julian-fong
commited on
Commit
•
f0520a8
1
Parent(s):
ee30c06
Upload model
Browse files- README.md +42 -0
- adapter_config.json +42 -0
- head_config.json +120 -0
- pytorch_adapter.bin +3 -0
- pytorch_model_head.bin +3 -0
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- vit
|
4 |
+
- adapter-transformers
|
5 |
+
datasets:
|
6 |
+
- cifar100
|
7 |
+
---
|
8 |
+
|
9 |
+
# Adapter `julian-fong/cifar100-adapterplus_config` for google/vit-base-patch16-224-in21k
|
10 |
+
|
11 |
+
An [adapter](https://adapterhub.ml) for the `google/vit-base-patch16-224-in21k` model that was trained on the [cifar100](https://huggingface.co/datasets/cifar100/) dataset and includes a prediction head for image classification.
|
12 |
+
|
13 |
+
This adapter was created for usage with the **[Adapters](https://github.com/Adapter-Hub/adapters)** library.
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
First, install `adapters`:
|
18 |
+
|
19 |
+
```
|
20 |
+
pip install -U adapters
|
21 |
+
```
|
22 |
+
|
23 |
+
Now, the adapter can be loaded and activated like this:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from adapters import AutoAdapterModel
|
27 |
+
|
28 |
+
model = AutoAdapterModel.from_pretrained("google/vit-base-patch16-224-in21k")
|
29 |
+
adapter_name = model.load_adapter("julian-fong/cifar100-adapterplus_config", set_active=True)
|
30 |
+
```
|
31 |
+
|
32 |
+
## Architecture & Training
|
33 |
+
|
34 |
+
<!-- Add some description here -->
|
35 |
+
|
36 |
+
## Evaluation results
|
37 |
+
|
38 |
+
<!-- Add some description here -->
|
39 |
+
|
40 |
+
## Citation
|
41 |
+
|
42 |
+
<!-- Add some description here -->
|
adapter_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"adapter_residual_before_ln": false,
|
4 |
+
"cross_adapter": false,
|
5 |
+
"dropout": 0.0,
|
6 |
+
"factorized_phm_W": true,
|
7 |
+
"factorized_phm_rule": false,
|
8 |
+
"hypercomplex_nonlinearity": "glorot-uniform",
|
9 |
+
"init_weights": "houlsby",
|
10 |
+
"inv_adapter": null,
|
11 |
+
"inv_adapter_reduction_factor": null,
|
12 |
+
"is_parallel": false,
|
13 |
+
"learn_phm": true,
|
14 |
+
"leave_out": [],
|
15 |
+
"ln_after": false,
|
16 |
+
"ln_before": false,
|
17 |
+
"mh_adapter": false,
|
18 |
+
"non_linearity": "gelu",
|
19 |
+
"original_ln_after": true,
|
20 |
+
"original_ln_before": false,
|
21 |
+
"output_adapter": true,
|
22 |
+
"phm_bias": true,
|
23 |
+
"phm_c_init": "normal",
|
24 |
+
"phm_dim": 4,
|
25 |
+
"phm_init_range": 0.0001,
|
26 |
+
"phm_layer": false,
|
27 |
+
"phm_rank": 1,
|
28 |
+
"reduction_factor": 96,
|
29 |
+
"residual_before_ln": true,
|
30 |
+
"scaling": "channel",
|
31 |
+
"shared_W_phm": false,
|
32 |
+
"shared_phm_rule": true,
|
33 |
+
"stochastic_depth": 0.1,
|
34 |
+
"use_gating": false
|
35 |
+
},
|
36 |
+
"hidden_size": 768,
|
37 |
+
"model_class": "ViTAdapterModel",
|
38 |
+
"model_name": "google/vit-base-patch16-224-in21k",
|
39 |
+
"model_type": "vit",
|
40 |
+
"name": "adapterplus_config",
|
41 |
+
"version": "adapters.1.0.1"
|
42 |
+
}
|
head_config.json
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"activation_function": "tanh",
|
4 |
+
"bias": true,
|
5 |
+
"dropout_prob": null,
|
6 |
+
"head_type": "image_classification",
|
7 |
