__(config)
         | 
| 518 | 
            +
                            self.model = Bert(config)
         | 
| 519 | 
            +
                            self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK)
         | 
| 520 | 
            +
             | 
| 521 | 
            +
                        def prepare_inputs_for_generation(self, input_ids, **kwargs):
         | 
| 522 | 
            +
                            return {'input_ids': input_ids, 'attention_mask': kwargs.get('attention_mask', None)}
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                        def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None):
         | 
| 525 | 
            +
                            output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT)
         | 
| 526 | 
            +
                            return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 527 | 
            +
             | 
| 528 | 
            +
                            mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask)
         | 
| 529 | 
            +
                            static_embeddings, relative_embedding = self.model.embedding(input_ids)
         | 
| 530 | 
            +
                            if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
         | 
| 531 | 
            +
                                static_embeddings = static_embeddings.transpose(0, 1)
         | 
| 532 | 
            +
                            contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding)
         | 
| 533 | 
            +
                            hs = contextualized.transpose(0, 1)
         | 
| 534 | 
            +
                            B, S, H = hs.shape
         | 
| 535 | 
            +
                            flat = hs.reshape(B * S, H)
         | 
| 536 | 
            +
                            logits_flat = self.model.classifier.nonlinearity(flat)
         | 
| 537 | 
            +
                            vocab = logits_flat.size(-1)
         | 
| 538 | 
            +
                            logits = logits_flat.view(B, S, vocab)
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                            loss = None
         | 
| 541 | 
            +
                            if labels is not None:
         | 
| 542 | 
            +
                                shift_logits = logits[..., :-1, :].contiguous()
         | 
| 543 | 
            +
                                shift_labels = labels[..., 1:].contiguous()
         | 
| 544 | 
            +
                                loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
         | 
| 545 | 
            +
                                loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
         | 
| 546 | 
            +
             | 
| 547 | 
            +
                            hidden_states = (hs,) if output_hidden_states else None
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                            if not return_dict:
         | 
| 550 | 
            +
                                outputs = (logits,)
         | 
| 551 | 
            +
                                if hidden_states is not None:
         | 
| 552 | 
            +
                                    outputs = outputs + (hidden_states,)
         | 
| 553 | 
            +
                                return ((loss,) + outputs) if loss is not None else outputs
         | 
| 554 | 
            +
             | 
| 555 | 
            +
                            return CausalLMOutputWithCrossAttentions(loss=loss, logits=logits, hidden_states=hidden_states)
         | 
| 556 | 
            +
             | 
| 557 | 
            +
             | 
| 558 | 
            +
             | 
| 559 | 
            +
            class ClassifierHead(nn.Module):
         | 
| 560 | 
            +
                def __init__(self, config):
         | 
| 561 | 
            +
                    super().__init__()
         | 
| 562 | 
            +
                    self.nonlinearity = nn.Sequential(
         | 
| 563 | 
            +
                        nn.LayerNorm(config.hidden_size, config.classifier_layer_norm_eps, elementwise_affine=False),
         | 
| 564 | 
            +
                        nn.Linear(config.hidden_size, config.hidden_size),
         | 
| 565 | 
            +
                        nn.GELU(),
         | 
| 566 | 
            +
                        nn.LayerNorm(config.hidden_size, config.classifier_layer_norm_eps, elementwise_affine=False),
         | 
| 567 | 
            +
                        nn.Dropout(config.classifier_dropout),
         | 
| 568 | 
            +
                        nn.Linear(config.hidden_size, config.num_labels)
         | 
| 569 | 
            +
                    )
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                def forward(self, embeddings):
         | 
| 572 | 
            +
                    return self.nonlinearity(embeddings)
         | 
| 573 | 
            +
             | 
| 574 | 
            +
             | 
| 575 | 
            +
