{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d0f7b3c76d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d0f7b3c7760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d0f7b3c77f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d0f7b3c7880>", "_build": "<function ActorCriticPolicy._build at 0x7d0f7b3c7910>", "forward": "<function ActorCriticPolicy.forward at 0x7d0f7b3c79a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d0f7b3c7a30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d0f7b3c7ac0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d0f7b3c7b50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d0f7b3c7be0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d0f7b3c7c70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d0f7b3c7d00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d0f7b567600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718907273320745984, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMDpj10+fk+nqlkvWtNUL/a+9o+mktGPgAAAAAAAAAALQMWPlSFn7w2jQq+s7glv3HZfz2Ymye9AACAPwAAgD9WBGQ/+sgXPsaRbD+W7GC/s6kCPcg+9z0AAAAAAAAAAO3LC77I4Yc+JgToPhO5Q78bmii/vAScvAAAAAAAAAAAAyz3PsSnrT7LaxE+5BmHv0JbBT9jl8E8AAAAAAAAAABmviU7ek6uPy00k7tUKXi+4yzkvKa1jT0AAAAAAAAAAD3Vmj5qE3I/eQxEP0U0LL+dF02+WgDrvQAAAAAAAAAA2kiMPeV0hj7l5ee9jINtv/71yj517xI+AAAAAAAAAAC6dB2+yYeXP065qr6fDwm/i2i3vh5Xr74AAAAAAAAAAKiesr6ZAx4/FJ/DPiBgTr9qIES/proAvQAAAAAAAAAAk4YsvsFfpz59X7Q9xTdbv8aowb7k3w2+AAAAAAAAAADAzwM/45lfP42VOT4uJBS/LTYFP1XxXz4AAAAAAAAAAMCDwr1Bwqw/KwBlvuEPhb5yhTA8+06tvQAAAAAAAAAAQ6TZPn9UnD9Gn28+FpP6vhdflz7X04k7AAAAAAAAAADztPQ+bRkuPpZlgz5B7Yi/TUMJPyWafT4AAAAAAAAAALMkY70UTDE/HwGNPUSzX7/ui4++YhGbvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEGEvZAY51iMAWyUS3mMAXSUR0BlWGsHSncddX2UKGgGR8BaAhbGFSKnaAdLYWgIR0BlWhQ79ycTdX2UKGgGR8A3AYzBRAKOaAdLYmgIR0BlWuB6KLsKdX2UKGgGR8A+oTXarWAgaAdLlWgIR0BlXi508vEkdX2UKGgGR8BWImahHskZaAdLeGgIR0BlXyGHpKSQdX2UKGgGR8BM2l7D2rXEaAdLSWgIR0