+
"label2id": {
|
8 |
+
"LABEL_0": 0,
|
9 |
+
"LABEL_1": 1,
|
10 |
+
"LABEL_10": 10,
|
11 |
+
"LABEL_11": 11,
|
12 |
+
"LABEL_12": 12,
|
13 |
+
"LABEL_13": 13,
|
14 |
+
"LABEL_14": 14,
|
15 |
+
"LABEL_15": 15,
|
16 |
+
"LABEL_16": 16,
|
17 |
+
"LABEL_17": 17,
|
18 |
+
"LABEL_18": 18,
|
19 |
+
"LABEL_19": 19,
|
20 |
+
"LABEL_2": 2,
|
21 |
+
"LABEL_20": 20,
|
22 |
+
"LABEL_21": 21,
|
23 |
+
"LABEL_22": 22,
|
24 |
+
"LABEL_23": 23,
|
25 |
+
"LABEL_24": 24,
|
26 |
+
"LABEL_25": 25,
|
27 |
+
"LABEL_26": 26,
|
28 |
+
"LABEL_27": 27,
|
29 |
+
"LABEL_28": 28,
|
30 |
+
"LABEL_29": 29,
|
31 |
+
"LABEL_3": 3,
|
32 |
+
"LABEL_30": 30,
|
33 |
+
"LABEL_31": 31,
|
34 |
+
"LABEL_32": 32,
|
35 |
+
"LABEL_33": 33,
|
36 |
+
"LABEL_34": 34,
|
37 |
+
"LABEL_35": 35,
|
38 |
+
"LABEL_36": 36,
|
39 |
+
"LABEL_37": 37,
|
40 |
+
"LABEL_38": 38,
|
41 |
+
"LABEL_39": 39,
|
42 |
+
"LABEL_4": 4,
|
43 |
+
"LABEL_40": 40,
|
44 |
+
"LABEL_41": 41,
|
45 |
+
"LABEL_42": 42,
|
46 |
+
"LABEL_43": 43,
|
47 |
+
"LABEL_44": 44,
|
48 |
+
"LABEL_45": 45,
|
49 |
+
"LABEL_46": 46,
|
50 |
+
"LABEL_47": 47,
|
51 |
+
"LABEL_48": 48,
|
52 |
+
"LABEL_49": 49,
|
53 |
+
"LABEL_5": 5,
|
54 |
+
"LABEL_50": 50,
|
55 |
+
"LABEL_51": 51,
|
56 |
+
"LABEL_52": 52,
|
57 |
+
"LABEL_53": 53,
|
58 |
+
"LABEL_54": 54,
|
59 |
+
"LABEL_55": 55,
|
60 |
+
"LABEL_56": 56,
|
61 |
+
"LABEL_57": 57,
|
62 |
+
"LABEL_58": 58,
|
63 |
+
"LABEL_59": 59,
|
64 |
+
"LABEL_6": 6,
|
65 |
+
"LABEL_60": 60,
|
66 |
+
"LABEL_61": 61,
|
67 |
+
"LABEL_62": 62,
|
68 |
+
"LABEL_63": 63,
|
69 |
+
"LABEL_64": 64,
|
70 |
+
"LABEL_65": 65,
|
71 |
+
"LABEL_66": 66,
|
72 |
+
"LABEL_67": 67,
|
73 |
+
"LABEL_68": 68,
|
74 |
+
"LABEL_69": 69,
|
75 |
+
"LABEL_7": 7,
|
76 |
+
"LABEL_70": 70,
|
77 |
+
"LABEL_71": 71,
|
78 |
+
"LABEL_72": 72,
|
79 |
+
"LABEL_73": 73,
|
80 |
+
"LABEL_74": 74,
|
81 |
+
"LABEL_75": 75,
|
82 |
+
"LABEL_76": 76,
|
83 |
+
"LABEL_77": 77,
|
84 |
+
"LABEL_78": 78,
|
85 |
+
"LABEL_79": 79,
|
86 |
+
"LABEL_8": 8,
|
87 |
+
"LABEL_80": 80,
|
88 |
+
"LABEL_81": 81,
|
89 |
+
"LABEL_82": 82,
|
90 |
+
"LABEL_83": 83,
|
91 |
+
"LABEL_84": 84,
|
92 |
+
"LABEL_85": 85,
|
93 |
+
"LABEL_86": 86,
|
94 |
+
"LABEL_87": 87,
|
95 |
+
"LABEL_88": 88,
|
96 |
+
"LABEL_89": 89,
|
97 |
+
"LABEL_9": 9,
|
98 |
+
"LABEL_90": 90,
|
99 |
+
"LABEL_91": 91,
|
100 |
+
"LABEL_92": 92,
|
101 |
+
"LABEL_93": 93,
|
102 |
+
"LABEL_94": 94,
|
103 |
+
"LABEL_95": 95,
|
104 |
+
"LABEL_96": 96,
|
105 |
+
"LABEL_97": 97,
|
106 |
+
"LABEL_98": 98,
|
107 |
+
"LABEL_99": 99
|
108 |
+
},
|
109 |
+
"layers": 1,
|
110 |
+
"multilabel": false,
|
111 |
+
"num_labels": 100,
|
112 |
+
"use_pooler": false
|
113 |
+
},
|
114 |
+
"hidden_size": 768,
|
115 |
+
"model_class": "ViTAdapterModel",
|
116 |
+
"model_name": "google/vit-base-patch16-224-in21k",
|
117 |
+
"model_type": "vit",
|
118 |
+
"name": "adapterplus_config",
|
119 |
+
"version": "adapters.1.0.1"
|
120 |
+
}
|
pytorch_adapter.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98524cfff3c26c49ac830945794bbf550e0d1a0eabc570e5b6ab946a3c6b7992
|
3 |
+
size 686690
|
pytorch_model_head.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85a26a6ba9a79f87e4bcced7291aa2aa77920e025cb7b29f30585ec779750fee
|
3 |
+
size 309146
|