Julien Simon
commited on
Commit
·
a5a9972
1
Parent(s):
8eb4464
Initial version
Browse files
code/Sentiment analysis with Hugging Face and SageMaker.ipynb
ADDED
@@ -0,0 +1,602 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Training and deploying Hugging Face models on Amazon SageMaker\n",
|
8 |
+
"\n",
|
9 |
+
"* https://huggingface.co/distilbert-base-uncased\n",
|
10 |
+
"* https://huggingface.co/transformers/model_doc/distilbert.html\n",
|
11 |
+
"* https://huggingface.co/datasets/generated_reviews_enth"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "markdown",
|
16 |
+
"metadata": {},
|
17 |
+
"source": [
|
18 |
+
"# 1 - Setup"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": null,
|
24 |
+
"metadata": {
|
25 |
+
"scrolled": true
|
26 |
+
},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"!pip -q install sagemaker \"transformers>=4.4.2\" \"datasets[s3]==1.5.0\" widgetsnbextension ipywidgets huggingface_hub --upgrade"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": null,
|
35 |
+
"metadata": {},
|
36 |
+
"outputs": [],
|
37 |
+
"source": [
|
38 |
+
"!curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash\n",
|
39 |
+
"!apt-get install git-lfs"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": null,
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [],
|
47 |
+
"source": [
|
48 |
+
"import sagemaker\n",
|
49 |
+
"import transformers\n",
|
50 |
+
"import datasets\n",
|
51 |
+
"\n",
|
52 |
+
"print(sagemaker.__version__)\n",
|
53 |
+
"print(transformers.__version__)\n",
|
54 |
+
"print(datasets.__version__)"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "markdown",
|
59 |
+
"metadata": {},
|
60 |
+
"source": [
|
61 |
+
"# 2 - Preprocessing"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": null,
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"from datasets import load_dataset\n",
|
71 |
+
"\n",
|
72 |
+
"train_dataset, valid_dataset = load_dataset('generated_reviews_enth', split=['train', 'validation'])\n",
|
73 |
+
"\n",
|
74 |
+
"print(train_dataset.shape)\n",
|
75 |
+
"print(valid_dataset.shape)"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": null,
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"train_dataset[0]"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": null,
|
90 |
+
"metadata": {},
|
91 |
+
"outputs": [],
|
92 |
+
"source": [
|
93 |
+
"def map_stars_to_sentiment(row):\n",
|
94 |
+
" return {\n",
|
95 |
+
" 'labels': 1 if row['review_star'] >= 4 else 0\n",
|
96 |
+
" }"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": null,
|
102 |
+
"metadata": {},
|
103 |
+
"outputs": [],
|
104 |
+
"source": [
|
105 |
+
"train_dataset = train_dataset.map(map_stars_to_sentiment)\n",
|
106 |
+
"valid_dataset = valid_dataset.map(map_stars_to_sentiment)"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"cell_type": "code",
|
111 |
+
"execution_count": null,
|
112 |
+
"metadata": {},
|
113 |
+
"outputs": [],
|
114 |
+
"source": [
|
115 |
+
"train_dataset[0]"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": null,
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"train_dataset = train_dataset.flatten()\n",
|
125 |
+
"valid_dataset = valid_dataset.flatten()"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": null,
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [],
|
133 |
+
"source": [
|
134 |
+
"train_dataset[0]"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"cell_type": "code",
|
139 |
+
"execution_count": null,
|
140 |
+
"metadata": {},
|
141 |
+
"outputs": [],
|
142 |
