feat: Checkpoint 13800
Browse filesSigned-off-by: Julep Developers <developers@julep.ai>
- .ipynb_checkpoints/README-checkpoint.md +100 -0
- 1_Pooling/config.json +7 -0
- 2_Asym/140654129191936_Dense/config.json +1 -0
- 2_Asym/140654129191936_Dense/pytorch_model.bin +3 -0
- 2_Asym/140654129198896_Dense/config.json +1 -0
- 2_Asym/140654129198896_Dense/pytorch_model.bin +3 -0
- 2_Asym/140654129199328_Dense/config.json +1 -0
- 2_Asym/140654129199328_Dense/pytorch_model.bin +3 -0
- 2_Asym/140654129199376_Dense/config.json +1 -0
- 2_Asym/140654129199376_Dense/pytorch_model.bin +3 -0
- 2_Asym/140654129388880_Dense/config.json +1 -0
- 2_Asym/140654129388880_Dense/pytorch_model.bin +3 -0
- 2_Asym/140663133264320_Dense/config.json +1 -0
- 2_Asym/140663133264320_Dense/pytorch_model.bin +3 -0
- 2_Asym/config.json +25 -0
- README.md +97 -0
- config.json +32 -0
- config_sentence_transformers.json +7 -0
- eval/.ipynb_checkpoints/triplet_evaluation_results-checkpoint.csv +2 -0
- eval/triplet_evaluation_results.csv +11 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- vocab.txt +0 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
# dfe-base-en
|
12 |
+
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1536 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
+
|
15 |
+
<!--- Describe your model here -->
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
+
|
31 |
+
model = SentenceTransformer('julep-ai/dfe-base-en')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
## Evaluation Results
|
39 |
+
|
40 |
+
<!--- Describe how your model was evaluated -->
|
41 |
+
|
42 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
43 |
+
|
44 |
+
|
45 |
+
## Training
|
46 |
+
The model was trained with the parameters:
|
47 |
+
|
48 |
+
**DataLoader**:
|
49 |
+
|
50 |
+
`torch.utils.data.dataloader.DataLoader` of length 1321 with parameters:
|
51 |
+
```
|
52 |
+
{'batch_size': 1280, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
53 |
+
```
|
54 |
+
|
55 |
+
**Loss**:
|
56 |
+
|
57 |
+
`sentence_transformers.losses.TripletLoss.TripletLoss` with parameters:
|
58 |
+
```
|
59 |
+
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
|
60 |
+
```
|
61 |
+
|
62 |
+
Parameters of the fit()-Method:
|
63 |
+
```
|
64 |
+
{
|
65 |
+
"epochs": 12,
|
66 |
+
"evaluation_steps": 0,
|
67 |
+
"evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
|
68 |
+
"max_grad_norm": 1,
|
69 |
+
"optimizer_class": "<class 'lion_pytorch.lion_pytorch.Lion'>",
|
70 |
+
"optimizer_params": {
|
71 |
+
"lr": 0.0001,
|
72 |
+
"weight_decay": 0.01
|
73 |
+
},
|
74 |
+
"scheduler": "WarmupCosine",
|
75 |
+
"steps_per_epoch": null,
|
76 |
+
"warmup_steps": 100,
|
77 |
+
"weight_decay": 0.01
|
78 |
+
}
|
79 |
+
```
|
80 |
+
|
81 |
+
|
82 |
+
## Full Model Architecture
|
83 |
+
```
|
84 |
+
SentenceTransformer(
|
85 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
86 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
87 |
+
(2): Asym(
|
88 |
+
(dialog-0): Dense({'in_features': 768, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
89 |
+
(dialog-1): Dense({'in_features': 1536, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
90 |
+
(dialog-2): Dense({'in_features': 1536, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
91 |
+
(fact-0): Dense({'in_features': 768, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
92 |
+
(fact-1): Dense({'in_features': 1536, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
93 |
+
(fact-2): Dense({'in_features': 1536, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
94 |
+
)
|
95 |
+
)
|
96 |
+
```
|
97 |
+
|
98 |
+
## Citing & Authors
|
99 |
+
|
100 |
+
<!--- Describe where people can find more information -->
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
2_Asym/140654129191936_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 1536, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Asym/140654129191936_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:208eed2d63c776a137954ad8290e40ee91432754ec07b1fc70a4ddc890f66cb3
|
3 |
+
size 4726396
|
2_Asym/140654129198896_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 1536, "out_features": 1536, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Asym/140654129198896_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8487aeba9cac38fbca92f3bdb0da88819f2de264508a80ff71388c280551665d
|
3 |
+
size 9444988
|
2_Asym/140654129199328_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 1536, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Asym/140654129199328_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4eb147f91d745c0a5602afaf50254a57b010021b0114aad9cfc4acdf8514122
|
3 |
+
size 4723324
|
2_Asym/140654129199376_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 1536, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Asym/140654129199376_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfdacf5a19b33b11cd1877386edf20e13a0b1e818caf00ec864e19e2324bebfe
|
3 |
+
size 4723324
|
2_Asym/140654129388880_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 1536, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Asym/140654129388880_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6983a97e93899db94b23a77a425790d7aadb48ba0fbaf9dbcda453854fbe38a
|
3 |
+
size 4726396
|
2_Asym/140663133264320_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 1536, "out_features": 1536, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Asym/140663133264320_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4afe1d4cb3d88f6b9492a17917199940594a99ba4571f0e530ce15858cc9bc16
