Upload 01_how_to_train.ipynb
Browse files- 01_how_to_train.ipynb +1565 -0
01_how_to_train.ipynb
ADDED
@@ -0,0 +1,1565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"name": "01_how-to-train.ipynb",
|
7 |
+
"provenance": [],
|
8 |
+
"collapsed_sections": [],
|
9 |
+
"toc_visible": true,
|
10 |
+
"machine_shape": "hm",
|
11 |
+
"include_colab_link": true
|
12 |
+
},
|
13 |
+
"kernelspec": {
|
14 |
+
"name": "python3",
|
15 |
+
"display_name": "Python 3"
|
16 |
+
},
|
17 |
+
"accelerator": "GPU",
|
18 |
+
"widgets": {
|
19 |
+
"application/vnd.jupyter.widget-state+json": {
|
20 |
+
"a58a66392b644b1384661e850c077a6c": {
|
21 |
+
"model_module": "@jupyter-widgets/controls",
|
22 |
+
"model_name": "HBoxModel",
|
23 |
+
"state": {
|
24 |
+
"_view_name": "HBoxView",
|
25 |
+
"_dom_classes": [],
|
26 |
+
"_model_name": "HBoxModel",
|
27 |
+
"_view_module": "@jupyter-widgets/controls",
|
28 |
+
"_model_module_version": "1.5.0",
|
29 |
+
"_view_count": null,
|
30 |
+
"_view_module_version": "1.5.0",
|
31 |
+
"box_style": "",
|
32 |
+
"layout": "IPY_MODEL_a491e8caa0a048beb3b5259f14eb233f",
|
33 |
+
"_model_module": "@jupyter-widgets/controls",
|
34 |
+
"children": [
|
35 |
+
"IPY_MODEL_837c9ddc3d594e088891874560c646b8",
|
36 |
+
"IPY_MODEL_dbf50873d62c4ba39321faefbed0cca5"
|
37 |
+
]
|
38 |
+
}
|
39 |
+
},
|
40 |
+
"a491e8caa0a048beb3b5259f14eb233f": {
|
41 |
+
"model_module": "@jupyter-widgets/base",
|
42 |
+
"model_name": "LayoutModel",
|
43 |
+
"state": {
|
44 |
+
"_view_name": "LayoutView",
|
45 |
+
"grid_template_rows": null,
|
46 |
+
"right": null,
|
47 |
+
"justify_content": null,
|
48 |
+
"_view_module": "@jupyter-widgets/base",
|
49 |
+
"overflow": null,
|
50 |
+
"_model_module_version": "1.2.0",
|
51 |
+
"_view_count": null,
|
52 |
+
"flex_flow": null,
|
53 |
+
"width": null,
|
54 |
+
"min_width": null,
|
55 |
+
"border": null,
|
56 |
+
"align_items": null,
|
57 |
+
"bottom": null,
|
58 |
+
"_model_module": "@jupyter-widgets/base",
|
59 |
+
"top": null,
|
60 |
+
"grid_column": null,
|
61 |
+
"overflow_y": null,
|
62 |
+
"overflow_x": null,
|
63 |
+
"grid_auto_flow": null,
|
64 |
+
"grid_area": null,
|
65 |
+
"grid_template_columns": null,
|
66 |
+
"flex": null,
|
67 |
+
"_model_name": "LayoutModel",
|
68 |
+
"justify_items": null,
|
69 |
+
"grid_row": null,
|
70 |
+
"max_height": null,
|
71 |
+
"align_content": null,
|
72 |
+
"visibility": null,
|
73 |
+
"align_self": null,
|
74 |
+
"height": null,
|
75 |
+
"min_height": null,
|
76 |
+
"padding": null,
|
77 |
+
"grid_auto_rows": null,
|
78 |
+
"grid_gap": null,
|
79 |
+
"max_width": null,
|
80 |
+
"order": null,
|
81 |
+
"_view_module_version": "1.2.0",
|
82 |
+
"grid_template_areas": null,
|
83 |
+
"object_position": null,
|
84 |
+
"object_fit": null,
|
85 |
+
"grid_auto_columns": null,
|
86 |
+
"margin": null,
|
87 |
+
"display": null,
|
88 |
+
"left": null
|
89 |
+
}
|
90 |
+
},
|
91 |
+
"837c9ddc3d594e088891874560c646b8": {
|
92 |
+
"model_module": "@jupyter-widgets/controls",
|
93 |
+
"model_name": "FloatProgressModel",
|
94 |
+
"state": {
|
95 |
+
"_view_name": "ProgressView",
|
96 |
+
"style": "IPY_MODEL_40bf955ba0284e84b198da6be8654219",
|
97 |
+
"_dom_classes": [],
|
98 |
+
"description": "Epoch: 100%",
|
99 |
+
"_model_name": "FloatProgressModel",
|
100 |
+
"bar_style": "success",
|
101 |
+
"max": 1,
|
102 |
+
"_view_module": "@jupyter-widgets/controls",
|
103 |
+
"_model_module_version": "1.5.0",
|
104 |
+
"value": 1,
|
105 |
+
"_view_count": null,
|
106 |
+
"_view_module_version": "1.5.0",
|
107 |
+
"orientation": "horizontal",
|
108 |
+
"min": 0,
|
109 |
+
"description_tooltip": null,
|
110 |
+
"_model_module": "@jupyter-widgets/controls",
|
111 |
+
"layout": "IPY_MODEL_fe20a8dae6e84628b5076d02183090f5"
|
112 |
+
}
|
113 |
+
},
|
114 |
+
"dbf50873d62c4ba39321faefbed0cca5": {
|
115 |
+
"model_module": "@jupyter-widgets/controls",
|
116 |
+
"model_name": "HTMLModel",
|
117 |
+
"state": {
|
118 |
+
"_view_name": "HTMLView",
|
119 |
+
"style": "IPY_MODEL_93b3f9eae3cb4e3e859cf456e3547c6d",
|
120 |
+
"_dom_classes": [],
|
121 |
+
"description": "",
|
122 |
+
"_model_name": "HTMLModel",
|
123 |
+
"placeholder": "",
|
124 |
+
"_view_module": "@jupyter-widgets/controls",
|
125 |
+
"_model_module_version": "1.5.0",
|
126 |
+
"value": " 1/1 [2:46:46<00:00, 10006.17s/it]",
|
127 |
+
"_view_count": null,
|
128 |
+
"_view_module_version": "1.5.0",
|
129 |
+
"description_tooltip": null,
|
130 |
+
"_model_module": "@jupyter-widgets/controls",
|
131 |
+
"layout": "IPY_MODEL_6feb10aeb43147e6aba028d065947ae8"
|
132 |
+
}
|
133 |
+
},
|
134 |
+
"40bf955ba0284e84b198da6be8654219": {
|
135 |
+
"model_module": "@jupyter-widgets/controls",
|
136 |
+
"model_name": "ProgressStyleModel",
|
137 |
+
"state": {
|
138 |
+
"_view_name": "StyleView",
|
139 |
+
"_model_name": "ProgressStyleModel",
|
140 |
+
"description_width": "initial",
|
141 |
+
"_view_module": "@jupyter-widgets/base",
|
142 |
+
"_model_module_version": "1.5.0",
|
143 |
+
"_view_count": null,
|
144 |
+
"_view_module_version": "1.2.0",
|
145 |
+
"bar_color": null,
|
146 |
+
"_model_module": "@jupyter-widgets/controls"
|
147 |
+
}
|
148 |
+
},
|
149 |
+
"fe20a8dae6e84628b5076d02183090f5": {
|
150 |
+
"model_module": "@jupyter-widgets/base",
|
151 |
+
"model_name": "LayoutModel",
|
152 |
+
"state": {
|
153 |
+
"_view_name": "LayoutView",
|
154 |
+
"grid_template_rows": null,
|
155 |
+
"right": null,
|
156 |
+
"justify_content": null,
|
157 |
+
"_view_module": "@jupyter-widgets/base",
|
158 |
+
"overflow": null,
|
159 |
+
"_model_module_version": "1.2.0",
|
160 |
+
"_view_count": null,
|
161 |
+
"flex_flow": null,
|
162 |
+
"width": null,
|
163 |
+
"min_width": null,
|
164 |
+
"border": null,
|
165 |
+
"align_items": null,
|
166 |
+
"bottom": null,
|
167 |
+
"_model_module": "@jupyter-widgets/base",
|
168 |
+
"top": null,
|
169 |
+
"grid_column": null,
|
170 |
+
"overflow_y": null,
|
171 |
+
"overflow_x": null,
|
172 |
+
"grid_auto_flow": null,
|
173 |
+
"grid_area": null,
|
174 |
+
"grid_template_columns": null,
|
175 |
+
"flex": null,
|
176 |
+
"_model_name": "LayoutModel",
|
177 |
+
"justify_items": null,
|
178 |
+
"grid_row": null,
|
179 |
+
"max_height": null,
|
180 |
+
"align_content": null,
|
181 |
+
"visibility": null,
|
182 |
+
"align_self": null,
|
183 |
+
"height": null,
|
184 |
+
"min_height": null,
|
185 |
+
"padding": null,
|
186 |
+
"grid_auto_rows": null,
|
187 |
+
"grid_gap": null,
|
188 |
+
"max_width": null,
|
189 |
+
"order": null,
|
190 |
+
"_view_module_version": "1.2.0",
|
191 |
+
"grid_template_areas": null,
|
192 |
+
"object_position": null,
|
193 |
+
"object_fit": null,
|
194 |
+
"grid_auto_columns": null,
|
195 |
+
"margin": null,
|
196 |
+
"display": null,
|
197 |
+
"left": null
|
198 |
+
}
|
199 |
+
},
|
200 |
+
"93b3f9eae3cb4e3e859cf456e3547c6d": {
|
201 |
+
"model_module": "@jupyter-widgets/controls",
|
202 |
+
"model_name": "DescriptionStyleModel",
|
203 |
+
"state": {
|
204 |
+
"_view_name": "StyleView",
|
205 |
+
"_model_name": "DescriptionStyleModel",
|
206 |
+
"description_width": "",
|
207 |
+
"_view_module": "@jupyter-widgets/base",
|
208 |
+
"_model_module_version": "1.5.0",
|
209 |
+
"_view_count": null,
|
210 |
+
"_view_module_version": "1.2.0",
|
211 |
+
"_model_module": "@jupyter-widgets/controls"
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"6feb10aeb43147e6aba028d065947ae8": {
|
215 |
+
"model_module": "@jupyter-widgets/base",
|
216 |
+
"model_name": "LayoutModel",
