juanpablomesa commited on
Commit
e68e0a2
·
verified ·
1 Parent(s): 04fe0ca

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ pipeline_tag: sentence-similarity
9
+ tags:
10
+ - sentence-transformers
11
+ - sentence-similarity
12
+ - feature-extraction
13
+ - generated_from_trainer
14
+ - dataset_size:4012
15
+ - loss:MultipleNegativesRankingLoss
16
+ widget:
17
+ - source_sentence: 'Extensive messenger RNA editing generates transcript and protein
18
+ diversity in genes involved in neural excitability, as previously described, as
19
+ well as in genes participating in a broad range of other cellular functions. '
20
+ sentences:
21
+ - Do cephalopods use RNA editing less frequently than other species?
22
+ - GV1001 vaccine targets which enzyme?
23
+ - Which event results in the acetylation of S6K1?
24
+ - source_sentence: Yes, exposure to household furry pets influences the gut microbiota
25
+ of infants.
26
+ sentences:
27
+ - Can pets affect infant microbiomed?
28
+ - What is the mode of action of Thiazovivin?
29
+ - What are the effects of CAMK4 inhibition?
30
+ - source_sentence: "In children with heart failure evidence of the effect of enalapril\
31
+ \ is empirical. Enalapril was clinically safe and effective in 50% to 80% of for\
32
+ \ children with cardiac failure secondary to congenital heart malformations before\
33
+ \ and after cardiac surgery, impaired ventricular function , valvar regurgitation,\
34
+ \ congestive cardiomyopathy, , arterial hypertension, life-threatening arrhythmias\
35
+ \ coexisting with circulatory insufficiency. \nACE inhibitors have shown a transient\
36
+ \ beneficial effect on heart failure due to anticancer drugs and possibly a beneficial\
37
+ \ effect in muscular dystrophy-associated cardiomyopathy, which deserves further\
38
+ \ studies."
39
+ sentences:
40
+ - Which receptors can be evaluated with the [18F]altanserin?
41
+ - In what proportion of children with heart failure has Enalapril been shown to
42
+ be safe and effective?
43
+ - Which major signaling pathways are regulated by RIP1?
44
+ - source_sentence: Cellular senescence-associated heterochromatic foci (SAHFS) are
45
+ a novel type of chromatin condensation involving alterations of linker histone
46
+ H1 and linker DNA-binding proteins. SAHFS can be formed by a variety of cell types,
47
+ but their mechanism of action remains unclear.
48
+ sentences:
49
+ - What is the relationship between the X chromosome and a neutrophil drumstick?
50
+ - Which microRNAs are involved in exercise adaptation?
51
+ - How are SAHFS created?
52
+ - source_sentence: Multicluster Pcdh diversity is required for mouse olfactory neural
53
+ circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins
54
+ are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although
55
+ deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss
56
+ of all three clusters (tricluster deletion) led to a severe axonal arborization
57
+ defect and loss of self-avoidance.
58
+ sentences:
59
+ - What are the effects of the deletion of all three Pcdh clusters (tricluster deletion)
60
+ in mice?
61
+ - what is the role of MEF-2 in cardiomyocyte differentiation?
62
+ - How many periods of regulatory innovation led to the evolution of vertebrates?
63
+ ---
64
+
65
+ # BGE small finetuned BIOASQ
66
+
67
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
68
+
69
+ ## Model Details
70
+
71
+ ### Model Description
72
+ - **Model Type:** Sentence Transformer
73
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
74
+ - **Maximum Sequence Length:** 512 tokens
75
+ - **Output Dimensionality:** 384 tokens
76
+ - **Similarity Function:** Cosine Similarity
77
+ <!-- - **Training Dataset:** Unknown -->
78
+ - **Language:** en
79
+ - **License:** apache-2.0
80
+
81
+ ### Model Sources
82
+
83
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
84
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
85
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
86
+
87
+ ### Full Model Architecture
88
+
89
+ ```
90
+ SentenceTransformer(
91
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
92
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
93
+ (2): Normalize()
94
+ )
95
+ ```
96
+
97
+ ## Usage
98
+
99
+ ### Direct Usage (Sentence Transformers)
100
+
101
+ First install the Sentence Transformers library:
102
+
103
+ ```bash
104
+ pip install -U sentence-transformers
105
+ ```
106
+
107
+ Then you can load this model and run inference.