+
"source": [
|
143 |
+
"train_dataset = train_dataset.remove_columns(['correct', 'translation.th', 'review_star'])\n",
|
144 |
+
"valid_dataset = valid_dataset.remove_columns(['correct', 'translation.th', 'review_star'])"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": null,
|
150 |
+
"metadata": {},
|
151 |
+
"outputs": [],
|
152 |
+
"source": [
|
153 |
+
"train_dataset = train_dataset.rename_column('translation.en', 'text')\n",
|
154 |
+
"valid_dataset = valid_dataset.rename_column('translation.en', 'text')"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"execution_count": null,
|
160 |
+
"metadata": {},
|
161 |
+
"outputs": [],
|
162 |
+
"source": [
|
163 |
+
"train_dataset[0]"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "markdown",
|
168 |
+
"metadata": {},
|
169 |
+
"source": [
|
170 |
+
"## Tokenize"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": null,
|
176 |
+
"metadata": {},
|
177 |
+
"outputs": [],
|
178 |
+
"source": [
|
179 |
+
"from transformers import AutoTokenizer\n",
|
180 |
+
"\n",
|
181 |
+
"tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')\n",
|
182 |
+
"\n",
|
183 |
+
"def tokenize(batch):\n",
|
184 |
+
" return tokenizer(batch['text'], padding='max_length', truncation=True)"
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "code",
|
189 |
+
"execution_count": null,
|
190 |
+
"metadata": {},
|
191 |
+
"outputs": [],
|
192 |
+
"source": [
|
193 |
+
"train_dataset = train_dataset.map(tokenize, batched=True, batch_size=len(train_dataset))"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"cell_type": "code",
|
198 |
+
"execution_count": null,
|
199 |
+
"metadata": {},
|
200 |
+
"outputs": [],
|
201 |
+
"source": [
|
202 |
+
"valid_dataset = valid_dataset.map(tokenize, batched=True, batch_size=len(valid_dataset))"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"cell_type": "code",
|
207 |
+
"execution_count": null,
|
208 |
+
"metadata": {},
|
209 |
+
"outputs": [],
|
210 |
+
"source": [
|
211 |
+
"import json\n",
|
212 |
+
"\n",
|
213 |
+
"json.dumps(train_dataset[0])"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"execution_count": null,
|
219 |
+
"metadata": {},
|
220 |
+
"outputs": [],
|
221 |
+
"source": [
|
222 |
+
"train_dataset = train_dataset.remove_columns(['text'])\n",
|
223 |
+
"valid_dataset = valid_dataset.remove_columns(['text'])"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "markdown",
|
228 |
+
"metadata": {},
|
229 |
+
"source": [
|
230 |
+
"# 3 - Upload data to S3"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"execution_count": null,
|
236 |
+
"metadata": {},
|
237 |
+
"outputs": [],
|
238 |
+
"source": [
|
239 |
+
"from datasets.filesystems import S3FileSystem\n",
|
240 |
+
"\n",
|
241 |
+
"s3 = S3FileSystem() \n",
|
242 |
+
"\n",
|
243 |
+
"s3_prefix = 'hugging-face/sentiment-analysis'\n",
|
244 |
+
"bucket = sagemaker.Session().default_bucket()\n",
|
245 |
+
"\n",
|
246 |
+
"train_input_path = 's3://{}/{}/training'.format(bucket, s3_prefix)\n",
|
247 |
+
"train_dataset.save_to_disk(train_input_path, fs=s3)\n",
|
248 |
+
"\n",
|
249 |
+
"valid_input_path = 's3://{}/{}/validation'.format(bucket, s3_prefix)\n",
|
250 |
+
"valid_dataset.save_to_disk(valid_input_path, fs=s3)"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": null,
|
256 |
+
"metadata": {},
|
257 |
+
"outputs": [],
|
258 |
+
"source": [
|
259 |
+
"print(train_input_path)\n",
|
260 |
+
"print(valid_input_path)"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "markdown",
|
265 |
+
"metadata": {},
|
266 |