|
217 |
+
"state": {
|
218 |
+
"_view_name": "LayoutView",
|
219 |
+
"grid_template_rows": null,
|
220 |
+
"right": null,
|
221 |
+
"justify_content": null,
|
222 |
+
"_view_module": "@jupyter-widgets/base",
|
223 |
+
"overflow": null,
|
224 |
+
"_model_module_version": "1.2.0",
|
225 |
+
"_view_count": null,
|
226 |
+
"flex_flow": null,
|
227 |
+
"width": null,
|
228 |
+
"min_width": null,
|
229 |
+
"border": null,
|
230 |
+
"align_items": null,
|
231 |
+
"bottom": null,
|
232 |
+
"_model_module": "@jupyter-widgets/base",
|
233 |
+
"top": null,
|
234 |
+
"grid_column": null,
|
235 |
+
"overflow_y": null,
|
236 |
+
"overflow_x": null,
|
237 |
+
"grid_auto_flow": null,
|
238 |
+
"grid_area": null,
|
239 |
+
"grid_template_columns": null,
|
240 |
+
"flex": null,
|
241 |
+
"_model_name": "LayoutModel",
|
242 |
+
"justify_items": null,
|
243 |
+
"grid_row": null,
|
244 |
+
"max_height": null,
|
245 |
+
"align_content": null,
|
246 |
+
"visibility": null,
|
247 |
+
"align_self": null,
|
248 |
+
"height": null,
|
249 |
+
"min_height": null,
|
250 |
+
"padding": null,
|
251 |
+
"grid_auto_rows": null,
|
252 |
+
"grid_gap": null,
|
253 |
+
"max_width": null,
|
254 |
+
"order": null,
|
255 |
+
"_view_module_version": "1.2.0",
|
256 |
+
"grid_template_areas": null,
|
257 |
+
"object_position": null,
|
258 |
+
"object_fit": null,
|
259 |
+
"grid_auto_columns": null,
|
260 |
+
"margin": null,
|
261 |
+
"display": null,
|
262 |
+
"left": null
|
263 |
+
}
|
264 |
+
},
|
265 |
+
"0989d41a4da24e9ebff377e02127642c": {
|
266 |
+
"model_module": "@jupyter-widgets/controls",
|
267 |
+
"model_name": "HBoxModel",
|
268 |
+
"state": {
|
269 |
+
"_view_name": "HBoxView",
|
270 |
+
"_dom_classes": [],
|
271 |
+
"_model_name": "HBoxModel",
|
272 |
+
"_view_module": "@jupyter-widgets/controls",
|
273 |
+
"_model_module_version": "1.5.0",
|
274 |
+
"_view_count": null,
|
275 |
+
"_view_module_version": "1.5.0",
|
276 |
+
"box_style": "",
|
277 |
+
"layout": "IPY_MODEL_42c6061ef7e44f179db5a6e3551c0f17",
|
278 |
+
"_model_module": "@jupyter-widgets/controls",
|
279 |
+
"children": [
|
280 |
+
"IPY_MODEL_d295dd80550447d88da0f04ce36a22ff",
|
281 |
+
"IPY_MODEL_04e7e6d291da49d5816dc98a2904e95c"
|
282 |
+
]
|
283 |
+
}
|
284 |
+
},
|
285 |
+
"42c6061ef7e44f179db5a6e3551c0f17": {
|
286 |
+
"model_module": "@jupyter-widgets/base",
|
287 |
+
"model_name": "LayoutModel",
|
288 |
+
"state": {
|
289 |
+
"_view_name": "LayoutView",
|
290 |
+
"grid_template_rows": null,
|
291 |
+
"right": null,
|
292 |
+
"justify_content": null,
|
293 |
+
"_view_module": "@jupyter-widgets/base",
|
294 |
+
"overflow": null,
|
295 |
+
"_model_module_version": "1.2.0",
|
296 |
+
"_view_count": null,
|
297 |
+
"flex_flow": null,
|
298 |
+
"width": null,
|
299 |
+
"min_width": null,
|
300 |
+
"border": null,
|
301 |
+
"align_items": null,
|
302 |
+
"bottom": null,
|
303 |
+
"_model_module": "@jupyter-widgets/base",
|
304 |
+
"top": null,
|
305 |
+
"grid_column": null,
|
306 |
+
"overflow_y": null,
|
307 |
+
"overflow_x": null,
|
308 |
+
"grid_auto_flow": null,
|
309 |
+
"grid_area": null,
|
310 |
+
"grid_template_columns": null,
|
311 |
+
"flex": null,
|
312 |
+
"_model_name": "LayoutModel",
|
313 |
+
"justify_items": null,
|
314 |
+
"grid_row": null,
|
315 |
+
"max_height": null,
|
316 |
+
"align_content": null,
|
317 |
+
"visibility": null,
|
318 |
+
"align_self": null,
|
319 |
+
"height": null,
|
320 |
+
"min_height": null,
|
321 |
+
"padding": null,
|
322 |
+
"grid_auto_rows": null,
|
323 |
+
"grid_gap": null,
|
324 |
+
"max_width": null,
|
325 |
+
"order": null,
|
326 |
+
"_view_module_version": "1.2.0",
|
327 |
+
"grid_template_areas": null,
|
328 |
+
"object_position": null,
|
329 |
+
"object_fit": null,
|
330 |
+
"grid_auto_columns": null,
|
331 |
+
"margin": null,
|
332 |
+
"display": null,
|
333 |
+
"left": null
|
334 |
+
}
|
335 |
+
},
|
336 |
+
"d295dd80550447d88da0f04ce36a22ff": {
|
337 |
+
"model_module": "@jupyter-widgets/controls",
|
338 |
+
"model_name": "FloatProgressModel",
|
339 |
+
"state": {
|
340 |
+
"_view_name": "ProgressView",
|
341 |
+
"style": "IPY_MODEL_e7d8c3a4fecd40778e32966b29ea65a1",
|
342 |
+
"_dom_classes": [],
|
343 |
+
"description": "Iteration: 100%",
|
344 |
+
"_model_name": "FloatProgressModel",
|
345 |
+
"bar_style": "success",
|
346 |
+
"max": 15228,
|
347 |
+
"_view_module": "@jupyter-widgets/controls",
|
348 |
+
"_model_module_version": "1.5.0",
|
349 |
+
"value": 15228,
|
350 |
+
"_view_count": null,
|
351 |
+
"_view_module_version": "1.5.0",
|
352 |
+
"orientation": "horizontal",
|
353 |
+
"min": 0,
|
354 |
+
"description_tooltip": null,
|
355 |
+
"_model_module": "@jupyter-widgets/controls",
|
356 |
+
"layout": "IPY_MODEL_016d7c8318f742c1943464b08232a510"
|
357 |
+
}
|
358 |
+
},
|
359 |
+
"04e7e6d291da49d5816dc98a2904e95c": {
|
360 |
+
"model_module": "@jupyter-widgets/controls",
|
361 |
+
"model_name": "HTMLModel",
|
362 |
+
"state": {
|
363 |
+
"_view_name": "HTMLView",
|
364 |
+
"style": "IPY_MODEL_8388e9da9da4492c98c19235ca5fc1b5",
|
365 |
+
"_dom_classes": [],
|
366 |
+
"description": "",
|
367 |
+
"_model_name": "HTMLModel",
|
368 |
+
"placeholder": "",
|
369 |
+
"_view_module": "@jupyter-widgets/controls",
|
370 |
+
"_model_module_version": "1.5.0",
|
371 |
+
"value": " 15228/15228 [2:46:46<00:00, 1.52it/s]",
|
372 |
+
"_view_count": null,
|
373 |
+
"_view_module_version": "1.5.0",
|
374 |
+
"description_tooltip": null,
|
375 |
+
"_model_module": "@jupyter-widgets/controls",
|
376 |
+
"layout": "IPY_MODEL_39c23c6a972b419eb2eeeebafeaedc22"
|
377 |
+
}
|
378 |
+
},
|
379 |
+
"e7d8c3a4fecd40778e32966b29ea65a1": {
|
380 |
+
"model_module": "@jupyter-widgets/controls",
|
381 |
+
"model_name": "ProgressStyleModel",
|
382 |
+
"state": {
|
383 |
+
"_view_name": "StyleView",
|
384 |
+
"_model_name": "ProgressStyleModel",
|
385 |
+
"description_width": "initial",
|
386 |
+
"_view_module": "@jupyter-widgets/base",
|
387 |
+
"_model_module_version": "1.5.0",
|
388 |
+
"_view_count": null,
|
389 |
+
"_view_module_version": "1.2.0",
|
390 |
+
"bar_color": null,
|
391 |
+
"_model_module": "@jupyter-widgets/controls"
|
392 |
+
}
|
393 |
+
},
|
394 |
+
"016d7c8318f742c1943464b08232a510": {
|
395 |
+
"model_module": "@jupyter-widgets/base",
|
396 |
+
"model_name": "LayoutModel",
|
397 |
+
"state": {
|
398 |
+
"_view_name": "LayoutView",
|
399 |
+
"grid_template_rows": null,
|
400 |
+
"right": null,
|
401 |
+
"justify_content": null,
|
402 |
+
"_view_module": "@jupyter-widgets/base",
|
403 |
+
"overflow": null,
|
404 |
+
"_model_module_version": "1.2.0",
|
405 |
+
"_view_count": null,
|
406 |
+
"flex_flow": null,
|
407 |
+
"width": null,
|
408 |
+
"min_width": null,
|
409 |
+
"border": null,
|
410 |
+
"align_items": null,
|
411 |
+
"bottom": null,
|
412 |
+
"_model_module": "@jupyter-widgets/base",
|
413 |
+
"top": null,
|
414 |
+
"grid_column": null,
|
415 |
+
"overflow_y": null,
|
416 |
+
"overflow_x": null,
|
417 |
+
"grid_auto_flow": null,
|
418 |
+
"grid_area": null,
|
419 |
+
"grid_template_columns": null,
|
420 |
+
"flex": null,
|
421 |
+
"_model_name": "LayoutModel",
|
422 |
+
"justify_items": null,
|
423 |
+
"grid_row": null,
|
424 |
+
"max_height": null,
|
425 |
+
"align_content": null,
|
426 |
+
"visibility": null,
|
427 |
+
"align_self": null,
|
428 |
+
"height": null,
|
429 |
+
"min_height": null,
|
430 |
+
"padding": null,
|
431 |
+
"grid_auto_rows": null,
|
432 |
+
"grid_gap": null,
|
433 |
+
"max_width": null,
|
434 |
