Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v3.zip +2 -2
- a2c-PandaReachDense-v3/data +15 -15
- a2c-PandaReachDense-v3/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v3/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.25 +/- 0.11
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v3.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f118fa491292821c2b608af739c2e791bb49c3f32d188e9b9c81ff9d33e8b47e
|
3 |
+
size 108459
|
a2c-PandaReachDense-v3/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -21,46 +21,46 @@
|
|
21 |
"weight_decay": 0
|
22 |
}
|
23 |
},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0007,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'collections.OrderedDict'>",
|
34 |
-
":serialized:": "
|
35 |
-
"achieved_goal": "[[
|
36 |
-
"desired_goal": "[[-
|
37 |
-
"observation": "[[
|
38 |
},
|
39 |
"_last_episode_starts": {
|
40 |
":type:": "<class 'numpy.ndarray'>",
|
41 |
-
":serialized:": "
|
42 |
},
|
43 |
"_last_original_obs": {
|
44 |
":type:": "<class 'collections.OrderedDict'>",
|
45 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
46 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
47 |
-
"desired_goal": "[[ 0.
|
48 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
49 |
},
|
50 |
"_episode_num": 0,
|
51 |
"use_sde": true,
|
52 |
"sde_sample_freq": -1,
|
53 |
-
"_current_progress_remaining":
|
54 |
"_stats_window_size": 100,
|
55 |
"ep_info_buffer": {
|
56 |
":type:": "<class 'collections.deque'>",
|
57 |
-
":serialized:": "
|
58 |
},
|
59 |
"ep_success_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
62 |
},
|
63 |
-
"_n_updates":
|
64 |
"n_steps": 8,
|
65 |
"gamma": 0.99,
|
66 |
"gae_lambda": 0.9,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x797b1ee323b0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x797b1ee2f0c0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
21 |
"weight_decay": 0
|
22 |
}
|
23 |
},
|
24 |
+
"num_timesteps": 1000000,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1691660535528764651,
|
30 |
"learning_rate": 0.0007,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'collections.OrderedDict'>",
|