108
+ ```python
109
+ from sentence_transformers import SentenceTransformer
110
+
111
+ # Download from the 🤗 Hub
112
+ model = SentenceTransformer("juanpablomesa/bge-small-bioasq-batch64")
113
+ # Run inference
114
+ sentences = [
115
+ 'Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance.',
116
+ 'What are the effects of the deletion of all three Pcdh clusters (tricluster deletion) in mice?',
117
+ 'How many periods of regulatory innovation led to the evolution of vertebrates?',
118
+ ]
119
+ embeddings = model.encode(sentences)
120
+ print(embeddings.shape)
121
+ # [3, 384]
122
+
123
+ # Get the similarity scores for the embeddings
124
+ similarities = model.similarity(embeddings, embeddings)
125
+ print(similarities.shape)
126
+ # [3, 3]
127
+ ```
128
+
129
+ <!--
130
+ ### Direct Usage (Transformers)
131
+
132
+ <details><summary>Click to see the direct usage in Transformers</summary>
133
+
134
+ </details>
135
+ -->
136
+
137
+ <!--
138
+ ### Downstream Usage (Sentence Transformers)
139
+
140
+ You can finetune this model on your own dataset.
141
+
142
+ <details><summary>Click to expand</summary>
143
+
144
+ </details>
145
+ -->
146
+
147
+ <!--
148
+ ### Out-of-Scope Use
149
+
150
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
151
+ -->
152
+
153
+ <!--
154
+ ## Bias, Risks and Limitations
155
+
156
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
157
+ -->
158
+
159
+ <!--
160
+ ### Recommendations
161
+
162
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
163
+ -->
164
+
165
+ ## Training Details
166
+
167
+ ### Training Dataset
168
+
169
+ #### Unnamed Dataset
170
+
171
+
172
+ * Size: 4,012 training samples
173
+ * Columns: <code>positive</code> and <code>anchor</code>
174
+ * Approximate statistics based on the first 1000 samples:
175
+ | | positive | anchor |
176
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
177
+ | type | string | string |
178
+ | details | <ul><li>min: 3 tokens</li><li>mean: 63.38 tokens</li><li>max: 485 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.13 tokens</li><li>max: 49 tokens</li></ul> |
179
+ * Samples:
180
+ | positive | anchor |
181
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
182
+ | <code>Aberrant patterns of H3K4, H3K9, and H3K27 histone lysine methylation were shown to result in histone code alterations, which induce changes in gene expression, and affect the proliferation rate of cells in medulloblastoma.</code> | <code>What is the implication of histone lysine methylation in medulloblastoma?</code> |
183
+ | <code>STAG1/STAG2 proteins are tumour suppressor proteins that suppress cell proliferation and are essential for differentiation.</code> | <code>What is the role of STAG1/STAG2 proteins in differentiation?</code> |
184
+ | <code>The association between cell phone use and incident glioblastoma remains unclear. Some studies have reported that cell phone use was associated with incident glioblastoma, and with reduced survival of patients diagnosed with glioblastoma. However, other studies have repeatedly replicated to find an association between cell phone use and glioblastoma.</code> | <code>What is the association between cell phone use and glioblastoma?</code> |
185
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
186
+ ```json
187
+ {
188
+ "scale": 20.0,
189
+ "similarity_fct": "cos_sim"
190
+ }
191
+ ```
192
+
193
+ ### Training Hyperparameters
194
+ #### Non-Default Hyperparameters
195
+
196
+ - `per_device_train_batch_size`: 64
197
+ - `per_device_eval_batch_size`: 64
198
+ - `learning_rate`: 2e-05
199
+ - `num_train_epochs`: 1
200
+ - `warmup_ratio`: 0.1
201
+ - `fp16`: True
202
+ - `batch_sampler`: no_duplicates
203
+
204
+ #### All Hyperparameters
205
+ <details><summary>Click to expand</summary>
206
+
207
+ - `overwrite_output_dir`: False
208
+ - `do_predict`: False
209
+ - `eval_strategy`: no
210
+ - `prediction_loss_only`: True
211
+ - `per_device_train_batch_size`: 64
212
+ - `per_device_eval_batch_size`: 64
213
+ - `per_gpu_train_batch_size`: None
214
+ - `per_gpu_eval_batch_size`: None
215
+ - `gradient_accumulation_steps`: 1
216
+ - `eval_accumulation_steps`: None
217
+ - `learning_rate`: 2e-05
218
+ - `weight_decay`: 0.0
219
+ - `adam_beta1`: 0.9
220
+ - `adam_beta2`: 0.999
221
+ - `adam_epsilon`: 1e-08
222
+ - `max_grad_norm`: 1.0
223
+ - `num_train_epochs`: 1
224
+ - `max_steps`: -1
225
+ - `lr_scheduler_type`: linear
226
+ - `lr_scheduler_kwargs`: {}
227
+ - `warmup_ratio`: 0.1
228
+ - `warmup_steps`: 0
229
+ - `log_level`: passive
230
+ - `log_level_replica`: warning