+
"order": null,
|
435 |
+
"_view_module_version": "1.2.0",
|
436 |
+
"grid_template_areas": null,
|
437 |
+
"object_position": null,
|
438 |
+
"object_fit": null,
|
439 |
+
"grid_auto_columns": null,
|
440 |
+
"margin": null,
|
441 |
+
"display": null,
|
442 |
+
"left": null
|
443 |
+
}
|
444 |
+
},
|
445 |
+
"8388e9da9da4492c98c19235ca5fc1b5": {
|
446 |
+
"model_module": "@jupyter-widgets/controls",
|
447 |
+
"model_name": "DescriptionStyleModel",
|
448 |
+
"state": {
|
449 |
+
"_view_name": "StyleView",
|
450 |
+
"_model_name": "DescriptionStyleModel",
|
451 |
+
"description_width": "",
|
452 |
+
"_view_module": "@jupyter-widgets/base",
|
453 |
+
"_model_module_version": "1.5.0",
|
454 |
+
"_view_count": null,
|
455 |
+
"_view_module_version": "1.2.0",
|
456 |
+
"_model_module": "@jupyter-widgets/controls"
|
457 |
+
}
|
458 |
+
},
|
459 |
+
"39c23c6a972b419eb2eeeebafeaedc22": {
|
460 |
+
"model_module": "@jupyter-widgets/base",
|
461 |
+
"model_name": "LayoutModel",
|
462 |
+
"state": {
|
463 |
+
"_view_name": "LayoutView",
|
464 |
+
"grid_template_rows": null,
|
465 |
+
"right": null,
|
466 |
+
"justify_content": null,
|
467 |
+
"_view_module": "@jupyter-widgets/base",
|
468 |
+
"overflow": null,
|
469 |
+
"_model_module_version": "1.2.0",
|
470 |
+
"_view_count": null,
|
471 |
+
"flex_flow": null,
|
472 |
+
"width": null,
|
473 |
+
"min_width": null,
|
474 |
+
"border": null,
|
475 |
+
"align_items": null,
|
476 |
+
"bottom": null,
|
477 |
+
"_model_module": "@jupyter-widgets/base",
|
478 |
+
"top": null,
|
479 |
+
"grid_column": null,
|
480 |
+
"overflow_y": null,
|
481 |
+
"overflow_x": null,
|
482 |
+
"grid_auto_flow": null,
|
483 |
+
"grid_area": null,
|
484 |
+
"grid_template_columns": null,
|
485 |
+
"flex": null,
|
486 |
+
"_model_name": "LayoutModel",
|
487 |
+
"justify_items": null,
|
488 |
+
"grid_row": null,
|
489 |
+
"max_height": null,
|
490 |
+
"align_content": null,
|
491 |
+
"visibility": null,
|
492 |
+
"align_self": null,
|
493 |
+
"height": null,
|
494 |
+
"min_height": null,
|
495 |
+
"padding": null,
|
496 |
+
"grid_auto_rows": null,
|
497 |
+
"grid_gap": null,
|
498 |
+
"max_width": null,
|
499 |
+
"order": null,
|
500 |
+
"_view_module_version": "1.2.0",
|
501 |
+
"grid_template_areas": null,
|
502 |
+
"object_position": null,
|
503 |
+
"object_fit": null,
|
504 |
+
"grid_auto_columns": null,
|
505 |
+
"margin": null,
|
506 |
+
"display": null,
|
507 |
+
"left": null
|
508 |
+
}
|
509 |
+
}
|
510 |
+
}
|
511 |
+
}
|
512 |
+
},
|
513 |
+
"cells": [
|
514 |
+
{
|
515 |
+
"cell_type": "markdown",
|
516 |
+
"metadata": {
|
517 |
+
"id": "view-in-github",
|
518 |
+
"colab_type": "text"
|
519 |
+
},
|
520 |
+
"source": [
|
521 |
+
"<a href=\"https://colab.research.google.com/github/huggingface/blog/blob/notebook_update_may15/notebooks/01_how_to_train.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
522 |
+
]
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"cell_type": "code",
|
526 |
+
"metadata": {
|
527 |
+
"id": "e67Ut53QYEdU",
|
528 |
+
"colab_type": "code",
|
529 |
+
"cellView": "form",
|
530 |
+
"outputId": "437871b8-b8ac-4eaf-c2e1-61d801c5e6b2",
|
531 |
+
"colab": {
|
532 |
+
"base_uri": "https://localhost:8080/",
|
533 |
+
"height": 100
|
534 |
+
}
|
535 |
+
},
|
536 |
+
"source": [
|
537 |
+
"#@title\n",
|
538 |
+
"%%html\n",
|
539 |
+
"<div style=\"background-color: pink;\">\n",
|
540 |
+
" Notebook written in collaboration with <a href=\"https://github.com/aditya-malte\">Aditya Malte</a>.\n",
|
541 |
+
" <br>\n",
|
542 |
+
" The Notebook is on GitHub, so contributions are more than welcome.\n",
|
543 |
+
"</div>\n",
|
544 |
+
"<br>\n",
|
545 |
+
"<div style=\"background-color: yellow;\">\n",
|
546 |
+
" Aditya wrote another notebook with a slightly different use case and methodology, please check it out.\n",
|
547 |
+
" <br>\n",
|
548 |
+
" <a target=\"_blank\" href=\"https://gist.github.com/aditya-malte/2d4f896f471be9c38eb4d723a710768b\">\n",
|
549 |
+
" https://gist.github.com/aditya-malte/2d4f896f471be9c38eb4d723a710768b\n",
|
550 |
+
" </a>\n",
|
551 |
+
"</div>\n"
|
552 |
+
],
|
553 |
+
"execution_count": 0,
|
554 |
+
"outputs": [
|
555 |
+
{
|
556 |
+
"output_type": "display_data",
|
557 |
+
"data": {
|
558 |
+
"text/html": [
|
559 |
+
"<div style=\"background-color: pink;\">\n",
|
560 |
+
" Notebook written in collaboration with <a href=\"https://github.com/aditya-malte\">Aditya Malte</a>.\n",
|
561 |
+
" <br>\n",
|
562 |
+
" The Notebook is on GitHub, so contributions are more than welcome.\n",
|
563 |
+
"</div>\n",
|
564 |
+
"<br>\n",
|
565 |
+
"<div style=\"background-color: yellow;\">\n",
|
566 |
+
" Aditya wrote another notebook with a slightly different use case and methodology, please check it out.\n",
|
567 |
+
" <br>\n",
|
568 |
+
" <a target=\"_blank\" href=\"https://gist.github.com/aditya-malte/2d4f896f471be9c38eb4d723a710768b\">\n",
|
569 |
+
" https://gist.github.com/aditya-malte/2d4f896f471be9c38eb4d723a710768b\n",
|
570 |
+
" </a>\n",
|
571 |
+
"</div>"
|
572 |
+
],
|
573 |
+
"text/plain": [
|
574 |
+
"<IPython.core.display.HTML object>"
|
575 |
+
]
|
576 |
+
},
|
577 |
+
"metadata": {
|
578 |
+
"tags": []
|
579 |
+
}
|
580 |
+
}
|
581 |
+
]
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"cell_type": "markdown",
|
585 |
+
"metadata": {
|
586 |
+
"id": "M1oqh0F6W3ad",
|
587 |
+
"colab_type": "text"
|
588 |
+
},
|
589 |
+
"source": [
|
590 |
+
"# How to train a new language model from scratch using Transformers and Tokenizers\n",
|
591 |
+
"\n",
|
592 |
+
"### Notebook edition (link to blogpost [link](https://huggingface.co/blog/how-to-train)). Last update May 15, 2020\n",
|
593 |
+
"\n",
|
594 |
+
"\n",
|
595 |
+
"Over the past few months, we made several improvements to our [`transformers`](https://github.com/huggingface/transformers) and [`tokenizers`](https://github.com/huggingface/tokenizers) libraries, with the goal of making it easier than ever to **train a new language model from scratch**.\n",
|
596 |
+
"\n",
|
597 |
+
"In this post we’ll demo how to train a “small” model (84 M parameters = 6 layers, 768 hidden size, 12 attention heads) – that’s the same number of layers & heads as DistilBERT – on **Esperanto**. We’ll then fine-tune the model on a downstream task of part-of-speech tagging.\n"
|
598 |
+
]
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"cell_type": "markdown",
|
602 |
+
"metadata": {
|
603 |
+
"id": "oK7PPVm2XBgr",
|
604 |
+
"colab_type": "text"
|
605 |
+
},
|
606 |
+
"source": [
|
607 |
+
"## 1. Find a dataset\n",
|
608 |
+
"\n",
|
609 |
+
"First, let us find a corpus of text in Esperanto. Here we’ll use the Esperanto portion of the [OSCAR corpus](https://traces1.inria.fr/oscar/) from INRIA.\n",
|
610 |
+
"OSCAR is a huge multilingual corpus obtained by language classification and filtering of [Common Crawl](https://commoncrawl.org/) dumps of the Web.\n",
|
611 |
+
"\n",
|
612 |
+
"<img src=\"https://huggingface.co/blog/assets/01_how-to-train/oscar.png\" style=\"margin: auto; display: block; width: 260px;\">\n",
|
613 |
+
"\n",
|
614 |
+
"The Esperanto portion of the dataset is only 299M, so we’ll concatenate with the Esperanto sub-corpus of the [Leipzig Corpora Collection](https://wortschatz.uni-leipzig.de/en/download), which is comprised of text from diverse sources like news, literature, and wikipedia.\n",
|
615 |
+
"\n",
|
616 |
+
