judithrosell
commited on
Commit
•
5065991
1
Parent(s):
75810ce
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: BC5CDR_PubMedBERT_NER
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# BC5CDR_PubMedBERT_NER
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0783
|
19 |
+
- Seqeval classification report: precision recall f1-score support
|
20 |
+
|
21 |
+
Chemical 0.99 0.98 0.98 103336
|
22 |
+
Disease 0.76 0.86 0.81 3447
|
23 |
+
|
24 |
+
micro avg 0.98 0.98 0.98 106783
|
25 |
+
macro avg 0.87 0.92 0.89 106783
|
26 |
+
weighted avg 0.98 0.98 0.98 106783
|
27 |
+
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- gradient_accumulation_steps: 2
|
51 |
+
- total_train_batch_size: 32
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- num_epochs: 3
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
60 |
+
| No log | 1.0 | 143 | 0.0952 | precision recall f1-score support
|
61 |
+
|
62 |
+
Chemical 0.99 0.97 0.98 103336
|
63 |
+
Disease 0.68 0.88 0.76 3447
|
64 |
+
|
65 |
+
micro avg 0.97 0.97 0.97 106783
|
66 |
+
macro avg 0.83 0.92 0.87 106783
|
67 |
+
weighted avg 0.98 0.97 0.97 106783
|
68 |
+
|
|
69 |
+
| No log | 2.0 | 286 | 0.0804 | precision recall f1-score support
|
70 |
+
|
71 |
+
Chemical 0.99 0.98 0.98 103336
|
72 |
+
Disease 0.75 0.86 0.80 3447
|
73 |
+
|
74 |
+
micro avg 0.98 0.97 0.97 106783
|
75 |
+
macro avg 0.87 0.92 0.89 106783
|
76 |
+
weighted avg 0.98 0.97 0.98 106783
|
77 |
+
|
|
78 |
+
| No log | 3.0 | 429 | 0.0783 | precision recall f1-score support
|
79 |
+
|
80 |
+
Chemical 0.99 0.98 0.98 103336
|
81 |
+
Disease 0.76 0.86 0.81 3447
|
82 |
+
|
83 |
+
micro avg 0.98 0.98 0.98 106783
|
84 |
+
macro avg 0.87 0.92 0.89 106783
|
85 |
+
weighted avg 0.98 0.98 0.98 106783
|
86 |
+
|
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.35.2
|
92 |
+
- Pytorch 2.1.0+cu118
|
93 |
+
- Datasets 2.15.0
|
94 |
+
- Tokenizers 0.15.0
|