+
"source": [
|
267 |
+
"# 4 - Fine-tune a Hugging Face model on SageMaker"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": null,
|
273 |
+
"metadata": {},
|
274 |
+
"outputs": [],
|
275 |
+
"source": [
|
276 |
+
"!pygmentize train.py"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"execution_count": null,
|
282 |
+
"metadata": {},
|
283 |
+
"outputs": [],
|
284 |
+
"source": [
|
285 |
+
"hyperparameters={\n",
|
286 |
+
" 'epochs': 1,\n",
|
287 |
+
" 'train-batch_size': 32,\n",
|
288 |
+
" 'model-name':'distilbert-base-uncased'\n",
|
289 |
+
"}"
|
290 |
+
]
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"cell_type": "code",
|
294 |
+
"execution_count": null,
|
295 |
+
"metadata": {},
|
296 |
+
"outputs": [],
|
297 |
+
"source": [
|
298 |
+
"from sagemaker.huggingface import HuggingFace\n",
|
299 |
+
"\n",
|
300 |
+
"huggingface_estimator = HuggingFace(\n",
|
301 |
+
" role=sagemaker.get_execution_role(),\n",
|
302 |
+
" # Fine-tuning script\n",
|
303 |
+
" entry_point='train.py',\n",
|
304 |
+
" hyperparameters=hyperparameters,\n",
|
305 |
+
" # Infrastructure\n",
|
306 |
+
" transformers_version='4.6.1',\n",
|
307 |
+
" pytorch_version='1.7.1',\n",
|
308 |
+
" py_version='py36',\n",
|
309 |
+
" instance_type='ml.p3.2xlarge', # 1 GPUs, $4.131/hour in eu-west-1\n",
|
310 |
+
" instance_count=1,\n",
|
311 |
+
" # Enable spot instances\n",
|
312 |
+
" use_spot_instances=True, # 70% discount is typical\n",
|
313 |
+
" max_run = 3600,\n",
|
314 |
+
" max_wait = 7200\n",
|
315 |
+
")"
|
316 |
+
]
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"cell_type": "code",
|
320 |
+
"execution_count": null,
|
321 |
+
"metadata": {
|
322 |
+
"scrolled": true
|
323 |
+
},
|
324 |
+
"outputs": [],
|
325 |
+
"source": [
|
326 |
+
"huggingface_estimator.fit({'train': train_input_path, 'valid': valid_input_path})"
|
327 |
+
]
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"cell_type": "markdown",
|
331 |
+
"metadata": {},
|
332 |
+
"source": [
|
333 |
+
"# 5 - Deploy the model on SageMaker"
|
334 |
+
]
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"cell_type": "code",
|
338 |
+
"execution_count": null,
|
339 |
+
"metadata": {},
|
340 |
+
"outputs": [],
|
341 |
+
"source": [
|
342 |
+
"huggingface_predictor = huggingface_estimator.deploy(\n",
|
343 |
+
" initial_instance_count=1,\n",
|
344 |
+
" instance_type='ml.m5.xlarge')"
|
345 |
+
]
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"cell_type": "code",
|
349 |
+
"execution_count": null,
|
350 |
+
"metadata": {},
|
351 |
+
"outputs": [],
|
352 |
+
"source": [
|
353 |
+
"test_data = {\n",
|
354 |
+
" \"inputs\": \"This is a very nice camera, I'm super happy with it.\"\n",
|
355 |
+
"}"
|
356 |
+
]
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"cell_type": "code",
|
360 |
+
"execution_count": null,
|
361 |
+
"metadata": {},
|
362 |
+
"outputs": [],
|
363 |
+
"source": [
|
364 |
+
"prediction = huggingface_predictor.predict(test_data)\n",
|
365 |
+
"print(prediction)"
|
366 |
+
]
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"cell_type": "code",
|
370 |
+
"execution_count": null,
|
371 |
+
"metadata": {},
|
372 |
+
"outputs": [],
|
373 |
+
"source": [
|
374 |
+
"test_data = {\n",
|
375 |
+
" \"inputs\": \"Terrible purchase, I want my money back!\"\n",
|
376 |
+
"}"
|
377 |
+
]
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"cell_type": "code",
|
381 |
+
"execution_count": null,
|
382 |
+
"metadata": {},
|
383 |
+
"outputs": [],
|
384 |
+
"source": [
|
385 |
+