"The final training corpus has a size of 3 GB, which is still small – for your model, you will get better results the more data you can get to pretrain on. \n",
|
617 |
+
"\n"
|
618 |
+
]
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"cell_type": "code",
|
622 |
+
"metadata": {
|
623 |
+
"id": "HOk4iZ9YZvec",
|
624 |
+
"colab_type": "code",
|
625 |
+
"colab": {}
|
626 |
+
},
|
627 |
+
"source": [
|
628 |
+
"# in this notebook we'll only get one of the files (the Oscar one) for the sake of simplicity and performance\n",
|
629 |
+
"!wget -c https://cdn-datasets.huggingface.co/EsperBERTo/data/oscar.eo.txt"
|
630 |
+
],
|
631 |
+
"execution_count": 0,
|
632 |
+
"outputs": []
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"cell_type": "markdown",
|
636 |
+
"metadata": {
|
637 |
+
"id": "G-kkz81OY6xH",
|
638 |
+
"colab_type": "text"
|
639 |
+
},
|
640 |
+
"source": [
|
641 |
+
"## 2. Train a tokenizer\n",
|
642 |
+
"\n",
|
643 |
+
"We choose to train a byte-level Byte-pair encoding tokenizer (the same as GPT-2), with the same special tokens as RoBERTa. Let’s arbitrarily pick its size to be 52,000.\n",
|
644 |
+
"\n",
|
645 |
+
"We recommend training a byte-level BPE (rather than let’s say, a WordPiece tokenizer like BERT) because it will start building its vocabulary from an alphabet of single bytes, so all words will be decomposable into tokens (no more `<unk>` tokens!).\n"
|
646 |
+
]
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"cell_type": "code",
|
650 |
+
"metadata": {
|
651 |
+
"id": "5duRggBRZKvP",
|
652 |
+
"colab_type": "code",
|
653 |
+
"colab": {}
|
654 |
+
},
|
655 |
+
"source": [
|
656 |
+
"# We won't need TensorFlow here\n",
|
657 |
+
"!pip uninstall -y tensorflow\n",
|
658 |
+
"# Install `transformers` from master\n",
|
659 |
+
"!pip install git+https://github.com/huggingface/transformers\n",
|
660 |
+
"!pip list | grep -E 'transformers|tokenizers'\n",
|
661 |
+
"# transformers version at notebook update --- 2.11.0\n",
|
662 |
+
"# tokenizers version at notebook update --- 0.8.0rc1"
|
663 |
+
],
|
664 |
+
"execution_count": 0,
|
665 |
+
"outputs": []
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"cell_type": "code",
|
669 |
+
"metadata": {
|
670 |
+
"id": "IMnymRDLe0hi",
|
671 |
+
"colab_type": "code",
|
672 |
+
"outputId": "4d26476f-e6b5-475a-a0c1-41b6fcdc041a",
|
673 |
+
"colab": {
|
674 |
+
"base_uri": "https://localhost:8080/",
|
675 |
+
"height": 52
|
676 |
+
}
|
677 |
+
},
|
678 |
+
"source": [
|
679 |
+
"%%time \n",
|
680 |
+
"from pathlib import Path\n",
|
681 |
+
"\n",
|
682 |
+
"from tokenizers import ByteLevelBPETokenizer\n",
|
683 |
+
"\n",
|
684 |
+
"paths = [str(x) for x in Path(\".\").glob(\"**/*.txt\")]\n",
|
685 |
+
"\n",
|
686 |
+
"# Initialize a tokenizer\n",
|
687 |
+
"tokenizer = ByteLevelBPETokenizer()\n",
|
688 |
+
"\n",
|
689 |
+
"# Customize training\n",
|
690 |
+
"tokenizer.train(files=paths, vocab_size=52_000, min_frequency=2, special_tokens=[\n",
|
691 |
+
" \"<s>\",\n",
|
692 |
+
" \"<pad>\",\n",
|
693 |
+
" \"</s>\",\n",
|
694 |
+
" \"<unk>\",\n",
|
695 |
+
" \"<mask>\",\n",
|
696 |
+
"])"
|
697 |
+
],
|
698 |
+
"execution_count": 3,
|
699 |
+
"outputs": [
|
700 |
+
{
|
701 |
+
"output_type": "stream",
|
702 |
+
"text": [
|
703 |
+
"CPU times: user 4min, sys: 3min 7s, total: 7min 7s\n",
|
704 |
+
"Wall time: 2min 25s\n"
|
705 |
+
],
|
706 |
+
"name": "stdout"
|
707 |
+
}
|
708 |
+
]
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"cell_type": "markdown",
|
712 |
+
"metadata": {
|
713 |
+
"id": "6Ei7bqpRf1LH",
|
714 |
+
"colab_type": "text"
|
715 |
+
},
|
716 |
+
"source": [
|
717 |
+
"Now let's save files to disk"
|
718 |
+
]
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"cell_type": "code",
|
722 |
+
"metadata": {
|
723 |
+
"id": "EIS-irI0f32P",
|
724 |
+
"colab_type": "code",
|
725 |
+
"outputId": "e86c4a24-eb65-4f0a-aa58-ed1931a05ac9",
|
726 |
+
"colab": {
|
727 |
+
"base_uri": "https://localhost:8080/",
|
728 |
+
"height": 34
|
729 |
+
}
|
730 |
+
},
|
731 |
+
"source": [
|
732 |
+
"!mkdir EsperBERTo\n",
|
733 |
+
"tokenizer.save_model(\"EsperBERTo\")"
|
734 |
+
],
|
735 |
+
"execution_count": 4,
|
736 |
+
"outputs": [
|
737 |
+
{
|
738 |
+
"output_type": "execute_result",
|
739 |
+
"data": {
|
740 |
+
"text/plain": [
|
741 |
+
"['EsperBERTo/vocab.json', 'EsperBERTo/merges.txt']"
|
742 |
+
]
|
743 |
+
},
|
744 |
+
"metadata": {
|
745 |
+
"tags": []
|
746 |
+
},
|
747 |
+
"execution_count": 4
|
748 |
+
}
|
749 |
+
]
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"cell_type": "markdown",
|
753 |
+
"metadata": {
|
754 |
+
"id": "lOOfYSuQhSqT",
|
755 |
+
"colab_type": "text"
|
756 |
+
},
|
757 |
+
"source": [
|
758 |
+
"🔥🔥 Wow, that was fast! ⚡️🔥\n",
|
759 |
+
"\n",
|
760 |
+
"We now have both a `vocab.json`, which is a list of the most frequent tokens ranked by frequency, and a `merges.txt` list of merges.\n",
|
761 |
+
"\n",
|
762 |
+
"```json\n",
|
763 |
+
"{\n",
|
764 |
+
"\t\"<s>\": 0,\n",
|
765 |
+
"\t\"<pad>\": 1,\n",
|
766 |
+
"\t\"</s>\": 2,\n",
|
767 |
+
"\t\"<unk>\": 3,\n",
|
768 |
+
"\t\"<mask>\": 4,\n",
|
769 |
+
"\t\"!\": 5,\n",
|
770 |
+
"\t\"\\\"\": 6,\n",
|
771 |
+
"\t\"#\": 7,\n",
|
772 |
+
"\t\"$\": 8,\n",
|
773 |
+
"\t\"%\": 9,\n",
|
774 |
+
"\t\"&\": 10,\n",
|
775 |
+
"\t\"'\": 11,\n",
|
776 |
+
"\t\"(\": 12,\n",
|
777 |
+
"\t\")\": 13,\n",
|
778 |
+
"\t# ...\n",
|
779 |
+
"}\n",
|
780 |
+
"\n",
|
781 |
+
"# merges.txt\n",
|
782 |
+
"l a\n",
|
783 |
+
"Ġ k\n",
|
784 |
+
"o n\n",
|
785 |
+
"Ġ la\n",
|
786 |
+
"t a\n",
|
787 |
+
"Ġ e\n",
|
788 |
+
"Ġ d\n",
|
789 |
+
"Ġ p\n",
|
790 |
+
"# ...\n",
|
791 |
+
"```\n",
|
792 |
+
"\n",
|
793 |
+
"What is great is that our tokenizer is optimized for Esperanto. Compared to a generic tokenizer trained for English, more native words are represented by a single, unsplit token. Diacritics, i.e. accented characters used in Esperanto – `ĉ`, `ĝ`, `ĥ`, `ĵ`, `ŝ`, and `ŭ` – are encoded natively. We also represent sequences in a more efficient manner. Here on this corpus, the average length of encoded sequences is ~30% smaller as when using the pretrained GPT-2 tokenizer.\n",
|
794 |
+
"\n",
|
795 |
+
"Here’s how you can use it in `tokenizers`, including handling the RoBERTa special tokens – of course, you’ll also be able to use it directly from `transformers`.\n"
|
796 |
+
]
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"cell_type": "code",
|
800 |
+
"metadata": {
|
801 |
+
"id": "tKVWB8WShT-z",
|
802 |
+
"colab_type": "code",
|
803 |
+
"colab": {}
|
804 |
+
},
|
805 |
+
"source": [
|
806 |
+
"from tokenizers.implementations import ByteLevelBPETokenizer\n",
|
807 |
+
"from tokenizers.processors import BertProcessing\n",
|
808 |
+
"\n",
|
809 |
+
"\n",
|
810 |
+
"tokenizer = ByteLevelBPETokenizer(\n",
|
811 |
+
" \"./EsperBERTo/vocab.json\",\n",
|
812 |
+
" \"./EsperBERTo/merges.txt\",\n",
|
813 |
+
")"
|
814 |
+
],
|
815 |
+
"execution_count": 0,
|
816 |
+
"outputs": []
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"cell_type": "code",
|
820 |
+
"metadata": {
|
821 |
+
"id": "hO5M3vrAhcuj",
|
822 |
+
"colab_type": "code",
|
823 |
+
"colab": {}
|
824 |
+
},
|
825 |
+
"source": [
|
826 |
+
"tokenizer._tokenizer.post_processor = BertProcessing(\n",
|
827 |
+
" (\"</s>\", tokenizer.token_to_id(\"</s>\")),\n",
|
828 |
+
" (\"<s>\", tokenizer.token_to_id(\"<s>\")),\n",
|
829 |
+
")\n",
|
830 |
+
"tokenizer.enable_truncation(max_length=512)"
|
831 |
+
],
|
832 |
+
"execution_count": 0,
|
833 |
+
"outputs": []
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"cell_type": "code",