34 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwYZ/vQus5T4BQF2+ze4lPw0a5L4vFwY67Y8bv6U7uL9dW56/FsCfPiIubbuGdsE+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxURSv2rRTz/Q05a+4Np6P6f0lr8vfoy/oChPPWT2pb8zf7C/dZfHPvz2aD/wN7++lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADBhn+9C6zlPgFAXb7iOfO/z0HRP1gRub/N7iU/DRrkvi8XBjreYJ09nsbMv9Onzb/tjxu/pTu4v11bnr/IUSm//Zdzv0oPlL8WwJ8+Ii5tu4Z2wT7GA/I+JjiRuzOPxD6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
35 |
+
"achieved_goal": "[[-6.2384371e-02 4.4857821e-01 -2.1606447e-01]\n [ 6.4817506e-01 -4.4551125e-01 5.1151490e-04]\n [-6.0766488e-01 -1.4393202e+00 -1.2371632e+00]\n [ 3.1201237e-01 -3.6190827e-03 3.7785739e-01]]",
|
36 |
+
"desired_goal": "[[-0.82136184 0.81178916 -0.29458475]\n [ 0.97990227 -1.1793412 -1.0976008 ]\n [ 0.05057585 -1.2965817 -1.3788818 ]\n [ 0.3898274 0.9100187 -0.37347364]]",
|
37 |
+
"observation": "[[-6.2384371e-02 4.4857821e-01 -2.1606447e-01 -1.9002039e+00\n 1.6348208e+00 -1.4458418e+00]\n [ 6.4817506e-01 -4.4551125e-01 5.1151490e-04 7.6844916e-02\n -1.5998113e+00 -1.6066841e+00]\n [-6.0766488e-01 -1.4393202e+00 -1.2371632e+00 -6.6140413e-01\n -9.5153791e-01 -1.1567166e+00]\n [ 3.1201237e-01 -3.6190827e-03 3.7785739e-01 4.7268504e-01\n -4.4317422e-03 3.8390502e-01]]"
|
38 |
},
|
39 |
"_last_episode_starts": {
|
40 |
":type:": "<class 'numpy.ndarray'>",
|
41 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
42 |
},
|
43 |
"_last_original_obs": {
|
44 |
":type:": "<class 'collections.OrderedDict'>",
|
45 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlg5NPQGSo7yVapg+GmH/PJvq6D05dY4+Cs5TvPw33D2j7Y4+r1MVPn7hnTwnkQ0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
46 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
47 |
+
"desired_goal": "[[ 0.05006274 -0.01996708 0.29768816]\n [ 0.03117423 0.11372872 0.2782381 ]\n [-0.01292754 0.10752866 0.27915677]\n [ 0.14582704 0.01927256 0.13824902]]",
|
48 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
49 |
},
|
50 |
"_episode_num": 0,
|
51 |
"use_sde": true,
|
52 |
"sde_sample_freq": -1,
|
53 |
+
"_current_progress_remaining": 0.0,
|
54 |
"_stats_window_size": 100,
|
55 |
"ep_info_buffer": {
|
56 |
":type:": "<class 'collections.deque'>",
|