|
3 |
+
size 9444988
|
2_Asym/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"types": {
|
3 |
+
"140654129388880_Dense": "sentence_transformers.models.Dense",
|
4 |
+
"140663133264320_Dense": "sentence_transformers.models.Dense",
|
5 |
+
"140654129199328_Dense": "sentence_transformers.models.Dense",
|
6 |
+
"140654129191936_Dense": "sentence_transformers.models.Dense",
|
7 |
+
"140654129198896_Dense": "sentence_transformers.models.Dense",
|
8 |
+
"140654129199376_Dense": "sentence_transformers.models.Dense"
|
9 |
+
},
|
10 |
+
"structure": {
|
11 |
+
"dialog": [
|
12 |
+
"140654129388880_Dense",
|
13 |
+
"140663133264320_Dense",
|
14 |
+
"140654129199328_Dense"
|
15 |
+
],
|
16 |
+
"fact": [
|
17 |
+
"140654129191936_Dense",
|
18 |
+
"140654129198896_Dense",
|
19 |
+
"140654129199376_Dense"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
"parameters": {
|
23 |
+
"allow_empty_key": false
|
24 |
+
}
|
25 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,100 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
|
9 |
---
|
10 |
+
|
11 |
+
# dfe-base-en
|
12 |
+
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1536 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
+
|
15 |
+
<!--- Describe your model here -->
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
+
|
31 |
+
model = SentenceTransformer('julep-ai/dfe-base-en')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
## Evaluation Results
|
39 |
+
|
40 |
+
<!--- Describe how your model was evaluated -->
|
41 |
+
|
42 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
43 |
+
|
44 |
+
|
45 |
+
## Training
|
46 |
+
The model was trained with the parameters:
|
47 |
+
|
48 |
+
**DataLoader**:
|
49 |
+
|
50 |
+
`torch.utils.data.dataloader.DataLoader` of length 1321 with parameters:
|
51 |
+
```
|
52 |
+
{'batch_size': 1280, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
53 |
+
```
|
54 |
+
|
55 |
+
**Loss**:
|
56 |
+
|
57 |
+
`sentence_transformers.losses.TripletLoss.TripletLoss` with parameters:
|
58 |
+
```
|
59 |
+
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
|
60 |
+
```
|
61 |
+
|
62 |
+
Parameters of the fit()-Method:
|
63 |
+
```
|
64 |
+
{
|
65 |
+
"epochs": 12,
|
66 |
+
"evaluation_steps": 0,
|
67 |
+
"evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
|
68 |
+
"max_grad_norm": 1,
|
69 |
+
"optimizer_class": "<class 'lion_pytorch.lion_pytorch.Lion'>",
|
70 |
+
"optimizer_params": {
|
71 |
+
"lr": 0.0001,
|
72 |
+
"weight_decay": 0.01
|
73 |
+
},
|
74 |
+
"scheduler": "WarmupCosine",
|
75 |
+
"steps_per_epoch": null,
|
76 |
+
"warmup_steps": 100,
|
77 |
+
"weight_decay": 0.01
|
78 |
+
}
|
79 |
+
```
|
80 |
+
|
81 |
+
|
82 |
+
## Full Model Architecture
|
83 |
+
```
|
84 |
+
SentenceTransformer(
|
85 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
86 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
87 |
+
(2): Asym(
|
88 |
+
(dialog-0): Dense({'in_features': 768, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
89 |
+
(dialog-1): Dense({'in_features': 1536, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
90 |
+
(dialog-2): Dense({'in_features': 1536, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
91 |
+
(fact-0): Dense({'in_features': 768, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
92 |
+
(fact-1): Dense({'in_features': 1536, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
93 |
+
(fact-2): Dense({'in_features': 1536, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
94 |
+
)
|
95 |
+
)
|
96 |
+
```
|
97 |
+
|
98 |
+
## Citing & Authors
|
99 |
+
|
100 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/.cache/torch/sentence_transformers/BAAI_bge-base-en-v1.5/",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.33.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.28.1",
|
5 |
+
"pytorch": "1.13.0+cu117"
|
6 |
+
}
|
7 |
+
}
|
eval/.ipynb_checkpoints/triplet_evaluation_results-checkpoint.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
epoch,steps,accuracy_cosinus,accuracy_manhattan,accuracy_euclidean
|
2 |
+
0,-1,0.8347865504093006,0.835933125349972,0.8326267231954777
|
eval/triplet_evaluation_results.csv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,accuracy_cosinus,accuracy_manhattan,accuracy_euclidean
|
2 |
+
0,-1,0.8347865504093006,0.835933125349972,0.8326267231954777
|
3 |
+
1,-1,0.9147801509212596,0.9147534863877557,0.9126469882409407
|
4 |
+
2,-1,0.9442177959096606,0.943391195371037,0.9422179558968616
|
5 |
+
3,-1,0.9552035837133029,0.954990267445271,0.9536837053035757
|
6 |
+
4,-1,0.9626429885609151,0.9630696210969789,0.9617097298882756
|
7 |
+
5,-1,0.9655494227128496,0.9658960616484015,0.964962802975762
|
8 |
+
6,-1,0.9678425725941925,0.9678159080606885,0.9675225981921446
|
9 |
+
7,-1,0.9697890835399835,0.9693624510039197,0.9691757992693918
|
10 |
+
8,-1,0.9714422846172306,0.9709889875476628,0.9706423486121111
|
11 |
+
9,-1,0.9715756072847506,0.9718155880862864,0.9720022398208144
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Asym",
|
18 |
+
"type": "sentence_transformers.models.Asym"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0902de760f1af733e3064489c15700f0658c2d955fcf9784b40069791cfef97a
|
3 |
+
size 437996134
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"model_max_length": 512,
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|