|
837 |
+
"metadata": {
|
838 |
+
"id": "E3Ye27nchfzq",
|
839 |
+
"colab_type": "code",
|
840 |
+
"outputId": "b9812ed2-1ecd-4e1b-d9bd-7de581955e70",
|
841 |
+
"colab": {
|
842 |
+
"base_uri": "https://localhost:8080/",
|
843 |
+
"height": 34
|
844 |
+
}
|
845 |
+
},
|
846 |
+
"source": [
|
847 |
+
"tokenizer.encode(\"Mi estas Julien.\")"
|
848 |
+
],
|
849 |
+
"execution_count": 0,
|
850 |
+
"outputs": [
|
851 |
+
{
|
852 |
+
"output_type": "execute_result",
|
853 |
+
"data": {
|
854 |
+
"text/plain": [
|
855 |
+
"Encoding(num_tokens=7, attributes=[ids, type_ids, tokens, offsets, attention_mask, special_tokens_mask, overflowing])"
|
856 |
+
]
|
857 |
+
},
|
858 |
+
"metadata": {
|
859 |
+
"tags": []
|
860 |
+
},
|
861 |
+
"execution_count": 10
|
862 |
+
}
|
863 |
+
]
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"cell_type": "code",
|
867 |
+
"metadata": {
|
868 |
+
"id": "X8ya5_7rhjKS",
|
869 |
+
"colab_type": "code",
|
870 |
+
"outputId": "e9e08ded-1081-4823-dd81-9d6be1255385",
|
871 |
+
"colab": {
|
872 |
+
"base_uri": "https://localhost:8080/",
|
873 |
+
"height": 34
|
874 |
+
}
|
875 |
+
},
|
876 |
+
"source": [
|
877 |
+
"tokenizer.encode(\"Mi estas Julien.\").tokens"
|
878 |
+
],
|
879 |
+
"execution_count": 0,
|
880 |
+
"outputs": [
|
881 |
+
{
|
882 |
+
"output_type": "execute_result",
|
883 |
+
"data": {
|
884 |
+
"text/plain": [
|
885 |
+
"['<s>', 'Mi', 'Ġestas', 'ĠJuli', 'en', '.', '</s>']"
|
886 |
+
]
|
887 |
+
},
|
888 |
+
"metadata": {
|
889 |
+
"tags": []
|
890 |
+
},
|
891 |
+
"execution_count": 11
|
892 |
+
}
|
893 |
+
]
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"cell_type": "markdown",
|
897 |
+
"metadata": {
|
898 |
+
"id": "WQpUC_CDhnWW",
|
899 |
+
"colab_type": "text"
|
900 |
+
},
|
901 |
+
"source": [
|
902 |
+
"## 3. Train a language model from scratch\n",
|
903 |
+
"\n",
|
904 |
+
"**Update:** This section follows along the [`run_language_modeling.py`](https://github.com/huggingface/transformers/blob/master/examples/legacy/run_language_modeling.py) script, using our new [`Trainer`](https://github.com/huggingface/transformers/blob/master/src/transformers/trainer.py) directly. Feel free to pick the approach you like best.\n",
|
905 |
+
"\n",
|
906 |
+
"> We’ll train a RoBERTa-like model, which is a BERT-like with a couple of changes (check the [documentation](https://huggingface.co/transformers/model_doc/roberta.html) for more details).\n",
|
907 |
+
"\n",
|
908 |
+
"As the model is BERT-like, we’ll train it on a task of *Masked language modeling*, i.e. the predict how to fill arbitrary tokens that we randomly mask in the dataset. This is taken care of by the example script.\n"
|
909 |
+
]
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"cell_type": "code",
|
913 |
+
"metadata": {
|
914 |
+
"id": "kD140sFjh0LQ",
|
915 |
+
"colab_type": "code",
|
916 |
+
"outputId": "0bab1f9e-bf7a-4f13-82d3-07fe5866ce78",
|
917 |
+
"colab": {
|
918 |
+
"base_uri": "https://localhost:8080/",
|
919 |
+
"height": 318
|
920 |
+
}
|
921 |
+
},
|
922 |
+
"source": [
|
923 |
+
"# Check that we have a GPU\n",
|
924 |
+
"!nvidia-smi"
|
925 |
+
],
|
926 |
+
"execution_count": 5,
|
927 |
+
"outputs": [
|
928 |
+
{
|
929 |
+
"output_type": "stream",
|
930 |
+
"text": [
|
931 |
+
"Fri May 15 21:17:12 2020 \n",
|
932 |
+
"+-----------------------------------------------------------------------------+\n",
|
933 |
+
"| NVIDIA-SMI 440.82 Driver Version: 418.67 CUDA Version: 10.1 |\n",
|
934 |
+
"|-------------------------------+----------------------+----------------------+\n",
|
935 |
+
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
|
936 |
+
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
|
937 |
+
"|===============================+======================+======================|\n",
|
938 |
+
"| 0 Tesla P100-PCIE... Off | 00000000:00:04.0 Off | 0 |\n",
|
939 |
+
"| N/A 38C P0 26W / 250W | 0MiB / 16280MiB | 0% Default |\n",
|
940 |
+
"+-------------------------------+----------------------+----------------------+\n",
|
941 |
+
" \n",
|
942 |
+
"+-----------------------------------------------------------------------------+\n",
|
943 |
+
"| Processes: GPU Memory |\n",
|
944 |
+
"| GPU PID Type Process name Usage |\n",
|
945 |
+
"|=============================================================================|\n",
|
946 |
+
"| No running processes found |\n",
|
947 |
+
"+-----------------------------------------------------------------------------+\n"
|
948 |
+
],
|
949 |
+
"name": "stdout"
|
950 |
+
}
|
951 |
+
]
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"cell_type": "code",
|
955 |
+
"metadata": {
|
956 |
+
"id": "VNZZs-r6iKAV",
|
957 |
+
"colab_type": "code",
|
958 |
+
"outputId": "c8404d6c-7662-4240-c8da-ee89edfaf51b",
|
959 |
+
"colab": {
|
960 |
+
"base_uri": "https://localhost:8080/",
|
961 |
+
"height": 34
|
962 |
+
}
|
963 |
+
},
|
964 |
+
"source": [
|
965 |
+
"# Check that PyTorch sees it\n",
|
966 |
+
"import torch\n",
|
967 |
+
"torch.cuda.is_available()"
|
968 |
+
],
|
969 |
+
"execution_count": 6,
|
970 |
+
"outputs": [
|
971 |
+
{
|
972 |
+
"output_type": "execute_result",
|
973 |
+
"data": {
|
974 |
+
"text/plain": [
|
975 |
+
"True"
|
976 |
+
]
|
977 |
+
},
|
978 |
+
"metadata": {
|
979 |
+
"tags": []
|
980 |
+
},
|
981 |
+
"execution_count": 6
|
982 |
+
}
|
983 |
+
]
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"cell_type": "markdown",
|
987 |
+
"metadata": {
|
988 |
+
"id": "u0qQzgrBi1OX",
|
989 |
+
"colab_type": "text"
|
990 |
+
},
|
991 |
+
"source": [
|
992 |
+
"### We'll define the following config for the model"
|
993 |
+
]
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"cell_type": "code",
|
997 |
+
"metadata": {
|
998 |
+
"id": "LTXXutqeDzPi",
|
999 |
+
"colab_type": "code",
|
1000 |
+
"colab": {}
|
1001 |
+
},
|
1002 |
+
"source": [
|
1003 |
+
"from transformers import RobertaConfig\n",
|
1004 |
+
"\n",
|
1005 |
+
"config = RobertaConfig(\n",
|
1006 |
+
" vocab_size=52_000,\n",
|
1007 |
+
" max_position_embeddings=514,\n",
|
1008 |
+
" num_attention_heads=12,\n",
|
1009 |
+
" num_hidden_layers=6,\n",
|
1010 |
+
" type_vocab_size=1,\n",
|
1011 |
+
")"
|
1012 |
+
],
|
1013 |
+
"execution_count": 0,
|
1014 |
+
"outputs": []
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"cell_type": "markdown",
|
1018 |
+
"metadata": {
|
1019 |
+
"id": "yAwQ82JiE5pi",
|
1020 |
+
"colab_type": "text"
|
1021 |
+
},
|
1022 |
+
"source": [
|
1023 |
+
"Now let's re-create our tokenizer in transformers"
|
1024 |
+
]
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"cell_type": "code",
|
1028 |
+
"metadata": {
|
1029 |
+
"id": "4keFBUjQFOD1",
|
1030 |
+
"colab_type": "code",
|
1031 |
+
"colab": {}
|
1032 |
+
},
|
1033 |
+
"source": [
|
1034 |
+
"from transformers import RobertaTokenizerFast\n",
|
1035 |
+
"\n",
|
1036 |
+
"tokenizer = RobertaTokenizerFast.from_pretrained(\"./EsperBERTo\", max_len=512)"
|
1037 |
+
],
|
1038 |
+
"execution_count": 0,
|
1039 |
+
"outputs": []
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"cell_type": "markdown",
|
1043 |
+
"metadata": {
|
1044 |
+
"id": "6yNCw-3hFv9h",
|
1045 |
+
"colab_type": "text"
|
1046 |
+
},
|
1047 |
+
"source": [
|
1048 |
+
"Finally let's initialize our model.\n",
|
1049 |
+
"\n",
|
1050 |
+
"**Important:**\n",
|
1051 |
+
"\n",
|
1052 |
+
"As we are training from scratch, we only initialize from a config, not from an existing pretrained model or checkpoint."