57 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9ev4dp7CzmMAWyUSwSMAXSUR0ClM187hegMdX2UKGgGR7/QzVtoBaLXaAdLA2gIR0ClNGDGT9sKdX2UKGgGR7/JA9mpVCHAaAdLA2gIR0ClM84VRDTjdX2UKGgGR7+Fu76Hj6vaaAdLAWgIR0ClNGXT3IuHdX2UKGgGR7/NUcXFcY65aAdLA2gIR0ClNCdO6/ZedX2UKGgGR7++NdZ7ojfOaAdLAmgIR0ClM9oeYD1XdX2UKGgGR7/RlgMMI/qxaAdLA2gIR0ClM3CMglnidX2UKGgGR7+4ONHYpUgkaAdLAmgIR0ClNHI0Q9RrdX2UKGgGR7+20VrRBu4xaAdLAmgIR0ClM3qKxcFAdX2UKGgGR7/Kgpz90ihWaAdLA2gIR0ClNDYtg8bJdX2UKGgGR7/QSyt3fQ8faAdLA2gIR0ClM+kDIRywdX2UKGgGR7/K1tO2y9mIaAdLA2gIR0ClNICPZIxydX2UKGgGR7/ALkS26TW5aAdLAmgIR0ClM4OoxYaHdX2UKGgGR7/B2KVII4VAaAdLAmgIR0ClM/HCGetkdX2UKGgGR7/AHjZL7GedaAdLAmgIR0ClM4v38GcGdX2UKGgGR7/EagmJFb3XaAdLAmgIR0ClM/pfYzzmdX2UKGgGR7/a2A5Jbt7baAdLBGgIR0ClNJRvegtfdX2UKGgGR7/beqrBCUosaAdLBmgIR0ClNFM0P6KtdX2UKGgGR7/StDD0lJHzaAdLA2gIR0ClM5v8AJb/dX2UKGgGR7/Qmq5sj3VTaAdLA2gIR0ClNApmmLtNdX2UKGgGR7/IyNXHR1HOaAdLA2gIR0ClNKI8yN4rdX2UKGgGR7/CAhje9Ba+aAdLAmgIR0ClNFzHsC1adX2UKGgGR7+3aN+9alk6aAdLAmgIR0ClM6W25QP7dX2UKGgGR7+jTc6/7BO6aAdLAWgIR0ClNGGus90SdX2UKGgGR7/RVMEidJ8OaAdLA2gIR0ClNBkORT0hdX2UKGgGR7/AT1TR6WxAaAdLAmgIR0ClM6/giu+zdX2UKGgGR7/JJQLux8lYaAdLA2gIR0ClNLJ53TuwdX2UKGgGR7/GtGNJe3QVaAdLA2gIR0ClNHMDnvDxdX2UKGgGR7/FtShrWRRuaAdLAmgIR0ClM7wWvbGndX2UKGgGR7/MFxn3+MqCaAdLA2gIR0ClNCz/hl19dX2UKGgGR7/EC3gDRtxdaAdLAmgIR0ClNH8RL9MsdX2UKGgGR7/A5NoJzDGcaAdLAmgIR0ClM8gSvkimdX2UKGgGR7/WIK+i8FpxaAdLBGgIR0ClNMl/hESedX2UKGgGR7++JQ+EAYHgaAdLAmgIR0ClNIfRE4NrdX2UKGgGR7/OQ/X5FgDzaAdLA2gIR0ClNDqZtvXLdX2UKGgGR7+1WvKU3XI2aAdLAmgIR0ClM9DiXIEKdX2UKGgGR7/GFfzBhx5taAdLA2gIR0ClNNZZB9kSdX2UKGgGR7/KaTfR/mT1aAdLA2gIR0ClNJUiyIHkdX2UKGgGR7/WBeXzDn/2aAdLA2gIR0ClNEfQKKHgdX2UKGgGR7/RTuOS4e90aAdLBGgIR0ClM+INVinYdX2UKGgGR7/LNke6qbSaaAdLA2gIR0ClNOZIpYs/dX2UKGgGR7/N4/u9eyAyaAdLA2gIR0ClNFd3B55adX2UKGgGR7/UPnSv1UVBaAdLBGgIR0ClNKlaB7NTdX2UKGgGR7/UGFBY3eenaAdLA2gIR0ClM/IJJGvwdX2UKGgGR7/Ub6xgRbr1aAdLA2gIR0ClNPPES/TLdX2UKGgGR7/CTGHYYixFaAdLAmgIR0ClNLJDE3sHdX2UKGgGR7+mr6tT1kDqaAdLAWgIR0ClNLawD/2kdX2UKGgGR7/U7iQ1aW5ZaAdLBGgIR0ClNGl7MPjGdX2UKGgGR7/UYDklu3tsaAdLA2gIR0ClNQFIVdondX2UKGgGR7/VX9R77bcoaAdLBGgIR0ClNARQrMC+dX2UKGgGR7+9sLv1DjR2aAdLAmgIR0ClNQyBshxHdX2UKGgGR7/G8ZDRc/t6aAdLA2gIR0ClNHnbAUL2dX2UKGgGR7/bY/FBIFvAaAdLBGgIR0ClNMvIwM6SdX2UKGgGR7/Hcclw97ngaAdLA2gIR0ClNBSKvV3EdX2UKGgGR7/P7sOXmeUZaAdLA2gIR0ClNRoLgGbDdX2UKGgGR7/C9RrJr+HaaAdLA2gIR0ClNIb4agmJdX2UKGgGR7/J4NZvDP4VaAdLA2gIR0ClNCEsjFAFdX2UKGgGR7+6fzz3AVO9aAdLAmgIR0ClNSKBd2PldX2UKGgGR7/W8tf5ULlWaAdLBGgIR0ClNNzdcjZ+dX2UKGgGR7/BiF0xM36zaAdLAmgIR0ClNI+IuXeFdX2UKGgGR7/LZ5AyEcsEaAdLA2gIR0ClNC2attALdX2UKGgGR7/T+ERJ2+wlaAdLA2gIR0ClNTGPPszEdX2UKGgGR7/N+b3Gn4wiaAdLA2gIR0ClNOwNLDhtdX2UKGgGR7/dFtsN2C/XaAdLBGgIR0ClNKVRk3CLdX2UKGgGR7+22F36hxo7aAdLAmgIR0ClNDwPI4lydX2UKGgGR7+34agmJFb3aAdLAmgIR0ClNPl8G9pRdX2UKGgGR7/P5t3wCr93aAdLA2gIR0ClNUVaW5YpdX2UKGgGR7/EE5hjOLR8aAdLAmgIR0ClNEiO3lS1dX2UKGgGR7+QTqSowVTKaAdLAWgIR0ClNUpI+W4WdX2UKGgGR7/VML4N7SiNaAdLA2gIR0ClNLd5Qgs9dX2UKGgGR7+02sJY1YQraAdLAmgIR0ClNFLMs6JZdX2UKGgGR7/ZvqTr3TNMaAdLBGgIR0ClNQ7b1yvLdX2UKGgGR7+0IfKZDzAfaAdLAmgIR0ClNMIBzV+adX2UKGgGR7/XU4aP0Zm7aAdLBGgIR0ClNWLWRRuTdX2UKGgGR7+4ERradtl7aAdLAmgIR0ClNR1pKzzFdX2UKGgGR7/StbLU1AJLaAdLA2gIR0ClNGZpSJj2dX2UKGgGR7/OmkWRA8jiaAdLA2gIR0ClNNTFVDKHdX2UKGgGR7/BV4HHFPznaAdLAmgIR0ClNSbQswtbdX2UKGgGR7/N67/XGwRoaAdLA2gIR0ClNXEpy6tldX2UKGgGR7+2NbTtsvZiaAdLAmgIR0ClNN43Ns3ydX2UKGgGR7+0vtdAxBVuaAdLAmgIR0ClNTB0Qsf8dX2UKGgGR7+nphWo3rD7aAdLAWgIR0ClNOMwDeTFdX2UKGgGR7/W0UXYUWVNaAdLBGgIR0ClNHnXd0q6dX2UKGgGR7+2ZnctXgccaAdLAmgIR0ClNXs9jgAIdX2UKGgGR7+/xLCemNzbaAdLAmgIR0ClNTouoP07dX2UKGgGR7/Q7CBPKuB+aAdLA2gIR0ClNPDy4FzNdX2UKGgGR7/Sc7QswtaqaAdLA2gIR0ClNIc8La24dX2UKGgGR7/RbaAWi1zAaAdLA2gIR0ClNYuC5EtvdX2UKGgGR7+8K7ZnL7oCaAdLAmgIR0ClNUYKIBRydX2UKGgGR7/DgJkXk5p8aAdLAmgIR0ClNP0tqYZ3dX2UKGgGR7/SH2h7E5yVaAdLA2gIR0ClNVQcPvrodX2UKGgGR7/ELhrFfiPyaAdLAmgIR0ClNQbLU1AJdX2UKGgGR7/ar/82rGR3aAdLBGgIR0ClNJ18CxNZdX2UKGgGR7/Zzq8lHBk7aAdLBGgIR0ClNZ8VpKzzdX2UKGgGR7+QxrSE12q2aAdLAWgIR0ClNQwjD8+BdX2UKGgGR7+IR28qWkadaAdLAWgIR0ClNRCtzS1FdX2UKGgGR7+70qYqoZQ6aAdLAmgIR0ClNKddE9dNdX2UKGgGR7/B2EkB0ZFYaAdLAmgIR0ClNajuBtk4dX2UKGgGR7/OPp6hQFcIaAdLA2gIR0ClNWN+b3GodX2UKGgGR7/BU6PsAvL6aAdLAmgIR0ClNLBsZYPodWUu"
|
58 |
},
|
59 |
"ep_success_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
62 |
},
|
63 |
+
"_n_updates": 31250,
|
64 |
"n_steps": 8,
|
65 |
"gamma": 0.99,
|
66 |
"gae_lambda": 0.9,
|
a2c-PandaReachDense-v3/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 45438
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36c5162153de93b9ff87bc079e5a5ea47ff02286dde476ea9c2a9ed14d9d3bba
|
3 |
size 45438
|
a2c-PandaReachDense-v3/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46718
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0309bb96037527eddfe24b1ba9c15fcb168288bfc5d978ea7a60ebfbfe8ea43e