            class GPTBertForSequenceClassification(PreTrainedModel):
         | 
| 576 | 
            +
                config_class = GPTBertConfig
         | 
| 577 | 
            +
                base_model_prefix = 'gpt_bert'
         | 
| 578 | 
            +
             | 
| 579 | 
            +
                def __init__(self, config: GPTBertConfig):
         | 
| 580 | 
            +
                    super().__init__(config)
         | 
| 581 | 
            +
                    self.model = Bert(config)
         | 
| 582 | 
            +
                    self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK)
         | 
| 583 | 
            +
                    self.sequence_classifier = ClassifierHead(config)
         | 
| 584 | 
            +
             | 
| 585 | 
            +
                def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None):
         | 
| 586 | 
            +
                    output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT)
         | 
| 587 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 588 | 
            +
             | 
| 589 | 
            +
                    mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask)
         | 
| 590 | 
            +
                    static_embeddings, relative_embedding = self.model.embedding(input_ids)
         | 
| 591 | 
            +
                    if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
         | 
| 592 | 
            +
                        static_embeddings = static_embeddings.transpose(0, 1)
         | 
| 593 | 
            +
                    contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding)
         | 
| 594 | 
            +
                    hs = contextualized.transpose(0, 1)
         | 
| 595 | 
            +
                    pooled_output = hs[:, 0, :]
         | 
| 596 | 
            +
                    logits = self.sequence_classifier(pooled_output)
         | 
| 597 | 
            +
             | 
| 598 | 
            +
                    loss = None
         | 
| 599 | 
            +
                    if labels is not None:
         | 
| 600 | 
            +
                        labels = labels.to(logits.device)
         | 
| 601 | 
            +
                        problem_type = self.config.problem_type
         | 
| 602 | 
            +
                        if problem_type is None:
         | 
| 603 | 
            +
                            if self.config.num_labels == 1:
         | 
| 604 | 
            +
                                problem_type = "regression"
         | 
| 605 | 
            +
                            elif labels.dtype in (torch.long, torch.int):
         | 
| 606 | 
            +
                                problem_type = "single_label_classification"
         | 
| 607 | 
            +
                            else:
         | 
| 608 | 
            +
                                problem_type = "multilabel_classification"
         | 
| 609 | 
            +
             | 
| 610 | 
            +
                        if problem_type == "regression":
         | 
| 611 | 
            +
                            logits = logits.squeeze(-1)
         | 
| 612 | 
            +
                            loss_fct = nn.MSELoss()
         | 
| 613 | 
            +
                            loss = loss_fct(logits, labels.float())
         | 
| 614 | 
            +
                        elif problem_type == "single_label_classification":
         | 
| 615 | 
            +
                            loss_fct = nn.CrossEntropyLoss()
         | 
| 616 | 
            +
                            loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
         | 
| 617 | 
            +
                        else:
         | 
| 618 | 
            +
                            loss_fct = nn.BCEWithLogitsLoss()
         | 
| 619 | 
            +
                            loss = loss_fct(logits, labels.float())
         | 
| 620 | 
            +
             | 
| 621 | 
            +
                    hidden_states = (hs,) if output_hidden_states else None
         | 
| 622 | 
            +
             | 
| 623 | 
            +
                    if not return_dict:
         | 
| 624 | 
            +
                        outputs = (logits,)
         | 
| 625 | 
            +
                        if hidden_states is not None:
         | 
| 626 | 
            +
                            outputs = outputs + (hidden_states,)
         | 
| 627 | 
            +
                        return ((loss,) + outputs) if loss is not None else outputs
         | 
| 628 | 
            +
             | 
| 629 | 
            +
                    return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=hidden_states)
         | 
| 630 | 
            +
             | 
    	
        original_project_config.json
    ADDED
    
    | @@ -0,0 +1,16 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "attention_probs_dropout_prob": 0.1,
         | 
| 3 | 
            +
              "hidden_dropout_prob": 0.1,
         | 
| 4 | 
            +
              "hidden_size": 384,