|
1053 |
+
]
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"cell_type": "code",
|
1057 |
+
"metadata": {
|
1058 |
+
"id": "BzMqR-dzF4Ro",
|
1059 |
+
"colab_type": "code",
|
1060 |
+
"colab": {}
|
1061 |
+
},
|
1062 |
+
"source": [
|
1063 |
+
"from transformers import RobertaForMaskedLM\n",
|
1064 |
+
"\n",
|
1065 |
+
"model = RobertaForMaskedLM(config=config)"
|
1066 |
+
],
|
1067 |
+
"execution_count": 0,
|
1068 |
+
"outputs": []
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"cell_type": "code",
|
1072 |
+
"metadata": {
|
1073 |
+
"id": "jU6JhBSTKiaM",
|
1074 |
+
"colab_type": "code",
|
1075 |
+
"outputId": "35879a60-2915-4894-f702-2d649cfa398a",
|
1076 |
+
"colab": {
|
1077 |
+
"base_uri": "https://localhost:8080/",
|
1078 |
+
"height": 34
|
1079 |
+
}
|
1080 |
+
},
|
1081 |
+
"source": [
|
1082 |
+
"model.num_parameters()\n",
|
1083 |
+
"# => 84 million parameters"
|
1084 |
+
],
|
1085 |
+
"execution_count": 10,
|
1086 |
+
"outputs": [
|
1087 |
+
{
|
1088 |
+
"output_type": "execute_result",
|
1089 |
+
"data": {
|
1090 |
+
"text/plain": [
|
1091 |
+
"84095008"
|
1092 |
+
]
|
1093 |
+
},
|
1094 |
+
"metadata": {
|
1095 |
+
"tags": []
|
1096 |
+
},
|
1097 |
+
"execution_count": 10
|
1098 |
+
}
|
1099 |
+
]
|
1100 |
+
},
|
1101 |
+
{
|
1102 |
+
"cell_type": "markdown",
|
1103 |
+
"metadata": {
|
1104 |
+
"id": "jBtUHRMliOLM",
|
1105 |
+
"colab_type": "text"
|
1106 |
+
},
|
1107 |
+
"source": [
|
1108 |
+
"### Now let's build our training Dataset\n",
|
1109 |
+
"\n",
|
1110 |
+
"We'll build our dataset by applying our tokenizer to our text file.\n",
|
1111 |
+
"\n",
|
1112 |
+
"Here, as we only have one text file, we don't even need to customize our `Dataset`. We'll just use the `LineByLineDataset` out-of-the-box."
|
1113 |
+
]
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"cell_type": "code",
|
1117 |
+
"metadata": {
|
1118 |
+
"id": "GlvP_A-THEEl",
|
1119 |
+
"colab_type": "code",
|
1120 |
+
"outputId": "e0510a33-7937-4a04-fa1c-d4e20b758bb2",
|
1121 |
+
"colab": {
|
1122 |
+
"base_uri": "https://localhost:8080/",
|
1123 |
+
"height": 52
|
1124 |
+
}
|
1125 |
+
},
|
1126 |
+
"source": [
|
1127 |
+
"%%time\n",
|
1128 |
+
"from transformers import LineByLineTextDataset\n",
|
1129 |
+
"\n",
|
1130 |
+
"dataset = LineByLineTextDataset(\n",
|
1131 |
+
" tokenizer=tokenizer,\n",
|
1132 |
+
" file_path=\"./oscar.eo.txt\",\n",
|
1133 |
+
" block_size=128,\n",
|
1134 |
+
")"
|
1135 |
+
],
|
1136 |
+
"execution_count": 11,
|
1137 |
+
"outputs": [
|
1138 |
+
{
|
1139 |
+
"output_type": "stream",
|
1140 |
+
"text": [
|
1141 |
+
"CPU times: user 4min 54s, sys: 2.98 s, total: 4min 57s\n",
|
1142 |
+
"Wall time: 1min 37s\n"
|
1143 |
+
],
|
1144 |
+
"name": "stdout"
|
1145 |
+
}
|
1146 |
+
]
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"cell_type": "markdown",
|
1150 |
+
"metadata": {
|
1151 |
+
"id": "hDLs73HcIHk5",
|
1152 |
+
"colab_type": "text"
|
1153 |
+
},
|
1154 |
+
"source": [
|
1155 |
+
"Like in the [`run_language_modeling.py`](https://github.com/huggingface/transformers/blob/master/examples/language-modeling/run_language_modeling.py) script, we need to define a data_collator.\n",
|
1156 |
+
"\n",
|
1157 |
+
"This is just a small helper that will help us batch different samples of the dataset together into an object that PyTorch knows how to perform backprop on."
|
1158 |
+
]
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"cell_type": "code",
|
1162 |
+
"metadata": {
|
1163 |
+
"id": "zTgWPa9Dipk2",
|
1164 |
+
"colab_type": "code",
|
1165 |
+
"colab": {}
|
1166 |
+
},
|
1167 |
+
"source": [
|
1168 |
+
"from transformers import DataCollatorForLanguageModeling\n",
|
1169 |
+
"\n",
|
1170 |
+
"data_collator = DataCollatorForLanguageModeling(\n",
|
1171 |
+
" tokenizer=tokenizer, mlm=True, mlm_probability=0.15\n",
|
1172 |
+
")"
|
1173 |
+
],
|
1174 |
+
"execution_count": 0,
|
1175 |
+
"outputs": []
|
1176 |
+
},
|
1177 |
+
{
|
1178 |
+
"cell_type": "markdown",
|
1179 |
+
"metadata": {
|
1180 |
+
"id": "ri2BIQKqjfHm",
|
1181 |
+
"colab_type": "text"
|
1182 |
+
},
|
1183 |
+
"source": [
|
1184 |
+
"### Finally, we are all set to initialize our Trainer"
|
1185 |
+
]
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"cell_type": "code",
|
1189 |
+
"metadata": {
|
1190 |
+
"id": "YpvnFFmZJD-N",
|
1191 |
+
"colab_type": "code",
|
1192 |
+
"colab": {}
|
1193 |
+
},
|
1194 |
+
"source": [
|
1195 |
+
"from transformers import Trainer, TrainingArguments\n",
|
1196 |
+
"\n",
|
1197 |
+
"training_args = TrainingArguments(\n",
|
1198 |
+
" output_dir=\"./EsperBERTo\",\n",
|
1199 |
+
" overwrite_output_dir=True,\n",
|
1200 |
+
" num_train_epochs=1,\n",
|
1201 |
+
" per_gpu_train_batch_size=64,\n",
|
1202 |
+
" save_steps=10_000,\n",
|
1203 |
+
" save_total_limit=2,\n",
|
1204 |
+
" prediction_loss_only=True,\n",
|
1205 |
+
")\n",
|
1206 |
+
"\n",
|
1207 |
+
"trainer = Trainer(\n",
|
1208 |
+
" model=model,\n",
|
1209 |
+
" args=training_args,\n",
|
1210 |
+
" data_collator=data_collator,\n",
|
1211 |
+
" train_dataset=dataset,\n",
|
1212 |
+
")"
|
1213 |
+
],
|
1214 |
+
"execution_count": 0,
|
1215 |
+
"outputs": []
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"cell_type": "markdown",
|
1219 |
+
"metadata": {
|
1220 |
+
"id": "o6sASa36Nf-N",
|
1221 |
+
"colab_type": "text"
|
1222 |
+
},
|
1223 |
+
"source": [
|
1224 |
+
"### Start training"
|
1225 |
+
]
|
1226 |
+
},
|
1227 |
+
{
|
1228 |
+
"cell_type": "code",
|
1229 |
+
"metadata": {
|
1230 |
+
"id": "VmaHZXzmkNtJ",
|
1231 |
+
"colab_type": "code",
|
1232 |
+
"outputId": "a19880cb-bcc6-4885-bf24-c2c6d0f56d1e",
|
1233 |
+
"colab": {
|
1234 |
+
"base_uri": "https://localhost:8080/",
|
1235 |
+
"height": 738,
|
1236 |
+
"referenced_widgets": [
|
1237 |
+
"a58a66392b644b1384661e850c077a6c",
|
1238 |
+
"a491e8caa0a048beb3b5259f14eb233f",
|
1239 |
+
"837c9ddc3d594e088891874560c646b8",
|
1240 |
+
"dbf50873d62c4ba39321faefbed0cca5",
|
1241 |
+
"40bf955ba0284e84b198da6be8654219",
|
1242 |
+
"fe20a8dae6e84628b5076d02183090f5",
|
1243 |
+
"93b3f9eae3cb4e3e859cf456e3547c6d",
|
1244 |
+
"6feb10aeb43147e6aba028d065947ae8",
|
1245 |
+
"0989d41a4da24e9ebff377e02127642c",
|
1246 |
+
"42c6061ef7e44f179db5a6e3551c0f17",
|
1247 |
+
"d295dd80550447d88da0f04ce36a22ff",
|
1248 |
+
"04e7e6d291da49d5816dc98a2904e95c",
|
1249 |
+
"e7d8c3a4fecd40778e32966b29ea65a1",
|
1250 |
+
"016d7c8318f742c1943464b08232a510",
|
1251 |
+
"8388e9da9da4492c98c19235ca5fc1b5",
|
1252 |
+
"39c23c6a972b419eb2eeeebafeaedc22"
|
1253 |
+
]
|
1254 |
+
}
|
1255 |
+
},
|
1256 |
+
"source": [
|
1257 |
+
"%%time\n",
|
1258 |
+
"trainer.train()"
|
1259 |
+
],
|
1260 |
+
"execution_count": 18,