|
3 |
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x792e2b2ca680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x792e2b2c6a00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1024, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691615131506697526, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAPlYbP1iEsb/Pa1O+Y33HvqE3eb4XuwM+CMk/v273pj+g0Eu+cBizO4nrvr8KA9s9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbljGvxvChL6G1GK+8mVZv6xrHb5mf4K/2DeLPxX6cT+wK6k/lj1ov1Xncj94upM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA+Vhs/WISxv89rU77YkQM+EYLOOq7C2j1jfce+oTd5vhe7Az7IJAq+a29YvKw+D70IyT+/bvemP6DQS76rImS9X8OjuqgmTz1wGLM7ieu+vwoD2z1eXW69H2FLvi8sEbyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.6067847 -1.3868513 -0.20646594]\n [-0.3896285 -0.24337627 0.12864338]\n [-0.74916124 1.304426 -0.19903803]\n [ 0.00546556 -1.491563 0.10693939]]", "desired_goal": "[[-1.5495737 -0.2592934 -0.22151384]\n [-0.8492118 -0.15373105 -1.0195129 ]\n [ 1.0876417 0.9452222 1.3216457 ]\n [-0.9071897 0.94884235 0.28853202]]", "observation": "[[ 6.06784701e-01 -1.38685131e+00 -2.06465945e-01 1.28486037e-01\n 1.57553155e-03 1.06816635e-01]\n [-3.89628500e-01 -2.43376270e-01 1.28643379e-01 -1.34905934e-01\n -1.32101579e-02 -3.49718779e-02]\n [-7.49161243e-01 1.30442595e+00 -1.99038029e-01 -5.56971245e-02\n -1.24941382e-03 5.05739748e-02]\n [ 5.46555966e-03 -1.49156296e+00 1.06939390e-01 -5.81945106e-02\n -1.98612675e-01 -8.86063185e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApP+PPcWeAb5NDx0+8IEEvglqjr0ick8+eoqKPd+v0rxatZU+toz1vZS++T3D80s+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07031181 -0.12658222 0.15337868]\n [-0.12940192 -0.06953818 0.20258382]\n [ 0.06764694 -0.02571863 0.29239923]\n [-0.11989729 0.12194553 0.19917206]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV2gIAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCRY7eVLSNSMAWyUSzKMAXSUR0A0ixxDLKV6dX2UKGgGR8AsKMkQf6oEaAdLMmgIR0A0YbCrLhaUdX2UKGgGR8AoQZrHlwLmaAdLMmgIR0A0N4i5d4VzdX2UKGgGR8ArwgzxgAp8aAdLMmgIR0A0DWGyon8bdX2UKGgGR7/rvLgXMyJsaAdLC2gIR0A0qUIcBEKFdX2UKGgGR8AiXLJSzgMuaAdLMmgIR0A08gvlEJBxdX2UKGgGR8AbSWSlnAZbaAdLMmgIR0A0x/TspobodX2UKGgGR8Asj2/zreImaAdLMmgIR0A0nepn6EamdX2UKGgGR8Am8bG3nZCfaAdLMmgIR0A1O3cHnlnzdX2UKGgGR8AmZ8uSOinHaAdLMmgIR0A1fA9V3ljmdX2UKGgGR8Aj3qBVdX1baAdLMmgIR0A1Ueu3c580dX2UKGgGR8AhANyYG+sYaAdLMmgIR0A1J8wYcebNdX2UKGgGR796aTfR/mT1aAdLAWgIR0A1f1QqI7/5dX2UKGgGR8AgSXrt3OfNaAdLMmgIR0A1xTbWVeKLdX2UKGgGR7/t2eHzpX6qaAdLD2gIR0A1fDQZ4wAVdX2UKGgGR7/8dD6WPcSHaAdLGWgIR0A1vevZAY51dX2UKGgGR8AqUlMRHww1aAdLMmgIR0A1rph4MWoFdX2UKGgGR8AmsqrBCUosaAdLMmgIR0A2ByFPBSDRdX2UKGgGR8Aagn7YTTOPaAdLMmgIR0A2SnO0LMLXdX2UKGgGR7+1Y8uBczInaAdLAmgIR0A2T6Fdszl+dX2UKGgGR8Acjx6OYIBzaAdLMmgIR0A2PJwKjSG8dX2UKGgGR8AhVyz5XU6QaAdLMmgIR0A2LICEHt4SdX2UKGgGR8ApAuzyBkI5aAdLMmgIR0A2g6asp5NXdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 32, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x797b1ee323b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x797b1ee2f0c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691660535528764651, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwYZ/vQus5T4BQF2+ze4lPw0a5L4vFwY67Y8bv6U7uL9dW56/FsCfPiIubbuGdsE+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxURSv2rRTz/Q05a+4Np6P6f0lr8vfoy/oChPPWT2pb8zf7C/dZfHPvz2aD/wN7++lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADBhn+9C6zlPgFAXb7iOfO/z0HRP1gRub/N7iU/DRrkvi8XBjreYJ09nsbMv9Onzb/tjxu/pTu4v11bnr/IUSm//Zdzv0oPlL8WwJ8+Ii5tu4Z2wT7GA/I+JjiRuzOPxD6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-6.2384371e-02 4.4857821e-01 -2.1606447e-01]\n [ 6.4817506e-01 -4.4551125e-01 5.1151490e-04]\n [-6.0766488e-01 -1.4393202e+00 -1.2371632e+00]\n [ 3.1201237e-01 -3.6190827e-03 3.7785739e-01]]", "desired_goal": "[[-0.82136184 0.81178916 -0.29458475]\n [ 0.97990227 -1.1793412 -1.0976008 ]\n [ 0.05057585 -1.2965817 -1.3788818 ]\n [ 0.3898274 0.9100187 -0.37347364]]", "observation": "[[-6.2384371e-02 4.4857821e-01 -2.1606447e-01 -1.9002039e+00\n 1.6348208e+00 -1.4458418e+00]\n [ 6.4817506e-01 -4.4551125e-01 5.1151490e-04 7.6844916e-02\n -1.5998113e+00 -1.6066841e+00]\n [-6.0766488e-01 -1.4393202e+00 -1.2371632e+00 -6.6140413e-01\n -9.5153791e-01 -1.1567166e+00]\n [ 3.1201237e-01 -3.6190827e-03 3.7785739e-01 4.7268504e-01\n -4.4317422e-03 3.8390502e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlg5NPQGSo7yVapg+GmH/PJvq6D05dY4+Cs5TvPw33D2j7Y4+r1MVPn7hnTwnkQ0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05006274 -0.01996708 0.29768816]\n [ 0.03117423 