judithrosell
commited on
Commit
·
2530af9
1
Parent(s):
12d4d8d
End of training
Browse files- README.md +109 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: allenai/scibert_scivocab_uncased
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: CRAFT_SciBERT_NER
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# CRAFT_SciBERT_NER
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1143
|
18 |
+
- Seqeval classification report: precision recall f1-score support
|
19 |
+
|
20 |
+
CHEBI 0.74 0.70 0.72 457
|
21 |
+
CL 0.82 0.75 0.78 1099
|
22 |
+
GGP 0.92 0.93 0.93 2232
|
23 |
+
GO 0.78 0.84 0.81 2508
|
24 |
+
SO 0.83 0.81 0.82 1365
|
25 |
+
Taxon 0.99 0.99 0.99 87655
|
26 |
+
|
27 |
+
micro avg 0.98 0.98 0.98 95316
|
28 |
+
macro avg 0.85 0.84 0.84 95316
|
29 |
+
weighted avg 0.98 0.98 0.98 95316
|
30 |
+
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 2e-05
|
50 |
+
- train_batch_size: 16
|
51 |
+
- eval_batch_size: 16
|
52 |
+
- seed: 42
|
53 |
+
- gradient_accumulation_steps: 2
|
54 |
+
- total_train_batch_size: 32
|
55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 3
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
|
62 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
63 |
+
| No log | 1.0 | 347 | 0.1140 | precision recall f1-score support
|
64 |
+
|
65 |
+
CHEBI 0.66 0.69 0.67 457
|
66 |
+
CL 0.83 0.69 0.75 1099
|
67 |
+
GGP 0.89 0.93 0.91 2232
|
68 |
+
GO 0.76 0.85 0.80 2508
|
69 |
+
SO 0.79 0.73 0.76 1365
|
70 |
+
Taxon 0.99 0.99 0.99 87655
|
71 |
+
|
72 |
+
micro avg 0.97 0.97 0.97 95316
|
73 |
+
macro avg 0.82 0.81 0.81 95316
|
74 |
+
weighted avg 0.97 0.97 0.97 95316
|
75 |
+
|
|
76 |
+
| 0.1263 | 2.0 | 695 | 0.1126 | precision recall f1-score support
|
77 |
+
|
78 |
+
CHEBI 0.73 0.69 0.71 457
|
79 |
+
CL 0.85 0.72 0.78 1099
|
80 |
+
GGP 0.91 0.93 0.92 2232
|
81 |
+
GO 0.74 0.87 0.80 2508
|
82 |
+
SO 0.82 0.80 0.81 1365
|
83 |
+
Taxon 0.99 0.99 0.99 87655
|
84 |
+
|
85 |
+
micro avg 0.97 0.97 0.97 95316
|
86 |
+
macro avg 0.84 0.83 0.83 95316
|
87 |
+
weighted avg 0.97 0.97 0.97 95316
|
88 |
+
|
|
89 |
+
| 0.0326 | 3.0 | 1041 | 0.1143 | precision recall f1-score support
|
90 |
+
|
91 |
+
CHEBI 0.74 0.70 0.72 457
|
92 |
+
CL 0.82 0.75 0.78 1099
|
93 |
+
GGP 0.92 0.93 0.93 2232
|
94 |
+
GO 0.78 0.84 0.81 2508
|
95 |
+
SO 0.83 0.81 0.82 1365
|
96 |
+
Taxon 0.99 0.99 0.99 87655
|
97 |
+
|
98 |
+
micro avg 0.98 0.98 0.98 95316
|
99 |
+
macro avg 0.85 0.84 0.84 95316
|
100 |
+
weighted avg 0.98 0.98 0.98 95316
|
101 |
+
|
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.35.2
|
107 |
+
- Pytorch 2.1.0+cu121
|
108 |
+
- Datasets 2.15.0
|
109 |
+
- Tokenizers 0.15.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437374820
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6a317c02d9e01a69b0209c686655e0647b3c52845119c3f9ba9b58c2f1e627f
|
3 |
size 437374820
|