         | 
| 5 | 
            +
              "intermediate_size": 1280,
         | 
| 6 | 
            +
              "max_position_embeddings": 512,
         | 
| 7 | 
            +
              "position_bucket_size": 32,
         | 
| 8 | 
            +
              "num_attention_heads": 6,
         | 
| 9 | 
            +
              "num_hidden_layers": 12,
         | 
| 10 | 
            +
              "vocab_size": 8192,
         | 
| 11 | 
            +
              "layer_norm_eps": 1e-05,
         | 
| 12 | 
            +
              "force_causal_mask": true,
         | 
| 13 | 
            +
              "classifier_dropout": 0.1,
         | 
| 14 | 
            +
              "classifier_layer_norm_eps": 1e-05,
         | 
| 15 | 
            +
              "num_labels": 2
         | 
| 16 | 
            +
            }
         | 
    	
        pytorch_model.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:1587e82739e6577aaf91027e9b17b505c7cde4b85cfe24b018bf722a0ec07fe2
         | 
| 3 | 
            +
            size 144780150
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": "<s>",
         | 
| 3 | 
            +
              "eos_token": "</s>",
         | 
| 4 | 
            +
              "mask_token": "<mask>",
         | 
| 5 | 
            +
              "pad_token": "<pad>",
         | 
| 6 | 
            +
              "unk_token": "<unk>"
         | 
| 7 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,141 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "0": {
         | 
| 4 | 
            +
                  "content": "<unk>",
         | 
| 5 | 
            +
                  "lstrip": false,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": false,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "1": {
         | 
| 12 | 
            +
                  "content": "<s>",
         | 
| 13 | 
            +
                  "lstrip": false,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": false,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "2": {
         | 
| 20 | 
            +
                  "content": "</s>",
         | 
| 21 | 
            +
                  "lstrip": false,
         | 
| 22 | 
            +
                  "normalized": false,
         | 
| 23 | 
            +
                  "rstrip": false,
         | 
| 24 | 
            +
                  "single_word": false,
         | 
| 25 | 
            +
                  "special": true
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                "3": {
         | 
| 28 | 
            +
                  "content": "<pad>",
         | 
| 29 | 
            +
                  "lstrip": false,
         | 
| 30 | 
            +
                  "normalized": false,
         | 
| 31 | 
            +
                  "rstrip": false,
         | 
| 32 | 
            +
                  "single_word": false,
         | 
| 33 | 
            +
                  "special": true
         | 
| 34 | 
            +
                },
         | 
| 35 | 
            +
                "4": {
         | 
| 36 | 
            +
                  "content": "<mask>",
         | 
| 37 | 
            +
                  "lstrip": false,
         | 
| 38 | 
            +
                  "normalized": false,
         | 
| 39 | 
            +
                  "rstrip": false,
         | 
| 40 | 
            +
                  "single_word": false,
         | 
| 41 | 
            +
                  "special": true
         | 
| 42 | 
            +
                },
         | 
| 43 | 
            +
                "5": {
         | 
| 44 | 
            +
                  "content": "<special_0>",
         | 
| 45 | 
            +
                  "lstrip": false,
         | 
| 46 | 
            +
                  "normalized": false,
         | 
| 47 | 
            +
                  "rstrip": false,
         | 
| 48 | 
            +
                  "single_word": false,
         | 
| 49 | 
            +
                  "special": true
         | 
| 50 | 
            +
                },
         | 
| 51 | 
            +
                "6": {
         | 
| 52 | 
            +
                  "content": "<special_1>",
         | 
| 53 | 
            +
                  "lstrip": false,
         | 
| 54 | 
            +
                  "normalized": false,
         | 
| 55 | 
            +
                  "rstrip": false,
         | 
| 56 | 
            +
                  "single_word": false,
         | 
| 57 | 
            +
                  "special": true
         | 
| 58 | 
            +
                },
         | 
| 59 | 
            +
                "7": {
         | 
| 60 | 
            +
                  "content": "<special_2>",
         | 
| 61 | 
            +
                  "lstrip": false,
         | 
| 62 | 
            +
                  "normalized": false,
         | 
| 63 | 
            +
                  "rstrip": false,
         | 
| 64 | 
            +
                  "single_word": false,
         | 
| 65 | 
            +
                  "special": true
         | 
| 66 | 
