juanfkurucz commited on
Commit
fbfd603
1 Parent(s): 791151d

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1695.53 +/- 123.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1932ee2109f0da02cfe30469247f46421cdb9adec354e4c6eb50f2af3b43e071
3
+ size 129248
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9764932c20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9764932cb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9764932d40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9764932dd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9764932e60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9764932ef0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9764932f80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9764933010>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f97649330a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9764933130>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f97649331c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9764933250>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f9764944580>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1684717189815024062,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKsMuT9c0Rs+25ASP9VaH79YwKy+tSZrP6eM6L++aA6//LVyv2l1qT/J4Tc/ujMpPsn1fL+NMB0/yrVLP2hIFr6Uqz6/SEe7Pw9AD8DD7GQ+xxjzPqzTbT9IfIC/PSnsPcfNUj9zFs0+i5bwPnrNkL/ebre8hGWzP9nwJb7zM0m+fEUVvyiweT8xlUQ+cyfhv8ZWfj+PDDI/6WORP80y8r0+YTC/+/xyv9JKMT/FgA2/tr8ZP0047b487lU/raUEPVwXar/nUmQ8CcR8v9sjp7zHzVI/cxbNPouW8D56zZC/Jd7uPqngez8Xqn4+8CKGP1VDgD5lD82/F+dpvrC7Or7Lh82+zmb2v6nChr/p9E4/EJ6uv0uekr5Ze4S9lyUrwPlJmz9vtuW+/Vq7vsT57T9mDmG/l+0TP5ynKD/9GJE/b3Gbv3MWzT4ZMwjAes2Qv65Ec74HxlM/iNO0PgXBcj/+twM/fra+v+6sUz5iwzC/KnGOvzoeAT42Mno/yvuwP6V7R79e97W/uteBPnm2zj6kGxI//0KTv6+XED/vWqk+JpBqv9W3Gzxwnf2+uJhQv29xm79zFs0+i5bwPnrNkL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACyF+U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2EYIvgAAAACctfi/AAAAAFLAxT0AAAAAnMMAQAAAAADx9ps9AAAAAA8sAUAAAAAA+32RPAAAAACzqQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWcFFNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB8NET0AAAAA/ArZvwAAAAC11Bi9AAAAAByQ/D8AAAAAiX7DPQAAAADJZek/AAAAAJ9d4L0AAAAAHYDZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3is7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICEjvw9AAAAABMM9b8AAAAAMmdYvQAAAABN9O4/AAAAAHqiiD0AAAAAzFDrPwAAAABBevU9AAAAAA0f3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaZx83AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAb13IvQAAAABa/e+/AAAAABk3rz0AAAAAcX3iPwAAAACzO+c9AAAAAL3/AEAAAAAAJJ3xvQAAAAC8pfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJaarX2/SICMAWyUTegDjAF0lEdArhncLH+6y3V9lChoBkdAj/G8feUILWgHTegDaAhHQK4lYEpRXOp1fZQoaAZHQJBWLWRRuTBoB03oA2gIR0CuKD43WFvidX2UKGgGR0CFJvRjz7MxaAdN6ANoCEdAriivLidauHV9lChoBkdAhYYgmAskIGgHTegDaAhHQK4pkwTM7lt1fZQoaAZHQIolkRjBl+VoB03oA2gIR0CuMwTTWoWIdX2UKGgGR0CQ/ej0L+glaAdN6ANoCEdArjTHYDklu3V9lChoBkdAibe+z2OAAmgHTegDaAhHQK41D9DQZ4x1fZQoaAZHQIS3Wsq8UVVoB03oA2gIR0CuNaHscABDdX2UKGgGR0CDGL4593KTaAdN6ANoCEdArkAY3Jgb63V9lChoBkdAhF14vexfOWgHTegDaAhHQK5C7uVopQV1fZQoaAZHQIUvwQ4CIUJoB03oA2gIR0CuQ2n3+MqCdX2UKGgGR0CEPitr9EThaAdN6ANoCEdArkRTCvX9SHV9lChoBkdAggH18Ti84GgHTegDaAhHQK5P0CkGiYd1fZQoaAZHQISK2sgdOqNoB03oA2gIR0CuUbhHkLhKdX2UKGgGR0CD+l5eqrBCaAdN6ANoCEdArlICWmgrY3V9lChoBkdAiKRg1m8M/mgHTegDaAhHQK5SlrOZ9eB1fZQoaAZHQI8agRIz3ytoB03oA2gIR0CuXBSBbwBpdX2UKGgGR0CJHIZZSvTxaAdN6ANoCEdArl6Vo6CDmXV9lChoBkdAiE4AlWwNb2gHTegDaAhHQK5fBvF3pwF1fZQoaAZHQI760J4SpR5oB03oA2gIR0CuX+FIuoP1dX2UKGgGR0CHhUjTrmheaAdN6ANoCEdArmwlHvttynV9lChoBkdAjSTXaSLZSWgHTegDaAhHQK5t9drwe/51fZQoaAZHQIkN7MxGlRBoB03oA2gIR0CubkIuf29MdX2UKGgGR0CG19LVWjoIaAdN6ANoCEdArm7WzlcQiHV9lChoBkdAlFZDhcZ9/mgHTegDaAhHQK54dP+n62x1fZQoaAZHQI6uaq0dBB1oB03oA2gIR0CuekTFMqSYdX2UKGgGR0CKTF9ORDCxaAdN6ANoCEdArnqOUB4lhXV9lChoBkdAilGRYJVsDWgHTegDaAhHQK57JOQhfSh1fZQoaAZHQH+M6yrxRVJoB03oA2gIR0CuiLeiSJTEdX2UKGgGR0CCyt9QXQ+maAdN6ANoCEdAroqHt4RmLHV9lChoBkdAjm2W/i5uqGgHTegDaAhHQK6K0Q+UyHp1fZQoaAZHQJEMdZaFEiNoB03oA2gIR0Cui2ZsTFl1dX2UKGgGR0CRKKslLOAzaAdN6ANoCEdArpTstf5ULnV9lChoBkdAiRKa86FM7GgHTegDaAhHQK6WtmNipeh1fZQoaAZHQI5mGZJCjUNoB03oA2gIR0Culv+PaL4vdX2UKGgGR0CRTSeOXE61aAdN6ANoCEdArpeYvtdAxHV9lChoBkdAhnfG3F1jiGgHTegDaAhHQK6kbd+G47R1fZQoaAZHQJV4gbPyCnRoB03oA2gIR0CupoVnM+vAdX2UKGgGR0CHQ9R/mT1TaAdN6ANoCEdArqbPjjrAxnV9lChoBkdAmTIjYh+vyWgHTegDaAhHQK6nagbIcR11fZQoaAZHQIsoOz8gpz9oB03oA2gIR0CusN/VqesgdX2UKGgGR0CWTWoysS00aAdN6ANoCEdArrKiuKXOW3V9lChoBkdAmcZT0+TvA2gHTegDaAhHQK6y6F9roGJ1fZQoaAZHQJhazQ9ic5NoB03oA2gIR0Cus3uymhugdX2UKGgGR0CXlDzVMEidaAdN6ANoCEdArr6l+mWMTHV9lChoBkdAm0o6LsKLKmgHTegDaAhHQK7BZbItDlZ1fZQoaAZHQJHaIfhddE9oB03oA2gIR0CuwdmwiaAndX2UKGgGR0CbJXK0UoKEaAdN6ANoCEdArsLATh5xBHV9lChoBkdAlbd73bmEG2gHTegDaAhHQK7M28M/hVF1fZQoaAZHQJfBcNMGorFoB03oA2gIR0CuzrA5imVJdX2UKGgGR0CXJdgGKQ7taAdN6ANoCEdArs76bUgB93V9lChoBkdAlaq+HN5dGGgHTegDaAhHQK7PlPEbYK91fZQoaAZHQJWisTakAPxoB03oA2gIR0Cu2bWnTAnEdX2UKGgGR0CUuu29cry2aAdN6ANoCEdArtxPQfIS13V9lChoBkdAliKXIp6QeWgHTegDaAhHQK7cw98JD3N1fZQoaAZHQJQVQ/keZG9oB03oA2gIR0Cu3a5Q53kgdX2UKGgGR0CbOd5dGAkLaAdN6ANoCEdArujyGahHsnV9lChoBkdAlYzj/ACW/2gHTegDaAhHQK7qr8yeqaR1fZQoaAZHQJWYzI4lyBFoB03oA2gIR0Cu6vmMwUQDdX2UKGgGR0CS1BpF1B+naAdN6ANoCEdAruuMahpQDXV9lChoBkdAlBg8JMQEp2gHTegDaAhHQK709tSAH3V1fZQoaAZHQJbcvHeaa1FoB03oA2gIR0Cu9sNQbdaddX2UKGgGR0CaCDSQHRkVaAdN6ANoCEdArvcxgZ0jknV9lChoBkdAmRlb0nPVu2gHTegDaAhHQK74D80DU3J1fZQoaAZHQJkD8qlP8AJoB03oA2gIR0CvBNxceKbbdX2UKGgGR0CZkATqB3A3aAdN6ANoCEdArwaceXAuZnV9lChoBkdAlTU3AM2FWWgHTegDaAhHQK8G5NGmUGF1fZQoaAZHQJgxi1c+qzZoB03oA2gIR0CvB3xfWtlqdX2UKGgGR0CYaLTfR/mUaAdN6ANoCEdArxDVgx8D0XV9lChoBkdAl692tU4rBmgHTegDaAhHQK8SlEpiI+J1fZQoaAZHQJsJtaePJaJoB03oA2gIR0CvEtof0VafdX2UKGgGR0CZ5OHbAUL2aAdN6ANoCEdArxNuNedCmnV9lChoBkdAmS1lvMr3CmgHTegDaAhHQK8gXLh73PB1fZQoaAZHQJfYALjPv8ZoB03oA2gIR0CvIiipm29ddX2UKGgGR0CY8cUKiO/+aAdN6ANoCEdAryJ4IMSbpnV9lChoBkdAlyG3ARChOGgHTegDaAhHQK8jDiMo+fR1fZQoaAZHQJfxsasIVudoB03oA2gIR0CvLHufEn9fdX2UKGgGR0CZ17mmtQsPaAdN6ANoCEdAry42GM4tH3V9lChoBkdAlkeDM3ZPEmgHTegDaAhHQK8ugMwUQCl1fZQoaAZHQJ+UCp71Iy1oB03oA2gIR0CvLxMTWXkYdX2UKGgGR0CYP/3vhIe6aAdN6ANoCEdArzpWafBeonV9lChoBkdAl82eN1hb4mgHTegDaAhHQK89GmBOHnF1fZQoaAZHQJZ7NbhWHUNoB03oA2gIR0CvPZcQRPGidX2UKGgGR0CZ4cNmlImPaAdN6ANoCEdArz6KEal1sHV9lChoBkdAiyytnXd0rGgHTegDaAhHQK9IS/HHWBl1fZQoaAZHQJp794Oc2BJoB03oA2gIR0CvSghRyfcvdX2UKGgGR0Ccva0YTCcgaAdN6ANoCEdAr0pOHLzPKXV9lChoBkdAlx/olMRHw2gHTegDaAhHQK9K3lcQiA51fZQoaAZHQJtHQDr7fpFoB03oA2gIR0CvVJQ6ZH/cdX2UKGgGR0CefPbCrLhaaAdN6ANoCEdAr1cIHgP3BnV9lChoBkdAnQvTPfKp1mgHTegDaAhHQK9XeDA8B+51fZQoaAZHQJswf7EYO2BoB03oA2gIR0CvWF0c4o7WdX2UKGgGR0CJEy4Qz1sdaAdNdQJoCEdAr2FpnanJk3V9lChoBkdAk0iOu7pV0mgHTegDaAhHQK9jzv3rUsp1fZQoaAZHQJPWW8AaNuNoB03oA2gIR0CvZYVzQu27dX2UKGgGR0CVCCO5rgwXaAdN6ANoCEdAr2ZjzND+i3V9lChoBkdAlQMUvCdjG2gHTegDaAhHQK9tbiqABkt1fZQoaAZHQJcv+jKxLTRoB03oA2gIR0Cvb/9/SYw7dX2UKGgGR0CZWvgTyrggaAdN6ANoCEdAr3HFOXVslHVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82789b0104a3dcc997cc1ffcc78c44c03a242f98b8233b0edaf2768e88951df5