|
1261 |
+
"outputs": [
|
1262 |
+
{
|
1263 |
+
"output_type": "display_data",
|
1264 |
+
"data": {
|
1265 |
+
"application/vnd.jupyter.widget-view+json": {
|
1266 |
+
"model_id": "a58a66392b644b1384661e850c077a6c",
|
1267 |
+
"version_minor": 0,
|
1268 |
+
"version_major": 2
|
1269 |
+
},
|
1270 |
+
"text/plain": [
|
1271 |
+
"HBox(children=(FloatProgress(value=0.0, description='Epoch', max=1.0, style=ProgressStyle(description_width='i…"
|
1272 |
+
]
|
1273 |
+
},
|
1274 |
+
"metadata": {
|
1275 |
+
"tags": []
|
1276 |
+
}
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"output_type": "display_data",
|
1280 |
+
"data": {
|
1281 |
+
"application/vnd.jupyter.widget-view+json": {
|
1282 |
+
"model_id": "0989d41a4da24e9ebff377e02127642c",
|
1283 |
+
"version_minor": 0,
|
1284 |
+
"version_major": 2
|
1285 |
+
},
|
1286 |
+
"text/plain": [
|
1287 |
+
"HBox(children=(FloatProgress(value=0.0, description='Iteration', max=15228.0, style=ProgressStyle(description_…"
|
1288 |
+
]
|
1289 |
+
},
|
1290 |
+
"metadata": {
|
1291 |
+
"tags": []
|
1292 |
+
}
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"output_type": "stream",
|
1296 |
+
"text": [
|
1297 |
+
"{\"loss\": 7.152712148666382, \"learning_rate\": 4.8358287365379566e-05, \"epoch\": 0.03283425269240872, \"step\": 500}\n",
|
1298 |
+
"{\"loss\": 6.928811420440674, \"learning_rate\": 4.671657473075913e-05, \"epoch\": 0.06566850538481744, \"step\": 1000}\n",
|
1299 |
+
"{\"loss\": 6.789419063568115, \"learning_rate\": 4.5074862096138694e-05, \"epoch\": 0.09850275807722617, \"step\": 1500}\n",
|
1300 |
+
"{\"loss\": 6.688932447433472, \"learning_rate\": 4.343314946151826e-05, \"epoch\": 0.1313370107696349, \"step\": 2000}\n",
|
1301 |
+
"{\"loss\": 6.595982004165649, \"learning_rate\": 4.179143682689782e-05, \"epoch\": 0.1641712634620436, \"step\": 2500}\n",
|
1302 |
+
"{\"loss\": 6.545944199562073, \"learning_rate\": 4.0149724192277385e-05, \"epoch\": 0.19700551615445233, \"step\": 3000}\n",
|
1303 |
+
"{\"loss\": 6.4864857263565066, \"learning_rate\": 3.850801155765695e-05, \"epoch\": 0.22983976884686105, \"step\": 3500}\n",
|
1304 |
+
"{\"loss\": 6.412427802085876, \"learning_rate\": 3.686629892303651e-05, \"epoch\": 0.2626740215392698, \"step\": 4000}\n",
|
1305 |
+
"{\"loss\": 6.363630670547486, \"learning_rate\": 3.522458628841608e-05, \"epoch\": 0.29550827423167847, \"step\": 4500}\n",
|
1306 |
+
"{\"loss\": 6.273832890510559, \"learning_rate\": 3.358287365379564e-05, \"epoch\": 0.3283425269240872, \"step\": 5000}\n",
|
1307 |
+
"{\"loss\": 6.197585330963134, \"learning_rate\": 3.1941161019175205e-05, \"epoch\": 0.3611767796164959, \"step\": 5500}\n",
|
1308 |
+
"{\"loss\": 6.097779376983643, \"learning_rate\": 3.029944838455477e-05, \"epoch\": 0.39401103230890466, \"step\": 6000}\n",
|
1309 |
+
"{\"loss\": 5.985456382751464, \"learning_rate\": 2.8657735749934332e-05, \"epoch\": 0.42684528500131336, \"step\": 6500}\n",
|
1310 |
+
"{\"loss\": 5.8448616371154785, \"learning_rate\": 2.70160231153139e-05, \"epoch\": 0.4596795376937221, \"step\": 7000}\n",
|
1311 |
+
"{\"loss\": 5.692522863388062, \"learning_rate\": 2.5374310480693457e-05, \"epoch\": 0.4925137903861308, \"step\": 7500}\n",
|
1312 |
+
"{\"loss\": 5.562082152366639, \"learning_rate\": 2.3732597846073024e-05, \"epoch\": 0.5253480430785396, \"step\": 8000}\n",
|
1313 |
+
"{\"loss\": 5.457240365982056, \"learning_rate\": 2.2090885211452588e-05, \"epoch\": 0.5581822957709482, \"step\": 8500}\n",
|
1314 |
+
"{\"loss\": 5.376953645706177, \"learning_rate\": 2.0449172576832152e-05, \"epoch\": 0.5910165484633569, \"step\": 9000}\n",
|
1315 |
+
"{\"loss\": 5.298609251022339, \"learning_rate\": 1.8807459942211716e-05, \"epoch\": 0.6238508011557657, \"step\": 9500}\n",
|
1316 |
+
"{\"loss\": 5.225468152046203, \"learning_rate\": 1.716574730759128e-05, \"epoch\": 0.6566850538481744, \"step\": 10000}\n",
|
1317 |
+
"{\"loss\": 5.174519973754883, \"learning_rate\": 1.5524034672970843e-05, \"epoch\": 0.6895193065405831, \"step\": 10500}\n",
|
1318 |
+
"{\"loss\": 5.113943946838379, \"learning_rate\": 1.3882322038350407e-05, \"epoch\": 0.7223535592329918, \"step\": 11000}\n",
|
1319 |
+
"{\"loss\": 5.08140989112854, \"learning_rate\": 1.2240609403729971e-05, \"epoch\": 0.7551878119254006, \"step\": 11500}\n",
|
1320 |
+
"{\"loss\": 5.072491912841797, \"learning_rate\": 1.0598896769109535e-05, \"epoch\": 0.7880220646178093, \"step\": 12000}\n",
|
1321 |
+
"{\"loss\": 5.012459496498108, \"learning_rate\": 8.957184134489099e-06, \"epoch\": 0.820856317310218, \"step\": 12500}\n",
|
1322 |
+
"{\"loss\": 4.999591351509094, \"learning_rate\": 7.315471499868663e-06, \"epoch\": 0.8536905700026267, \"step\": 13000}\n",
|
1323 |
+
"{\"loss\": 4.994838352203369, \"learning_rate\": 5.673758865248227e-06, \"epoch\": 0.8865248226950354, \"step\": 13500}\n",
|
1324 |
+
"{\"loss\": 4.955870885848999, \"learning_rate\": 4.032046230627791e-06, \"epoch\": 0.9193590753874442, \"step\": 14000}\n",
|
1325 |
+
"{\"loss\": 4.941655583381653, \"learning_rate\": 2.390333596007355e-06, \"epoch\": 0.9521933280798529, \"step\": 14500}\n",
|
1326 |
+
"{\"loss\": 4.931783639907837, \"learning_rate\": 7.486209613869189e-07, \"epoch\": 0.9850275807722616, \"step\": 15000}\n",
|
1327 |
+
"\n",
|
1328 |
+
"\n",
|
1329 |
+
"CPU times: user 1h 43min 36s, sys: 1h 3min 28s, total: 2h 47min 4s\n",
|
1330 |
+
"Wall time: 2h 46min 46s\n"
|
1331 |
+
],
|
1332 |
+
"name": "stdout"
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"output_type": "execute_result",
|
1336 |
+
"data": {
|
1337 |
+
"text/plain": [
|
1338 |
+
"TrainOutput(global_step=15228, training_loss=5.762423221226405)"
|
1339 |
+
]
|
1340 |
+
},
|
1341 |
+
"metadata": {
|
1342 |
+
"tags": []
|
1343 |
+
},
|
1344 |
+
"execution_count": 18
|
1345 |
+
}
|
1346 |
+
]
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"cell_type": "markdown",
|
1350 |
+
"metadata": {
|
1351 |
+
"id": "_ZkooHz1-_2h",
|
1352 |
+
"colab_type": "text"
|
1353 |
+
},
|
1354 |
+
"source": [
|
1355 |
+
"#### 🎉 Save final model (+ tokenizer + config) to disk"
|
1356 |
+
]
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"cell_type": "code",
|
1360 |
+
"metadata": {
|
1361 |
+
"id": "QDNgPls7_l13",
|
1362 |
+
"colab_type": "code",
|
1363 |
+
"colab": {}
|
1364 |
+
},
|
1365 |
+
"source": [
|
1366 |
+
"trainer.save_model(\"./EsperBERTo\")"
|
1367 |
+
],
|
1368 |
+
"execution_count": 0,
|
1369 |
+
"outputs": []
|
1370 |
+
},
|
1371 |
+
{
|
1372 |
+
"cell_type": "markdown",
|
1373 |
+
"metadata": {
|
1374 |
+
"id": "d0caceCy_p1-",
|
1375 |
+
"colab_type": "text"
|
1376 |
+
},
|
1377 |
+
"source": [
