judithrosell commited on
Commit
5065991
1 Parent(s): 75810ce

End of training

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: BC5CDR_PubMedBERT_NER
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # BC5CDR_PubMedBERT_NER
15
+
16
+ This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0783
19
+ - Seqeval classification report: precision recall f1-score support
20
+
21
+ Chemical 0.99 0.98 0.98 103336
22
+ Disease 0.76 0.86 0.81 3447
23
+
24
+ micro avg 0.98 0.98 0.98 106783
25
+ macro avg 0.87 0.92 0.89 106783
26
+ weighted avg 0.98 0.98 0.98 106783
27
+
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 16
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 2
51
+ - total_train_batch_size: 32
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 3
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
60
+ | No log | 1.0 | 143 | 0.0952 | precision recall f1-score support
61
+
62
+ Chemical 0.99 0.97 0.98 103336
63
+ Disease 0.68 0.88 0.76 3447
64
+
65
+ micro avg 0.97 0.97 0.97 106783
66
+ macro avg 0.83 0.92 0.87 106783
67
+ weighted avg 0.98 0.97 0.97 106783
68
+ |
69
+ | No log | 2.0 | 286 | 0.0804 | precision recall f1-score support
70
+
71
+ Chemical 0.99 0.98 0.98 103336
72
+ Disease 0.75 0.86 0.80 3447
73
+
74
+ micro avg 0.98 0.97 0.97 106783
75
+ macro avg 0.87 0.92 0.89 106783
76
+ weighted avg 0.98 0.97 0.98 106783
77
+ |
78
+ | No log | 3.0 | 429 | 0.0783 | precision recall f1-score support
79
+
80
+ Chemical 0.99 0.98 0.98 103336
81
+ Disease 0.76 0.86 0.81 3447
82
+
83
+ micro avg 0.98 0.98 0.98 106783
84
+ macro avg 0.87 0.92 0.89 106783
85
+ weighted avg 0.98 0.98 0.98 106783
86
+ |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.35.2
92
+ - Pytorch 2.1.0+cu118
93
+ - Datasets 2.15.0
94
+ - Tokenizers 0.15.0