"prediction = huggingface_predictor.predict(test_data)\n",
|
386 |
+
"print(prediction)"
|
387 |
+
]
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"cell_type": "code",
|
391 |
+
"execution_count": null,
|
392 |
+
"metadata": {},
|
393 |
+
"outputs": [],
|
394 |
+
"source": [
|
395 |
+
"huggingface_predictor.delete_endpoint()"
|
396 |
+
]
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"cell_type": "markdown",
|
400 |
+
"metadata": {},
|
401 |
+
"source": [
|
402 |
+
"# 6 - Push our model to the Hugging Face hub"
|
403 |
+
]
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"cell_type": "code",
|
407 |
+
"execution_count": null,
|
408 |
+
"metadata": {},
|
409 |
+
"outputs": [],
|
410 |
+
"source": [
|
411 |
+
"# In a terminal, login to the Hub with 'huggingface-cli login' and your hub credentials"
|
412 |
+
]
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"cell_type": "markdown",
|
416 |
+
"metadata": {},
|
417 |
+
"source": [
|
418 |
+
"## Create a new repo on the Hugging Face hub"
|
419 |
+
]
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"cell_type": "code",
|
423 |
+
"execution_count": null,
|
424 |
+
"metadata": {},
|
425 |
+
"outputs": [],
|
426 |
+
"source": [
|
427 |
+
"repo_name='reviews-sentiment-analysis'"
|
428 |
+
]
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"cell_type": "code",
|
432 |
+
"execution_count": null,
|
433 |
+
"metadata": {},
|
434 |
+
"outputs": [],
|
435 |
+
"source": [
|
436 |
+
"%%sh -s $repo_name\n",
|
437 |
+
"huggingface-cli repo create -y $1\n",
|
438 |
+
"git clone https://huggingface.co/juliensimon/$1"
|
439 |
+
]
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"cell_type": "markdown",
|
443 |
+
"metadata": {},
|
444 |
+
"source": [
|
445 |
+
"## Extract our model and push files to our hub repo"
|
446 |
+
]
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"cell_type": "code",
|
450 |
+
"execution_count": null,
|
451 |
+
"metadata": {},
|
452 |
+
"outputs": [],
|
453 |
+
"source": [
|
454 |
+
"%%sh -s $huggingface_estimator.model_data $repo_name\n",
|
455 |
+
"aws s3 cp $1 .\n",
|
456 |
+
"tar xvz -C $2 -f model.tar.gz"
|
457 |
+
]
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"cell_type": "code",
|
461 |
+
"execution_count": null,
|
462 |
+
"metadata": {},
|
463 |
+
"outputs": [],
|
464 |
+
"source": [
|
465 |
+
"%%sh -s $repo_name\n",
|
466 |
+
"cd $1\n",
|
467 |
+
"git add .\n",
|
468 |
+
"git commit -m 'Initial version'\n",
|
469 |
+
"git push"
|
470 |
+
]
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"cell_type": "markdown",
|
474 |
+
"metadata": {},
|
475 |
+
"source": [
|
476 |
+
"## Grab our model from the hub and work locally"
|
477 |
+
]
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"cell_type": "code",
|
481 |
+
"execution_count": null,
|
482 |
+
"metadata": {},
|
483 |
+
"outputs": [],
|
484 |
+
"source": [
|
485 |
+
"# With the Auto* API\n",
|
486 |
+
"from transformers import AutoTokenizer, AutoModelForSequenceClassification \n",
|
487 |
+
"\n",
|
488 |
+
"tokenizer = AutoTokenizer.from_pretrained('juliensimon/'+repo_name)\n",
|
489 |
+
"model = AutoModelForSequenceClassification.from_pretrained('juliensimon/'+repo_name)\n",
|
490 |
+
"\n",
|
491 |
+
"# With the pipeline API\n",
|
492 |
+
"from transformers import pipeline\n",
|
493 |
+
"\n",
|
494 |
+
"classifier = pipeline('sentiment-analysis', model='juliensimon/'+repo_name)"
|
495 |
+
]
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"cell_type": "code",
|
499 |
+
"execution_count": null,
|
500 |
+
"metadata": {},
|
501 |
+