0.11372872 0.2782381 ]\n [-0.01292754 0.10752866 0.27915677]\n [ 0.14582704 0.01927256 0.13824902]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9ev4dp7CzmMAWyUSwSMAXSUR0ClM187hegMdX2UKGgGR7/QzVtoBaLXaAdLA2gIR0ClNGDGT9sKdX2UKGgGR7/JA9mpVCHAaAdLA2gIR0ClM84VRDTjdX2UKGgGR7+Fu76Hj6vaaAdLAWgIR0ClNGXT3IuHdX2UKGgGR7/NUcXFcY65aAdLA2gIR0ClNCdO6/ZedX2UKGgGR7++NdZ7ojfOaAdLAmgIR0ClM9oeYD1XdX2UKGgGR7/RlgMMI/qxaAdLA2gIR0ClM3CMglnidX2UKGgGR7+4ONHYpUgkaAdLAmgIR0ClNHI0Q9RrdX2UKGgGR7+20VrRBu4xaAdLAmgIR0ClM3qKxcFAdX2UKGgGR7/Kgpz90ihWaAdLA2gIR0ClNDYtg8bJdX2UKGgGR7/QSyt3fQ8faAdLA2gIR0ClM+kDIRywdX2UKGgGR7/K1tO2y9mIaAdLA2gIR0ClNICPZIxydX2UKGgGR7/ALkS26TW5aAdLAmgIR0ClM4OoxYaHdX2UKGgGR7/B2KVII4VAaAdLAmgIR0ClM/HCGetkdX2UKGgGR7/AHjZL7GedaAdLAmgIR0ClM4v38GcGdX2UKGgGR7/EagmJFb3XaAdLAmgIR0ClM/pfYzzmdX2UKGgGR7/a2A5Jbt7baAdLBGgIR0ClNJRvegtfdX2UKGgGR7/beqrBCUosaAdLBmgIR0ClNFM0P6KtdX2UKGgGR7/StDD0lJHzaAdLA2gIR0ClM5v8AJb/dX2UKGgGR7/Qmq5sj3VTaAdLA2gIR0ClNApmmLtNdX2UKGgGR7/IyNXHR1HOaAdLA2gIR0ClNKI8yN4rdX2UKGgGR7/CAhje9Ba+aAdLAmgIR0ClNFzHsC1adX2UKGgGR7+3aN+9alk6aAdLAmgIR0ClM6W25QP7dX2UKGgGR7+jTc6/7BO6aAdLAWgIR0ClNGGus90SdX2UKGgGR7/RVMEidJ8OaAdLA2gIR0ClNBkORT0hdX2UKGgGR7/AT1TR6WxAaAdLAmgIR0ClM6/giu+zdX2UKGgGR7/JJQLux8lYaAdLA2gIR0ClNLJ53TuwdX2UKGgGR7/GtGNJe3QVaAdLA2gIR0ClNHMDnvDxdX2UKGgGR7/FtShrWRRuaAdLAmgIR0ClM7wWvbGndX2UKGgGR7/MFxn3+MqCaAdLA2gIR0ClNCz/hl19dX2UKGgGR7/EC3gDRtxdaAdLAmgIR0ClNH8RL9MsdX2UKGgGR7/A5NoJzDGcaAdLAmgIR0ClM8gSvkimdX2UKGgGR7/WIK+i8FpxaAdLBGgIR0ClNMl/hESedX2UKGgGR7++JQ+EAYHgaAdLAmgIR0ClNIfRE4NrdX2UKGgGR7/OQ/X5FgDzaAdLA2gIR0ClNDqZtvXLdX2UKGgGR7+1WvKU3XI2aAdLAmgIR0ClM9DiXIEKdX2UKGgGR7/GFfzBhx5taAdLA2gIR0ClNNZZB9kSdX2UKGgGR7/KaTfR/mT1aAdLA2gIR0ClNJUiyIHkdX2UKGgGR7/WBeXzDn/2aAdLA2gIR0ClNEfQKKHgdX2UKGgGR7/RTuOS4e90aAdLBGgIR0ClM+INVinYdX2UKGgGR7/LNke6qbSaaAdLA2gIR0ClNOZIpYs/dX2UKGgGR7/N4/u9eyAyaAdLA2gIR0ClNFd3B55adX2UKGgGR7/UPnSv1UVBaAdLBGgIR0ClNKlaB7NTdX2UKGgGR7/UGFBY3eenaAdLA2gIR0ClM/IJJGvwdX2UKGgGR7/Ub6xgRbr1aAdLA2gIR0ClNPPES/TLdX2UKGgGR7/CTGHYYixFaAdLAmgIR0ClNLJDE3sHdX2UKGgGR7+mr6tT1kDqaAdLAWgIR0ClNLawD/2kdX2UKGgGR7/U7iQ1aW5ZaAdLBGgIR0ClNGl7MPjGdX2UKGgGR7/UYDklu3tsaAdLA2gIR0ClNQFIVdondX2UKGgGR7/VX9R77bcoaAdLBGgIR0ClNARQrMC+dX2UKGgGR7+9sLv1DjR2aAdLAmgIR0ClNQyBshxHdX2UKGgGR7/G8ZDRc/t6aAdLA2gIR0ClNHnbAUL2dX2UKGgGR7/bY/FBIFvAaAdLBGgIR0ClNMvIwM6SdX2UKGgGR7/Hcclw97ngaAdLA2gIR0ClNBSKvV3EdX2UKGgGR7/P7sOXmeUZaAdLA2gIR0ClNRoLgGbDdX2UKGgGR7/C9RrJr+HaaAdLA2gIR0ClNIb4agmJdX2UKGgGR7/J4NZvDP4VaAdLA2gIR0ClNCEsjFAFdX2UKGgGR7+6fzz3AVO9aAdLAmgIR0ClNSKBd2PldX2UKGgGR7/W8tf5ULlWaAdLBGgIR0ClNNzdcjZ+dX2UKGgGR7/BiF0xM36zaAdLAmgIR0ClNI+IuXeFdX2UKGgGR7/LZ5AyEcsEaAdLA2gIR0ClNC2attALdX2UKGgGR7/T+ERJ2+wlaAdLA2gIR0ClNTGPPszEdX2UKGgGR7/N+b3Gn4wiaAdLA2gIR0ClNOwNLDhtdX2UKGgGR7/dFtsN2C/XaAdLBGgIR0ClNKVRk3CLdX2UKGgGR7+22F36hxo7aAdLAmgIR0ClNDwPI4lydX2UKGgGR7+34agmJFb3aAdLAmgIR0ClNPl8G9pRdX2UKGgGR7/P5t3wCr93aAdLA2gIR0ClNUVaW5YpdX2UKGgGR7/EE5hjOLR8aAdLAmgIR0ClNEiO3lS1dX2UKGgGR7+QTqSowVTKaAdLAWgIR0ClNUpI+W4WdX2UKGgGR7/VML4N7SiNaAdLA2gIR0ClNLd5Qgs9dX2UKGgGR7+02sJY1YQraAdLAmgIR0ClNFLMs6JZdX2UKGgGR7/ZvqTr3TNMaAdLBGgIR0ClNQ7b1yvLdX2UKGgGR7+0IfKZDzAfaAdLAmgIR0ClNMIBzV+adX2UKGgGR7/XU4aP0Zm7aAdLBGgIR0ClNWLWRRuTdX2UKGgGR7+4ERradtl7aAdLAmgIR0ClNR1pKzzFdX2UKGgGR7/StbLU1AJLaAdLA2gIR0ClNGZpSJj2dX2UKGgGR7/OmkWRA8jiaAdLA2gIR0ClNNTFVDKHdX2UKGgGR7/BV4HHFPznaAdLAmgIR0ClNSbQswtbdX2UKGgGR7/N67/XGwRoaAdLA2gIR0ClNXEpy6tldX2UKGgGR7+2NbTtsvZiaAdLAmgIR0ClNN43Ns3ydX2UKGgGR7+0vtdAxBVuaAdLAmgIR0ClNTB0Qsf8dX2UKGgGR7+nphWo3rD7aAdLAWgIR0ClNOMwDeTFdX2UKGgGR7/W0UXYUWVNaAdLBGgIR0ClNHnXd0q6dX2UKGgGR7+2ZnctXgccaAdLAmgIR0ClNXs9jgAIdX2UKGgGR7+/xLCemNzbaAdLAmgIR0ClNTouoP07dX2UKGgGR7/Q7CBPKuB+aAdLA2gIR0ClNPDy4FzNdX2UKGgGR7/Sc7QswtaqaAdLA2gIR0ClNIc8La24dX2UKGgGR7/RbaAWi1zAaAdLA2gIR0ClNYuC5EtvdX2UKGgGR7+8K7ZnL7oCaAdLAmgIR0ClNUYKIBRydX2UKGgGR7/DgJkXk5p8aAdLAmgIR0ClNP0tqYZ3dX2UKGgGR7/SH2h7E5yVaAdLA2gIR0ClNVQcPvrodX2UKGgGR7/ELhrFfiPyaAdLAmgIR0ClNQbLU1AJdX2UKGgGR7/ar/82rGR3aAdLBGgIR0ClNJ18CxNZdX2UKGgGR7/Zzq8lHBk7aAdLBGgIR0ClNZ8VpKzzdX2UKGgGR7+QxrSE12q2aAdLAWgIR0ClNQwjD8+BdX2UKGgGR7+IR28qWkadaAdLAWgIR0ClNRCtzS1FdX2UKGgGR7+70qYqoZQ6aAdLAmgIR0ClNKddE9dNdX2UKGgGR7/B2EkB0ZFYaAdLAmgIR0ClNajuBtk4dX2UKGgGR7/OPp6hQFcIaAdLA2gIR0ClNWN+b3GodX2UKGgGR7/BU6PsAvL6aAdLAmgIR0ClNLBsZYPodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.254147195443511, "std_reward": 0.11150360830901605, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-10T10:28:00.865853"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2623
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce8f16c71916fc5fc74f15054d7594a6bdbf50e2364fa1a61c639cfd0f94de61
|
3 |
size 2623
|