            +
                },
         | 
| 67 | 
            +
                "8": {
         | 
| 68 | 
            +
                  "content": "<special_3>",
         | 
| 69 | 
            +
                  "lstrip": false,
         | 
| 70 | 
            +
                  "normalized": false,
         | 
| 71 | 
            +
                  "rstrip": false,
         | 
| 72 | 
            +
                  "single_word": false,
         | 
| 73 | 
            +
                  "special": true
         | 
| 74 | 
            +
                },
         | 
| 75 | 
            +
                "9": {
         | 
| 76 | 
            +
                  "content": "<special_4>",
         | 
| 77 | 
            +
                  "lstrip": false,
         | 
| 78 | 
            +
                  "normalized": false,
         | 
| 79 | 
            +
                  "rstrip": false,
         | 
| 80 | 
            +
                  "single_word": false,
         | 
| 81 | 
            +
                  "special": true
         | 
| 82 | 
            +
                },
         | 
| 83 | 
            +
                "10": {
         | 
| 84 | 
            +
                  "content": "<special_5>",
         | 
| 85 | 
            +
                  "lstrip": false,
         | 
| 86 | 
            +
                  "normalized": false,
         | 
| 87 | 
            +
                  "rstrip": false,
         | 
| 88 | 
            +
                  "single_word": false,
         | 
| 89 | 
            +
                  "special": true
         | 
| 90 | 
            +
                },
         | 
| 91 | 
            +
                "11": {
         | 
| 92 | 
            +
                  "content": "<special_6>",
         | 
| 93 | 
            +
                  "lstrip": false,
         | 
| 94 | 
            +
                  "normalized": false,
         | 
| 95 | 
            +
                  "rstrip": false,
         | 
| 96 | 
            +
                  "single_word": false,
         | 
| 97 | 
            +
                  "special": true
         | 
| 98 | 
            +
                },
         | 
| 99 | 
            +
                "12": {
         | 
| 100 | 
            +
                  "content": "<special_7>",
         | 
| 101 | 
            +
                  "lstrip": false,
         | 
| 102 | 
            +
                  "normalized": false,
         | 
| 103 | 
            +
                  "rstrip": false,
         | 
| 104 | 
            +
                  "single_word": false,
         | 
| 105 | 
            +
                  "special": true
         | 
| 106 | 
            +
                },
         | 
| 107 | 
            +
                "13": {
         | 
| 108 | 
            +
                  "content": "<special_8>",
         | 
| 109 | 
            +
                  "lstrip": false,
         | 
| 110 | 
            +
                  "normalized": false,
         | 
| 111 | 
            +
                  "rstrip": false,
         | 
| 112 | 
            +
                  "single_word": false,
         | 
| 113 | 
            +
                  "special": true
         | 
| 114 | 
            +
                },
         | 
| 115 | 
            +
                "14": {
         | 
| 116 | 
            +
                  "content": "<special_9>",
         | 
| 117 | 
            +
                  "lstrip": false,
         | 
| 118 | 
            +
                  "normalized": false,
         | 
| 119 | 
            +
                  "rstrip": false,
         | 
| 120 | 
            +
                  "single_word": false,
         | 
| 121 | 
            +
                  "special": true
         | 
| 122 | 
            +
                },
         | 
| 123 | 
            +
                "15": {
         | 
| 124 | 
            +
                  "content": "<special_10>",
         | 
| 125 | 
            +
                  "lstrip": false,
         | 
| 126 | 
            +
                  "normalized": false,
         | 
| 127 | 
            +
                  "rstrip": false,
         | 
| 128 | 
            +
                  "single_word": false,
         | 
| 129 | 
            +
                  "special": true
         | 
| 130 | 
            +
                }
         | 
| 131 | 
            +
              },
         | 
| 132 | 
            +
              "bos_token": "<s>",
         | 
| 133 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 134 | 
            +
              "eos_token": "</s>",
         | 
| 135 | 
            +
              "extra_special_tokens": {},
         | 
| 136 | 
            +
              "mask_token": "<mask>",
         | 
| 137 | 
            +
              "model_max_length": 1000000000000000019884624838656,
         | 
| 138 | 
            +
              "pad_token": "<pad>",
         | 
| 139 | 
            +
              "tokenizer_class": "PreTrainedTokenizerFast",
         | 
| 140 | 
            +
              "unk_token": "<unk>"
         | 
| 141 | 
            +
            }
         |