"outputs": [],
|
502 |
+
"source": [
|
503 |
+
"classifier(\"This is a very nice camera, I'm super happy with it.\")"
|
504 |
+
]
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"cell_type": "code",
|
508 |
+
"execution_count": null,
|
509 |
+
"metadata": {},
|
510 |
+
"outputs": [],
|
511 |
+
"source": [
|
512 |
+
"classifier(\"Terrible purchase, I want my money back!\")"
|
513 |
+
]
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"cell_type": "markdown",
|
517 |
+
"metadata": {},
|
518 |
+
"source": [
|
519 |
+
"## Grab our model from the hub and deploy it on a SageMaker endpoint"
|
520 |
+
]
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"cell_type": "code",
|
524 |
+
"execution_count": null,
|
525 |
+
"metadata": {},
|
526 |
+
"outputs": [],
|
527 |
+
"source": [
|
528 |
+
"from sagemaker.huggingface.model import HuggingFaceModel\n",
|
529 |
+
"\n",
|
530 |
+
"hub = {\n",
|
531 |
+
" 'HF_MODEL_ID':'juliensimon/'+repo_name, \n",
|
532 |
+
" 'HF_TASK':'sentiment-analysis'\n",
|
533 |
+
"}\n",
|
534 |
+
"\n",
|
535 |
+
"huggingface_model = HuggingFaceModel(\n",
|
536 |
+
" env=hub, \n",
|
537 |
+
" role=sagemaker.get_execution_role(), \n",
|
538 |
+
" transformers_version='4.6.1', \n",
|
539 |
+
" pytorch_version='1.7.1', \n",
|
540 |
+
" py_version='py36' \n",
|
541 |
+
")\n",
|
542 |
+
"\n",
|
543 |
+
"huggingface_predictor = huggingface_model.deploy(\n",
|
544 |
+
" initial_instance_count=1,\n",
|
545 |
+
" instance_type='ml.m5.xlarge'\n",
|
546 |
+
")"
|
547 |
+
]
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"cell_type": "code",
|
551 |
+
"execution_count": null,
|
552 |
+
"metadata": {},
|
553 |
+
"outputs": [],
|
554 |
+
"source": [
|
555 |
+
"test_data = {\n",
|
556 |
+
" 'inputs': \"This is a very nice camera, I'm super happy with it.\"\n",
|
557 |
+
"}\n",
|
558 |
+
"\n",
|
559 |
+
"prediction = huggingface_predictor.predict(test_data)\n",
|
560 |
+
"print(prediction)"
|
561 |
+
]
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"cell_type": "code",
|
565 |
+
"execution_count": null,
|
566 |
+
"metadata": {},
|
567 |
+
"outputs": [],
|
568 |
+
"source": [
|
569 |
+
"huggingface_predictor.delete_endpoint()"
|
570 |
+
]
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"cell_type": "code",
|
574 |
+
"execution_count": null,
|
575 |
+
"metadata": {},
|
576 |
+
"outputs": [],
|
577 |
+
"source": []
|
578 |
+
}
|
579 |
+
],
|
580 |
+
"metadata": {
|
581 |
+
"instance_type": "ml.m5.4xlarge",
|
582 |
+
"kernelspec": {
|
583 |
+
"display_name": "Python 3 (PyTorch 1.6 Python 3.6 CPU Optimized)",
|
584 |
+
"language": "python",
|
585 |
+
"name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:eu-west-1:470317259841:image/pytorch-1.6-cpu-py36-ubuntu16.04-v1"
|
586 |
+
},
|
587 |
+
"language_info": {
|
588 |
+
"codemirror_mode": {
|
589 |
+
"name": "ipython",
|
590 |
+
"version": 3
|
591 |
+
},
|
592 |
+
"file_extension": ".py",
|
593 |
+
"mimetype": "text/x-python",
|
594 |
+
"name": "python",
|
595 |
+
"nbconvert_exporter": "python",
|
596 |
+
"pygments_lexer": "ipython3",
|
597 |
+
"version": "3.6.13"
|
598 |
+
}
|
599 |
+
},
|
600 |
+
"nbformat": 4,
|
601 |
+
"nbformat_minor": 4
|
602 |
+
}
|
code/train.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random, sys, argparse, os, logging, torch
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
|
3 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
4 |
+
from datasets import load_from_disk
|
5 |
+
|
6 |
+
if __name__ == "__main__":
|
7 |
+
|
8 |
+
parser = argparse.ArgumentParser()