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e5864be91824a40ce1cab8356dc9c378fb9776377eb01fd83b547529d23b122
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9764932c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9764932cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9764932d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9764932dd0>", "_build": "<function ActorCriticPolicy._build at 0x7f9764932e60>", "forward": "<function ActorCriticPolicy.forward at 0x7f9764932ef0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9764932f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9764933010>", "_predict": "<function ActorCriticPolicy._predict at 0x7f97649330a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9764933130>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f97649331c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9764933250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9764944580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684717189815024062, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKsMuT9c0Rs+25ASP9VaH79YwKy+tSZrP6eM6L++aA6//LVyv2l1qT/J4Tc/ujMpPsn1fL+NMB0/yrVLP2hIFr6Uqz6/SEe7Pw9AD8DD7GQ+xxjzPqzTbT9IfIC/PSnsPcfNUj9zFs0+i5bwPnrNkL/ebre8hGWzP9nwJb7zM0m+fEUVvyiweT8xlUQ+cyfhv8ZWfj+PDDI/6WORP80y8r0+YTC/+/xyv9JKMT/FgA2/tr8ZP0047b487lU/raUEPVwXar/nUmQ8CcR8v9sjp7zHzVI/cxbNPouW8D56zZC/Jd7uPqngez8Xqn4+8CKGP1VDgD5lD82/F+dpvrC7Or7Lh82+zmb2v6nChr/p9E4/EJ6uv0uekr5Ze4S9lyUrwPlJmz9vtuW+/Vq7vsT57T9mDmG/l+0TP5ynKD/9GJE/b3Gbv3MWzT4ZMwjAes2Qv65Ec74HxlM/iNO0PgXBcj/+twM/fra+v+6sUz5iwzC/KnGOvzoeAT42Mno/yvuwP6V7R79e97W/uteBPnm2zj6kGxI//0KTv6+XED/vWqk+JpBqv9W3Gzxwnf2+uJhQv29xm79zFs0+i5bwPnrNkL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACyF+U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2EYIvgAAAACctfi/AAAAAFLAxT0AAAAAnMMAQAAAAADx9ps9AAAAAA8sAUAAAAAA+32RPAAAAACzqQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWcFFNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB8NET0AAAAA/ArZvwAAAAC11Bi9AAAAAByQ/D8AAAAAiX7DPQAAAADJZek/AAAAAJ9d4L0AAAAAHYDZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3is7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICEjvw9AAAAABMM9b8AAAAAMmdYvQAAAABN9O4/AAAAAHqiiD0AAAAAzFDrPwAAAABBevU9AAAAAA0f3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaZx83AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAb13IvQAAAABa/e+/AAAAABk3rz0AAAAAcX3iPwAAAACzO+c9AAAAAL3/AEAAAAAAJJ3xvQAAAAC8pfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJaarX2/SICMAWyUTegDjAF0lEdArhncLH+6y3V9lChoBkdAj/G8feUILWgHTegDaAhHQK4lYEpRXOp1fZQoaAZHQJBWLWRRuTBoB03oA2gIR0CuKD43WFvidX2UKGgGR0CFJvRjz7MxaAdN6ANoCEdAriivLidauHV9lChoBkdAhYYgmAskIGgHTegDaAhHQK4pkwTM7lt1fZQoaAZHQIolkRjBl+VoB03oA2gIR0CuMwTTWoWIdX2UKGgGR0CQ/ej0L+glaAdN6ANoCEdArjTHYDklu3V9lChoBkdAibe+z2OAAmgHTegDaAhHQK41D9DQZ4x1fZQoaAZHQIS3Wsq8UVVoB03oA2gIR0CuNaHscABDdX2UKGgGR0CDGL4593KTaAdN6ANoCEdArkAY3Jgb63V9lChoBkdAhF14vexfOWgHTegDaAhHQK5C7uVopQV1fZQoaAZHQIUvwQ4CIUJoB03oA2gIR0CuQ2n3+MqCdX2UKGgGR0CEPitr9EThaAdN6ANoCEdArkRTCvX9SHV9lChoBkdAggH18Ti84GgHTegDaAhHQK5P0CkGiYd1fZQoaAZHQISK2sgdOqNoB03oA2gIR0CuUbhHkLhKdX2UKGgGR0CD+l5eqrBCaAdN6ANoCEdArlICWmgrY3V9lChoBkdAiKRg1m8M/mgHTegDaAhHQK5SlrOZ9eB1fZQoaAZHQI8agRIz3ytoB03oA2gIR0CuXBSBbwBpdX2UKGgGR0CJHIZZSvTxaAdN6ANoCEdArl6Vo6CDmXV9lChoBkdAiE4AlWwNb2gHTegDaAhHQK5fBvF3pwF1fZQoaAZHQI760J4SpR5oB03oA2gIR0CuX+FIuoP1dX2UKGgGR0CHhUjTrmheaAdN6ANoCEdArmwlHvttynV9lChoBkdAjSTXaSLZSWgHTegDaAhHQK5t9drwe/51fZQoaAZHQIkN7MxGlRBoB03oA2gIR0CubkIuf29MdX2UKGgGR0CG19LVWjoIaAdN6ANoCEdArm7WzlcQiHV9lChoBkdAlFZDhcZ9/mgHTegDaAhHQK54dP+n62x1fZQoaAZHQI6uaq0dBB1oB03oA2gIR0CuekTFMqSYdX2UKGgGR0CKTF9ORDCxaAdN6ANoCEdArnqOUB4lhXV9lChoBkdAilGRYJVsDWgHTegDaAhHQK57JOQhfSh1fZQoaAZHQH+M6yrxRVJoB03oA2gIR0CuiLeiSJTEdX2UKGgGR0CCyt9QXQ+maAdN6ANoCEdAroqHt4RmLHV9lChoBkdAjm2W/i5uqGgHTegDaAhHQK6K0Q+UyHp1fZQoaAZHQJEMdZaFEiNoB03oA2gIR0Cui2ZsTFl1dX2UKGgGR0CRKKslLOAzaAdN6ANoCEdArpTstf5ULnV9lChoBkdAiRKa86FM7GgHTegDaAhHQK6WtmNipeh1fZQoaAZHQI5mGZJCjUNoB03oA2gIR0Culv+PaL4vdX2UKGgGR0CRTSeOXE61aAdN6ANoCEdArpeYvtdAxHV9lChoBkdAhnfG3F1jiGgHTegDaAhHQK6kbd+G47R1fZQoaAZHQJV4gbPyCnRoB03oA2gIR0CupoVnM+vAdX2UKGgGR0CHQ9R/mT1TaAdN6ANoCEdArqbPjjrAxnV9lChoBkdAmTIjYh+vyWgHTegDaAhHQK6nagbIcR11fZQoaAZHQIsoOz8gpz9oB03oA2gIR0CusN/VqesgdX2UKGgGR0CWTWoysS00aAdN6ANoCEdArrKiuKXOW3V9lChoBkdAmcZT0+TvA2gHTegDaAhHQK6y6F9roGJ1fZQoaAZHQJhazQ9ic5NoB03oA2gIR0Cus3uymhugdX2UKGgGR0CXlDzVMEidaAdN6ANoCEdArr6l+mWMTHV9lChoBkdAm0o6LsKLKmgHTegDaAhHQK7BZbItDlZ1fZQoaAZHQJHaIfhddE9oB03oA2gIR0CuwdmwiaAndX2UKGgGR0CbJXK0UoKEaAdN6ANoCEdArsLATh5xBHV9lChoBkdAlbd73bmEG2gHTegDaAhHQK7M28M/hVF1fZQoaAZHQJfBcNMGorFoB03oA2gIR0CuzrA5imVJdX2UKGgGR0CXJdgGKQ7taAdN6ANoCEdArs76bUgB93V9lChoBkdAlaq+HN5dGGgHTegDaAhHQK7PlPEbYK91fZQoaAZHQJWisTakAPxoB03oA2gIR0Cu2bWnTAnEdX2UKGgGR0CUuu29cry2aAdN6ANoCEdArtxPQfIS13V9lChoBkdAliKXIp6QeWgHTegDaAhHQK7cw98JD3N1fZQoaAZHQJQVQ/keZG9oB03oA2gIR0Cu3a5Q53kgdX2UKGgGR0CbOd5dGAkLaAdN6ANoCEdArujyGahHsnV9lChoBkdAlYzj/ACW/2gHTegDaAhHQK7qr8yeqaR1fZQoaAZHQJWYzI4lyBFoB03oA2gIR0Cu6vmMwUQDdX2UKGgGR0CS1BpF1B+naAdN6ANoCEdAruuMahpQDXV9lChoBkdAlBg8JMQEp2gHTegDaAhHQK709tSAH3V1fZQoaAZHQJbcvHeaa1FoB03oA2gIR0Cu9sNQbdaddX2UKGgGR0CaCDSQHRkVaAdN6ANoCEdArvcxgZ0jknV9lChoBkdAmRlb0nPVu2gHTegDaAhHQK74D80DU3J1fZQoaAZHQJkD8qlP8AJoB03oA2gIR0CvBNxceKbbdX2UKGgGR0CZkATqB3A3aAdN6ANoCEdArwaceXAuZnV9lChoBkdAlTU3AM2FWWgHTegDaAhHQK8G5NGmUGF1fZQoaAZHQJgxi1c+qzZoB03oA2gIR0CvB3xfWtlqdX2UKGgGR0CYaLTfR/mUaAdN6ANoCEdArxDVgx8D0XV9lChoBkdAl692tU4rBmgHTegDaAhHQK8SlEpiI+J1fZQoaAZHQJsJtaePJaJoB03oA2gIR0CvEtof0VafdX2UKGgGR0CZ5OHbAUL2aAdN6ANoCEdArxNuNedCmnV9lChoBkdAmS1lvMr3CmgHTegDaAhHQK8gXLh73PB1fZQoaAZHQJfYALjPv8ZoB03oA2gIR0CvIiipm29ddX2UKGgGR0CY8cUKiO/+aAdN6ANoCEdAryJ4IMSbpnV9lChoBkdAlyG3ARChOGgHTegDaAhHQK8jDiMo+fR1fZQoaAZHQJfxsasIVudoB03oA2gIR0CvLHufEn9fdX2UKGgGR0CZ17mmtQsPaAdN6ANoCEdAry42GM4tH3V9lChoBkdAlkeDM3ZPEmgHTegDaAhHQK8ugMwUQCl1fZQoaAZHQJ+UCp71Iy1oB03oA2gIR0CvLxMTWXkYdX2UKGgGR0CYP/3vhIe6aAdN6ANoCEdArzpWafBeonV9lChoBkdAl82eN1hb4mgHTegDaAhHQK89GmBOHnF1fZQoaAZHQJZ7NbhWHUNoB03oA2gIR0CvPZcQRPGidX2UKGgGR0CZ4cNmlImPaAdN6ANoCEdArz6KEal1sHV9lChoBkdAiyytnXd0rGgHTegDaAhHQK9IS/HHWBl1fZQoaAZHQJp794Oc2BJoB03oA2gIR0CvSghRyfcvdX2UKGgGR0Ccva0YTCcgaAdN6ANoCEdAr0pOHLzPKXV9lChoBkdAlx/olMRHw2gHTegDaAhHQK9K3lcQiA51fZQoaAZHQJtHQDr7fpFoB03oA2gIR0CvVJQ6ZH/cdX2UKGgGR0CefPbCrLhaaAdN6ANoCEdAr1cIHgP3BnV9lChoBkdAnQvTPfKp1mgHTegDaAhHQK9XeDA8B+51fZQoaAZHQJswf7EYO2BoB03oA2gIR0CvWF0c4o7WdX2UKGgGR0CJEy4Qz1sdaAdNdQJoCEdAr2FpnanJk3V9lChoBkdAk0iOu7pV0mgHTegDaAhHQK9jzv3rUsp1fZQoaAZHQJPWW8AaNuNoB03oA2gIR0CvZYVzQu27dX2UKGgGR0CVCCO5rgwXaAdN6ANoCEdAr2ZjzND+i3V9lChoBkdAlQMUvCdjG2gHTegDaAhHQK9tbiqABkt1fZQoaAZHQJcv+jKxLTRoB03oA2gIR0Cvb/9/SYw7dX2UKGgGR0CZWvgTyrggaAdN6ANoCEdAr3HFOXVslHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (943 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1695.5273864851813, "std_reward": 123.4663332681221, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-22T02:01:28.293793"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b17fcf5591cfa9dc26ec250da14f415cff4683dbb7153b324955b8c66e28a658
3
+ size 2176