BlYDLB9Cu2dX2UKGgGR8BBOZWJaaCuaAdLj2gIR0BlYELronrqdX2UKGgGR8BTY5WBBiTdaAdLT2gIR0BlYIK+i8FqdX2UKGgGR8BVuwnQY1pCaAdLT2gIR0BlYHP3SKFadX2UKGgGR8BOBjiXIEKWaAdLjmgIR0BlYQC2c8T0dX2UKGgGR8A5SDCP6sQvaAdLimgIR0BlYgP/aQFLdX2UKGgGR8BkWn3Hq/ucaAdLjWgIR0BlYuvdM0xedX2UKGgGR8Bg2vLvCuU2aAdLf2gIR0BlZW7YkE9udX2UKGgGR8BOp44Ia99MaAdLjmgIR0BlaBNj9XLedX2UKGgGR8BYoVJYkmhNaAdLVGgIR0BlaaBK+SKWdX2UKGgGR8A7AJXyRSxaaAdLaGgIR0BlaxJGvwEydX2UKGgGR8BYTZ13dKukaAdLlGgIR0BlbcwHqu8sdX2UKGgGR8BR8RP9DQZ5aAdLSGgIR0BlbjSG8EmqdX2UKGgGR8BHSGR/3FkyaAdLUmgIR0BlcAnv2GqQdX2UKGgGR8BKnMAeaKDTaAdLSmgIR0BlcInfEXLvdX2UKGgGR8BR+IfKZDzAaAdLhWgIR0BlcMAcT8HfdX2UKGgGR8BbfR+OOsDGaAdLY2gIR0BlcURg7YChdX2UKGgGR8BELjN6gM+eaAdLfmgIR0BlcgkNWluWdX2UKGgGR8Bas17D2rXEaAdLYmgIR0Blc0dFOO81dX2UKGgGR8A0AaQV9F4LaAdLZGgIR0Blc36GgzxgdX2UKGgGR8BTTlvVEuxsaAdLSmgIR0BldFiay8jBdX2UKGgGR8A9HOzposZpaAdLcmgIR0BldNyeZof0dX2UKGgGR8BGgqEeyRjjaAdLhWgIR0BlelCeEqUedX2UKGgGR8BLlud5IH1OaAdLS2gIR0BlfEHhS9/SdX2UKGgGR8BL22oWHk92aAdLcWgIR0BlfvjMmnfmdX2UKGgGR8BA6UfPomojaAdLmGgIR0BlgKpzcRDkdX2UKGgGR8BHyoJZ4fOlaAdLVGgIR0BlgPKlpGnXdX2UKGgGR8BB2FTefqX4aAdLemgIR0BlgkTJyQxOdX2UKGgGR8AgAyWRigCfaAdLV2gIR0BlhDiuMdcTdX2UKGgGR8BEcb79AHE/aAdLUmgIR0BlhIHVwxWUdX2UKGgGR8AoOnR9gF5faAdLWmgIR0BlhRlOGj9GdX2UKGgGR8BQo5+MIeHSaAdLZ2gIR0Blhf/cWTHKdX2UKGgGR8BUfkDIRywOaAdLjGgIR0BlhwXdj5KwdX2UKGgGR8BRqcuSOinHaAdLjmgIR0BligMhHLA6dX2UKGgGR8BVleZCv5gxaAdLTWgIR0Bli6qABkqddX2UKGgGR8BOS3TmW+oMaAdLj2gIR0BljUWweNkwdX2UKGgGR8BTECxeLNwBaAdLmmgIR0Bljjst03fidX2UKGgGR8BF8pqynk1eaAdLn2gIR0Blj7Ub1h9cdX2UKGgGR8BJVASeyzHCaAdLdWgIR0BlkeBe5WildX2UKGgGR8BKrh1LamGeaAdLlWgIR0BlkniR4hUzdX2UKGgGR8BIbLMcIZ62aAdLXWgIR0Blk42AG0NSdX2UKGgGR8BDNhkRSP2gaAdLU2gIR0Bllm5xzaK2dX2UKGgGR8A5UkmhM8HOaAdLgWgIR0BlmK94/u9fdX2UKGgGR8BiLZ7qptJnaAdLbGgIR0Blmd8kUsWgdX2UKGgGR8BCqnS4OMESaAdLi2gIR0BlnO9zwMH9dX2UKGgGR8BUVaQ/5ckdaAdLXmgIR0BlnYLux8lYdX2UKGgGR8BOSquB+WnkaAdLiGgIR0BlnhssQNCrdX2UKGgGR8BjlDnTy8SPaAdLc2gIR0BlntjI7vG7dX2UKGgGR8BsXvXkHUtqaAdLgWgIR0Blnxe/pMYedX2UKGgGR8A0EPRzBAObaAdLgGgIR0Bln3jbSJCTdX2UKGgGR8A/3eYD1XeWaAdLYGgIR0Bln8PrfLs9dX2UKGgGR0AJScbzbvgFaAdLZGgIR0Blo4tOEdvLdX2UKGgGR8BEQDbBXS0CaAdLdWgIR0BlpDyOJcgRdX2UKGgGR8BAxJYcNpdsaAdLWmgIR0BlpA3zcynDdX2UKGgGR8BTZCRGMGX5aAdLcWgIR0BlpGFSKm8/dX2UKGgGR8BOpxOtW+49aAdLWmgIR0BlpMGTs6aLdX2UKGgGR8BOEyNOuaF3aAdLWmgIR0BlqCHh0hePdX2UKGgGR8Bf5mugYgq3aAdLgWgIR0BlqK22G7BgdX2UKGgGR8BKd94u9OARaAdLa2gIR0BlqPlhgE2YdX2UKGgGR8BVO+gDifg8aAdLRmgIR0BlqSMBIWgwdX2UKGgGR8BdqYTTOPeYaAdLUGgIR0Blqjc45tFbdX2UKGgGR8BKwZ2yLQ5WaAdLYmgIR0Blq77bcoH+dX2UKGgGR8BmxUDB/I8yaAdLdGgIR0BlrBNmDlHSdX2UKGgGR8BQ235Jsfq5aAdLd2gIR0Blr1yq+8GtdX2UKGgGR8BNJcW9DhLoaAdLd2gIR0BlsFIuoP07dX2UKGgGR8BaRxe5WilBaAdLYWgIR0BlsQcrAgxKdX2UKGgGR8BSiqJZW7voaAdLaWgIR0BlsZtJnQIEdX2UKGgGR8Ajw/eLvTgEaAdLa2gIR0BlspgZ0jkddX2UKGgGR8BZBZzDGcWkaAdLa2gIR0BlsrlRxcVydX2UKGgGR8BSKSB06o2oaAdLmGgIR0Blsxrcj7hvdX2UKGgGR8BwZEUnG828aAdLjmgIR0Bls04o7V8UdX2UKGgGR8BWYxhttQ9BaAdLUGgIR0Bls+4kNWludX2UKGgGR8BHTDqfOD8MaAdLW2gIR0BltPxnWattdX2UKGgGR8BbydRaX8fnaAdLe2gIR0BltSq4pc5bdX2UKGgGR8BOdO8scyWSaAdLXGgIR0BltY5q/M4cdX2UKGgGR8BbdBkAggX/aAdLVGgIR0Blty4rjHXFdX2UKGgGR8BQIZmZmZmaaAdLU2gIR0Blt1aY/mkndX2UKGgGR0AwwDqW1MM7aAdLgGgIR0Bluzps41gqdX2UKGgGR8BvO4wGnn+yaAdLcGgIR0BlvgfwI+nqdX2UKGgGR8BMe5LZi/fwaAdLX2gIR0BlvvrWy1NQdX2UKGgGR8Bknm7L+xW1aAdLYWgIR0Blv2UKRdQgdX2UKGgGR8BLf9l2/zreaAdLbWgIR0Blv2U8mrsCdX2UKGgGR8BVAcFpwjt5aAdLYmgIR0BlwM76pHZsdX2UKGgGR8BZIvwVj7Q+aAdLaGgIR0BlwMtqYZ2qdX2UKGgGR8Bg7LjkuHvdaAdLaWgIR0BlwSGN70FsdX2UKGgGR8A5FPSUkfLcaAdLgGgIR0BlwVxAB1cMdX2UKGgGR8BVYYTsY2sJaAdLXWgIR0BlwZWJaaCudX2UKGgGR8BOmZ5qubI+aAdLeGgIR0BlwZcC5mROdX2UKGgGR8A+aESM98qnaAdLXWgIR0BlwgMMI/qxdX2UKGgGR8BRTvLcKw6iaAdLxWgIR0BlwozWPLgXdX2UKGgGR8BMacHGCI1taAdLXmgIR0Blw78FY+0PdX2UKGgGR8Bv2NyT6i0waAdLhWgIR0BlyIWi1y/9dX2UKGgGR8A/cQXQ+lj3aAdLZmgIR0BlyKe2/i5vdX2UKGgGR8BRBH3ta6jGaAdLm2gIR0BlySXnhbW3dX2UKGgGR0A0WaWX1J18aAdLV2gIR0BlzHFcY64ldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |