judithrosell
commited on
Commit
•
94d5a90
1
Parent(s):
c5abf46
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: medicalai/ClinicalBERT
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: JNLPBA_ClinicalBERT_NER
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# JNLPBA_ClinicalBERT_NER
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1723
|
18 |
+
- Seqeval classification report: precision recall f1-score support
|
19 |
+
|
20 |
+
DNA 0.72 0.81 0.77 1351
|
21 |
+
RNA 0.71 0.86 0.78 723
|
22 |
+
cell_line 0.84 0.74 0.78 582
|
23 |
+
cell_type 0.72 0.75 0.73 5623
|
24 |
+
protein 0.85 0.85 0.85 3501
|
25 |
+
|
26 |
+
micro avg 0.76 0.79 0.78 11780
|
27 |
+
macro avg 0.77 0.80 0.78 11780
|
28 |
+
weighted avg 0.76 0.79 0.78 11780
|
29 |
+
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 2e-05
|
49 |
+
- train_batch_size: 16
|
50 |
+
- eval_batch_size: 16
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 2
|
53 |
+
- total_train_batch_size: 32
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- num_epochs: 3
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
62 |
+
| 0.336 | 1.0 | 582 | 0.1930 | precision recall f1-score support
|
63 |
+
|
64 |
+
DNA 0.72 0.77 0.75 1351
|
65 |
+
RNA 0.70 0.84 0.77 723
|
66 |
+
cell_line 0.85 0.70 0.77 582
|
67 |
+
cell_type 0.71 0.68 0.69 5623
|
68 |
+
protein 0.85 0.80 0.83 3501
|
69 |
+
|
70 |
+
micro avg 0.76 0.74 0.75 11780
|
71 |
+
macro avg 0.77 0.76 0.76 11780
|
72 |
+
weighted avg 0.76 0.74 0.75 11780
|
73 |
+
|
|
74 |
+
| 0.1841 | 2.0 | 1164 | 0.1762 | precision recall f1-score support
|
75 |
+
|
76 |
+
DNA 0.73 0.78 0.76 1351
|
77 |
+
RNA 0.70 0.87 0.78 723
|
78 |
+
cell_line 0.86 0.71 0.78 582
|
79 |
+
cell_type 0.71 0.73 0.72 5623
|
80 |
+
protein 0.86 0.83 0.84 3501
|
81 |
+
|
82 |
+
micro avg 0.76 0.77 0.77 11780
|
83 |
+
macro avg 0.77 0.78 0.78 11780
|
84 |
+
weighted avg 0.77 0.77 0.77 11780
|
85 |
+
|
|
86 |
+
| 0.1582 | 3.0 | 1746 | 0.1723 | precision recall f1-score support
|
87 |
+
|
88 |
+
DNA 0.72 0.81 0.77 1351
|
89 |
+
RNA 0.71 0.86 0.78 723
|
90 |
+
cell_line 0.84 0.74 0.78 582
|
91 |
+
cell_type 0.72 0.75 0.73 5623
|
92 |
+
protein 0.85 0.85 0.85 3501
|
93 |
+
|
94 |
+
micro avg 0.76 0.79 0.78 11780
|
95 |
+
macro avg 0.77 0.80 0.78 11780
|
96 |
+
weighted avg 0.76 0.79 0.78 11780
|
97 |
+
|
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.35.2
|
103 |
+
- Pytorch 2.1.0+cu121
|
104 |
+
- Datasets 2.15.0
|
105 |
+
- Tokenizers 0.15.0
|