jujimeizuo commited on
Commit
f402331
·
1 Parent(s): e28f979

first commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ adapter_model.safetensors filter=lfs diff=lfs merge=lfs -text
model/README.md ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /root/personal_assistant/model/Shanghai_AI_Laboratory/internlm-chat-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ### Framework versions
202
+
203
+ - PEFT 0.7.1
model/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/root/personal_assistant/model/Shanghai_AI_Laboratory/internlm-chat-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.1,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "up_proj",
24
+ "down_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "v_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
model/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d98a99bc7a71372b4e375697244bf09e532f87020e7d837dc6f72d5426bcbc9
3
+ size 319876032
model/xtuner_config.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import torch
3
+ from bitsandbytes.optim import PagedAdamW32bit
4
+ from datasets import load_dataset
5
+ from mmengine.dataset import DefaultSampler
6
+ from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
7
+ LoggerHook, ParamSchedulerHook)
8
+ from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR
9
+ from peft import LoraConfig
10
+ from transformers import (AutoModelForCausalLM, AutoTokenizer,
11
+ BitsAndBytesConfig)
12
+
13
+ from xtuner.dataset import process_hf_dataset
14
+ from xtuner.dataset.collate_fns import default_collate_fn
15
+ from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
16
+ from xtuner.engine import DatasetInfoHook, EvaluateChatHook
17
+ from xtuner.model import SupervisedFinetune
18
+ from xtuner.utils import PROMPT_TEMPLATE
19
+
20
+ #######################################################################
21
+ # PART 1 Settings #
22
+ #######################################################################
23
+ # Model
24
+ pretrained_model_name_or_path = '/root/personal_assistant/model/Shanghai_AI_Laboratory/internlm-chat-7b'
25
+
26
+ # Data
27
+ data_path = '/root/personal_assistant/data/personal_assistant.json'
28
+ prompt_template = PROMPT_TEMPLATE.internlm_chat
29
+ max_length = 512
30
+ pack_to_max_length = True
31
+
32
+ # Scheduler & Optimizer
33
+ batch_size = 2 # per_device
34
+ accumulative_counts = 16
35
+ dataloader_num_workers = 0
36
+ max_epochs = 3
37
+ optim_type = PagedAdamW32bit
38
+ lr = 2e-4
39
+ betas = (0.9, 0.999)
40
+ weight_decay = 0
41
+ max_norm = 1 # grad clip
42
+
43
+ # Evaluate the generation performance during the training
44
+ evaluation_freq = 90
45
+ SYSTEM = ''
46
+ evaluation_inputs = [ '请介绍一下你自己', '请做一下自我介绍' ]
47
+
48
+ #######################################################################
49
+ # PART 2 Model & Tokenizer #
50
+ #######################################################################
51
+ tokenizer = dict(
52
+ type=AutoTokenizer.from_pretrained,
53
+ pretrained_model_name_or_path=pretrained_model_name_or_path,
54
+ trust_remote_code=True,
55
+ padding_side='right')
56
+
57
+ model = dict(
58
+ type=SupervisedFinetune,
59
+ llm=dict(
60
+ type=AutoModelForCausalLM.from_pretrained,
61
+ pretrained_model_name_or_path=pretrained_model_name_or_path,
62
+ trust_remote_code=True,
63
+ torch_dtype=torch.float16,
64
+ quantization_config=dict(
65
+ type=BitsAndBytesConfig,
66
+ load_in_4bit=True,
67
+ load_in_8bit=False,
68
+ llm_int8_threshold=6.0,
69
+ llm_int8_has_fp16_weight=False,
70
+ bnb_4bit_compute_dtype=torch.float16,
71
+ bnb_4bit_use_double_quant=True,
72
+ bnb_4bit_quant_type='nf4')),
73
+ lora=dict(
74
+ type=LoraConfig,
75
+ r=64,
76
+ lora_alpha=16,
77
+ lora_dropout=0.1,
78
+ bias='none',
79
+ task_type='CAUSAL_LM'))
80
+
81
+ #######################################################################
82
+ # PART 3 Dataset & Dataloader #
83
+ #######################################################################
84
+ train_dataset = dict(
85
+ type=process_hf_dataset,
86
+ dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),
87
+ tokenizer=tokenizer,
88
+ max_length=max_length,
89
+ dataset_map_fn=None,
90
+ template_map_fn=dict(
91
+ type=template_map_fn_factory, template=prompt_template),
92
+ remove_unused_columns=True,
93
+ shuffle_before_pack=True,
94
+ pack_to_max_length=pack_to_max_length)
95
+
96
+ train_dataloader = dict(
97
+ batch_size=batch_size,
98
+ num_workers=dataloader_num_workers,
99
+ dataset=train_dataset,
100
+ sampler=dict(type=DefaultSampler, shuffle=True),
101
+ collate_fn=dict(type=default_collate_fn))
102
+
103
+ #######################################################################
104
+ # PART 4 Scheduler & Optimizer #
105
+ #######################################################################
106
+ # optimizer
107
+ optim_wrapper = dict(
108
+ type=AmpOptimWrapper,
109
+ optimizer=dict(
110
+ type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
111
+ clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
112
+ accumulative_counts=accumulative_counts,
113
+ loss_scale='dynamic',
114
+ dtype='float16')
115
+
116
+ # learning policy
117
+ # More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
118
+ param_scheduler = dict(
119
+ type=CosineAnnealingLR,
120
+ eta_min=0.0,
121
+ by_epoch=True,
122
+ T_max=max_epochs,
123
+ convert_to_iter_based=True)
124
+
125
+ # train, val, test setting
126
+ train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)
127
+
128
+ #######################################################################
129
+ # PART 5 Runtime #
130
+ #######################################################################
131
+ # Log the dialogue periodically during the training process, optional
132
+ custom_hooks = [
133
+ dict(type=DatasetInfoHook, tokenizer=tokenizer),
134
+ dict(
135
+ type=EvaluateChatHook,
136
+ tokenizer=tokenizer,
137
+ every_n_iters=evaluation_freq,
138
+ evaluation_inputs=evaluation_inputs,
139
+ system=SYSTEM,
140
+ prompt_template=prompt_template)
141
+ ]
142
+
143
+ # configure default hooks
144
+ default_hooks = dict(
145
+ # record the time of every iteration.
146
+ timer=dict(type=IterTimerHook),
147
+ # print log every 100 iterations.
148
+ logger=dict(type=LoggerHook, interval=10),
149
+ # enable the parameter scheduler.
150
+ param_scheduler=dict(type=ParamSchedulerHook),
151
+ # save checkpoint per epoch.
152
+ checkpoint=dict(type=CheckpointHook, interval=1),
153
+ # set sampler seed in distributed evrionment.
154
+ sampler_seed=dict(type=DistSamplerSeedHook),
155
+ )
156
+
157
+ # configure environment
158
+ env_cfg = dict(
159
+ # whether to enable cudnn benchmark
160
+ cudnn_benchmark=False,
161
+ # set multi process parameters
162
+ mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
163
+ # set distributed parameters
164
+ dist_cfg=dict(backend='nccl'),
165
+ )
166
+
167
+ # set visualizer
168
+ visualizer = None
169
+
170
+ # set log level
171
+ log_level = 'INFO'
172
+
173
+ # load from which checkpoint
174
+ load_from = None
175
+
176
+ # whether to resume training from the loaded checkpoint
177
+ resume = False
178
+
179
+ # Defaults to use random seed and disable `deterministic`
180
+ randomness = dict(seed=None, deterministic=False)