|
1378 |
+
"## 4. Check that the LM actually trained"
|
1379 |
+
]
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"cell_type": "markdown",
|
1383 |
+
"metadata": {
|
1384 |
+
"id": "iIQJ8ND_AEhl",
|
1385 |
+
"colab_type": "text"
|
1386 |
+
},
|
1387 |
+
"source": [
|
1388 |
+
"Aside from looking at the training and eval losses going down, the easiest way to check whether our language model is learning anything interesting is via the `FillMaskPipeline`.\n",
|
1389 |
+
"\n",
|
1390 |
+
"Pipelines are simple wrappers around tokenizers and models, and the 'fill-mask' one will let you input a sequence containing a masked token (here, `<mask>`) and return a list of the most probable filled sequences, with their probabilities.\n",
|
1391 |
+
"\n"
|
1392 |
+
]
|
1393 |
+
},
|
1394 |
+
{
|
1395 |
+
"cell_type": "code",
|
1396 |
+
"metadata": {
|
1397 |
+
"id": "ltXgXyCbAJLY",
|
1398 |
+
"colab_type": "code",
|
1399 |
+
"colab": {}
|
1400 |
+
},
|
1401 |
+
"source": [
|
1402 |
+
"from transformers import pipeline\n",
|
1403 |
+
"\n",
|
1404 |
+
"fill_mask = pipeline(\n",
|
1405 |
+
" \"fill-mask\",\n",
|
1406 |
+
" model=\"./EsperBERTo\",\n",
|
1407 |
+
" tokenizer=\"./EsperBERTo\"\n",
|
1408 |
+
")"
|
1409 |
+
],
|
1410 |
+
"execution_count": 0,
|
1411 |
+
"outputs": []
|
1412 |
+
},
|
1413 |
+
{
|
1414 |
+
"cell_type": "code",
|
1415 |
+
"metadata": {
|
1416 |
+
"id": "UIvgZ3S6AO0z",
|
1417 |
+
"colab_type": "code",
|
1418 |
+
"colab": {
|
1419 |
+
"base_uri": "https://localhost:8080/",
|
1420 |
+
"height": 283
|
1421 |
+
},
|
1422 |
+
"outputId": "5f3d2f00-abdc-44a9-9c1b-75e3ec328576"
|
1423 |
+
},
|
1424 |
+
"source": [
|
1425 |
+
"# The sun <mask>.\n",
|
1426 |
+
"# =>\n",
|
1427 |
+
"\n",
|
1428 |
+
"fill_mask(\"La suno <mask>.\")"
|
1429 |
+
],
|
1430 |
+
"execution_count": 36,
|
1431 |
+
"outputs": [
|
1432 |
+
{
|
1433 |
+
"output_type": "execute_result",
|
1434 |
+
"data": {
|
1435 |
+
"text/plain": [
|
1436 |
+
"[{'score': 0.02119220793247223,\n",
|
1437 |
+
" 'sequence': '<s> La suno estas.</s>',\n",
|
1438 |
+
" 'token': 316},\n",
|
1439 |
+
" {'score': 0.012403824366629124,\n",
|
1440 |
+
" 'sequence': '<s> La suno situas.</s>',\n",
|
1441 |
+
" 'token': 2340},\n",
|
1442 |
+
" {'score': 0.011061107739806175,\n",
|
1443 |
+
" 'sequence': '<s> La suno estis.</s>',\n",
|
1444 |
+
" 'token': 394},\n",
|
1445 |
+
" {'score': 0.008284995332360268,\n",
|
1446 |
+
" 'sequence': '<s> La suno de.</s>',\n",
|
1447 |
+
" 'token': 274},\n",
|
1448 |
+
" {'score': 0.006471084896475077,\n",
|
1449 |
+
" 'sequence': '<s> La suno akvo.</s>',\n",
|
1450 |
+
" 'token': 1833}]"
|
1451 |
+
]
|
1452 |
+
},
|
1453 |
+
"metadata": {
|
1454 |
+
"tags": []
|
1455 |
+
},
|
1456 |
+
"execution_count": 36
|
1457 |
+
}
|
1458 |
+
]
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"cell_type": "markdown",
|
1462 |
+
"metadata": {
|
1463 |
+
"id": "i0qCyyhNAWZi",
|
1464 |
+
"colab_type": "text"
|
1465 |
+
},
|
1466 |
+
"source": [
|
1467 |
+
"Ok, simple syntax/grammar works. Let’s try a slightly more interesting prompt:\n",
|
1468 |
+
"\n"
|
1469 |
+
]
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"cell_type": "code",
|
1473 |
+
"metadata": {
|
1474 |
+
"id": "YZ9HSQxAAbme",
|
1475 |
+
"colab_type": "code",
|
1476 |
+
"colab": {
|
1477 |
+
"base_uri": "https://localhost:8080/",
|
1478 |
+
"height": 283
|
1479 |
+
},
|
1480 |
+
"outputId": "aabfeedc-b1d0-4837-b01d-cd42726a5a3d"
|
1481 |
+
},
|
1482 |
+
"source": [
|
1483 |
+
"fill_mask(\"Jen la komenco de bela <mask>.\")\n",
|
1484 |
+
"\n",
|
1485 |
+
"# This is the beginning of a beautiful <mask>.\n",
|
1486 |
+
"# =>"
|
1487 |
+
],
|
1488 |
+
"execution_count": 37,
|
1489 |
+
"outputs": [
|
1490 |
+
{
|
1491 |
+
"output_type": "execute_result",
|
1492 |
+
"data": {
|
1493 |
+
"text/plain": [
|
1494 |
+
"[{'score': 0.01814725436270237,\n",
|
1495 |
+
" 'sequence': '<s> Jen la komenco de bela urbo.</s>',\n",
|
1496 |
+
" 'token': 871},\n",
|
1497 |
+
" {'score': 0.015888698399066925,\n",
|
1498 |
+
" 'sequence': '<s> Jen la komenco de bela vivo.</s>',\n",
|
1499 |
+
" 'token': 1160},\n",
|
1500 |
+
" {'score': 0.015662025660276413,\n",
|
1501 |
+
" 'sequence': '<s> Jen la komenco de bela tempo.</s>',\n",
|
1502 |
+
" 'token': 1021},\n",
|
1503 |
+
" {'score': 0.015555007383227348,\n",
|
1504 |
+
" 'sequence': '<s> Jen la komenco de bela mondo.</s>',\n",
|
1505 |
+
" 'token': 945},\n",
|
1506 |
+
" {'score': 0.01412549614906311,\n",
|
1507 |
+
" 'sequence': '<s> Jen la komenco de bela tago.</s>',\n",
|
1508 |
+
" 'token': 1633}]"
|
1509 |
+
]
|
1510 |
+
},
|
1511 |
+
"metadata": {
|
1512 |
+
"tags": []
|
1513 |
+
},
|
1514 |
+
"execution_count": 37
|
1515 |
+
}
|
1516 |
+
]
|
1517 |
+
},
|
1518 |
+
{
|
1519 |
+
"cell_type": "markdown",
|
1520 |
+
"metadata": {
|
1521 |
+
"id": "6RsGaD1qAfLP",
|
1522 |
+
"colab_type": "text"
|
1523 |
+
},
|
1524 |
+
"source": [
|
1525 |
+
"## 5. Share your model 🎉"
|
1526 |
+
]
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"cell_type": "markdown",
|
1530 |
+
"metadata": {
|
1531 |
+
"id": "5oESe8djApQw",
|
1532 |
+
"colab_type": "text"
|
1533 |
+
},
|
1534 |
+
"source": [
|
1535 |
+
"Finally, when you have a nice model, please think about sharing it with the community:\n",
|
1536 |
+
"\n",
|
1537 |
+
"- upload your model using the CLI: `transformers-cli upload`\n",
|
1538 |
+
"- write a README.md model card and add it to the repository under `model_cards/`. Your model card should ideally include:\n",
|
1539 |
+
" - a model description,\n",
|
1540 |
+
" - training params (dataset, preprocessing, hyperparameters), \n",
|
1541 |
+
" - evaluation results,\n",
|
1542 |
+
" - intended uses & limitations\n",
|
1543 |
+
" - whatever else is helpful! 🤓\n",
|
1544 |
+
"\n",
|
1545 |
+
"### **TADA!**\n",
|
1546 |
+
"\n",
|
1547 |
+
"➡️ Your model has a page on http://huggingface.co/models and everyone can load it using `AutoModel.from_pretrained(\"username/model_name\")`.\n",
|
1548 |
+
"\n",
|
1549 |
+
"[![tb](https://huggingface.co/blog/assets/01_how-to-train/model_page.png)](https://huggingface.co/julien-c/EsperBERTo-small)\n"
|
1550 |
+
]
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"cell_type": "markdown",
|
1554 |
+
"metadata": {
|
1555 |
+
"id": "aw9ifsgqBI2o",
|
1556 |
+
"colab_type": "text"
|
1557 |
+
},
|
1558 |
+
"source": [
|
1559 |
+
"If you want to take a look at models in different languages, check https://huggingface.co/models\n",
|
1560 |
+
"\n",
|
1561 |
+
"[![all models](https://huggingface.co/front/thumbnails/models.png)](https://huggingface.co/models)\n"
|
1562 |
+
]
|
1563 |
+
}
|
1564 |
+
]
|
1565 |
+
}
|