|
9 |
+
|
10 |
+
# hyperparameters sent by the client are passed as command-line arguments to the script.
|
11 |
+
parser.add_argument("--epochs", type=int, default=3)
|
12 |
+
parser.add_argument("--train-batch-size", type=int, default=32)
|
13 |
+
parser.add_argument("--eval-batch-size", type=int, default=64)
|
14 |
+
parser.add_argument("--save-strategy", type=str, default='no')
|
15 |
+
parser.add_argument("--save-steps", type=int, default=500)
|
16 |
+
parser.add_argument("--model-name", type=str)
|
17 |
+
parser.add_argument("--learning-rate", type=str, default=5e-5)
|
18 |
+
|
19 |
+
# Data, model, and output directories
|
20 |
+
parser.add_argument("--output-data-dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"])
|
21 |
+
parser.add_argument("--model-dir", type=str, default=os.environ["SM_MODEL_DIR"])
|
22 |
+
parser.add_argument("--n-gpus", type=str, default=os.environ["SM_NUM_GPUS"])
|
23 |
+
parser.add_argument("--train-dir", type=str, default=os.environ["SM_CHANNEL_TRAIN"])
|
24 |
+
parser.add_argument("--valid-dir", type=str, default=os.environ["SM_CHANNEL_VALID"])
|
25 |
+
|
26 |
+
args, _ = parser.parse_known_args()
|
27 |
+
|
28 |
+
# load datasets
|
29 |
+
train_dataset = load_from_disk(args.train_dir)
|
30 |
+
valid_dataset = load_from_disk(args.valid_dir)
|
31 |
+
|
32 |
+
logger = logging.getLogger(__name__)
|
33 |
+
logger.info(f" loaded train_dataset length is: {len(train_dataset)}")
|
34 |
+
logger.info(f" loaded valid_dataset length is: {len(valid_dataset)}")
|
35 |
+
|
36 |
+
# compute metrics function for binary classification
|
37 |
+
def compute_metrics(pred):
|
38 |
+
labels = pred.label_ids
|
39 |
+
preds = pred.predictions.argmax(-1)
|
40 |
+
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average="binary")
|
41 |
+
acc = accuracy_score(labels, preds)
|
42 |
+
return {"accuracy": acc, "f1": f1, "precision": precision, "recall": recall}
|
43 |
+
|
44 |
+
# download model from model hub
|
45 |
+
model = AutoModelForSequenceClassification.from_pretrained(args.model_name)
|
46 |
+
|
47 |
+
# download the tokenizer too, which will be saved in the model artifact
|
48 |
+
# and used at prediction time
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
50 |
+
|
51 |
+
# define training args
|
52 |
+
training_args = TrainingArguments(
|
53 |
+
output_dir=args.model_dir,
|
54 |
+
num_train_epochs=args.epochs,
|
55 |
+
per_device_train_batch_size=args.train_batch_size,
|
56 |
+
per_device_eval_batch_size=args.eval_batch_size,
|
57 |
+
save_strategy=args.save_strategy,
|
58 |
+
save_steps=args.save_steps,
|
59 |
+
evaluation_strategy="epoch",
|
60 |
+
logging_dir=f"{args.output_data_dir}/logs",
|
61 |
+
learning_rate=float(args.learning_rate),
|
62 |
+
)
|
63 |
+
|
64 |
+
# create Trainer instance
|
65 |
+
trainer = Trainer(
|
66 |
+
model=model,
|
67 |
+
args=training_args,
|
68 |
+
tokenizer=tokenizer,
|
69 |
+
compute_metrics=compute_metrics,
|
70 |
+
train_dataset=train_dataset,
|
71 |
+
eval_dataset=valid_dataset,
|
72 |
+
)
|
73 |
+
|
74 |
+
# train model
|
75 |
+
trainer.train()
|
76 |
+
|
77 |
+
# evaluate model
|
78 |
+
eval_result = trainer.evaluate(eval_dataset=valid_dataset)
|
79 |
+
|
80 |
+
# writes eval result to file which can be accessed later in s3 output
|
81 |
+
with open(os.path.join(args.output_data_dir, "eval_results.txt"), "w") as writer:
|
82 |
+
print(f"***** Eval results *****")
|
83 |
+
for key, value in sorted(eval_result.items()):
|
84 |
+
writer.write(f"{key} = {value}\n")
|
85 |
+
|
86 |
+
# Saves the model to s3
|
87 |
+
trainer.save_model(args.model_dir)
|
88 |
+
|