231
+ - `log_on_each_node`: True
232
+ - `logging_nan_inf_filter`: True
233
+ - `save_safetensors`: True
234
+ - `save_on_each_node`: False
235
+ - `save_only_model`: False
236
+ - `restore_callback_states_from_checkpoint`: False
237
+ - `no_cuda`: False
238
+ - `use_cpu`: False
239
+ - `use_mps_device`: False
240
+ - `seed`: 42
241
+ - `data_seed`: None
242
+ - `jit_mode_eval`: False
243
+ - `use_ipex`: False
244
+ - `bf16`: False
245
+ - `fp16`: True
246
+ - `fp16_opt_level`: O1
247
+ - `half_precision_backend`: auto
248
+ - `bf16_full_eval`: False
249
+ - `fp16_full_eval`: False
250
+ - `tf32`: None
251
+ - `local_rank`: 0
252
+ - `ddp_backend`: None
253
+ - `tpu_num_cores`: None
254
+ - `tpu_metrics_debug`: False
255
+ - `debug`: []
256
+ - `dataloader_drop_last`: False
257
+ - `dataloader_num_workers`: 0
258
+ - `dataloader_prefetch_factor`: None
259
+ - `past_index`: -1
260
+ - `disable_tqdm`: False
261
+ - `remove_unused_columns`: True
262
+ - `label_names`: None
263
+ - `load_best_model_at_end`: False
264
+ - `ignore_data_skip`: False
265
+ - `fsdp`: []
266
+ - `fsdp_min_num_params`: 0
267
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
268
+ - `fsdp_transformer_layer_cls_to_wrap`: None
269
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
270
+ - `deepspeed`: None
271
+ - `label_smoothing_factor`: 0.0
272
+ - `optim`: adamw_torch
273
+ - `optim_args`: None
274
+ - `adafactor`: False
275
+ - `group_by_length`: False
276
+ - `length_column_name`: length
277
+ - `ddp_find_unused_parameters`: None
278
+ - `ddp_bucket_cap_mb`: None
279
+ - `ddp_broadcast_buffers`: False
280
+ - `dataloader_pin_memory`: True
281
+ - `dataloader_persistent_workers`: False
282
+ - `skip_memory_metrics`: True
283
+ - `use_legacy_prediction_loop`: False
284
+ - `push_to_hub`: False
285
+ - `resume_from_checkpoint`: None
286
+ - `hub_model_id`: None
287
+ - `hub_strategy`: every_save
288
+ - `hub_private_repo`: False
289
+ - `hub_always_push`: False
290
+ - `gradient_checkpointing`: False
291
+ - `gradient_checkpointing_kwargs`: None
292
+ - `include_inputs_for_metrics`: False
293
+ - `eval_do_concat_batches`: True
294
+ - `fp16_backend`: auto
295
+ - `push_to_hub_model_id`: None
296
+ - `push_to_hub_organization`: None
297
+ - `mp_parameters`:
298
+ - `auto_find_batch_size`: False
299
+ - `full_determinism`: False
300
+ - `torchdynamo`: None
301
+ - `ray_scope`: last
302
+ - `ddp_timeout`: 1800
303
+ - `torch_compile`: False
304
+ - `torch_compile_backend`: None
305
+ - `torch_compile_mode`: None
306
+ - `dispatch_batches`: None
307
+ - `split_batches`: None
308
+ - `include_tokens_per_second`: False
309
+ - `include_num_input_tokens_seen`: False
310
+ - `neftune_noise_alpha`: None
311
+ - `optim_target_modules`: None
312
+ - `batch_eval_metrics`: False
313
+ - `batch_sampler`: no_duplicates
314
+ - `multi_dataset_batch_sampler`: proportional
315
+
316
+ </details>
317
+
318
+ ### Framework Versions
319
+ - Python: 3.11.5
320
+ - Sentence Transformers: 3.0.1
321
+ - Transformers: 4.41.2
322
+ - PyTorch: 2.1.2+cu121
323
+ - Accelerate: 0.31.0
324
+ - Datasets: 2.19.1
325
+ - Tokenizers: 0.19.1
326
+
327
+ ## Citation
328
+
329
+ ### BibTeX
330
+
331
+ #### Sentence Transformers
332
+ ```bibtex
333
+ @inproceedings{reimers-2019-sentence-bert,
334
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
335
+ author = "Reimers, Nils and Gurevych, Iryna",
336
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
337
+ month = "11",
338
+ year = "2019",
339
+ publisher = "Association for Computational Linguistics",
340
+ url = "https://arxiv.org/abs/1908.10084",
341
+ }
342
+ ```
343
+
344
+ #### MultipleNegativesRankingLoss
345
+ ```bibtex
346
+ @misc{henderson2017efficient,
347
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
348
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
349
+ year={2017},
350
+ eprint={1705.00652},
351
+ archivePrefix={arXiv},
352
+ primaryClass={cs.CL}
353
+ }
354
+ ```
355
+
356
+ <!--
357
+ ## Glossary
358
+
359
+ *Clearly define terms in order to be accessible across audiences.*
360
+ -->
361
+
362
+ <!--
363
+ ## Model Card Authors
364
+
365
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
366
+ -->
367
+
368
+ <!--
369
+ ## Model Card Contact
370
+
371
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
372
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.41.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6825822ebffadbf9fef3e6b7e9b0c62e71a13e345c5c33c90cd6728e9969063
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff