update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- winograd_wsc
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
model-index:
|
10 |
+
- name: flan-t5-small-coref
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Sequence-to-sequence Language Modeling
|
14 |
+
type: text2text-generation
|
15 |
+
dataset:
|
16 |
+
name: winograd_wsc
|
17 |
+
type: winograd_wsc
|
18 |
+
config: wsc285
|
19 |
+
split: test
|
20 |
+
args: wsc285
|
21 |
+
metrics:
|
22 |
+
- name: Rouge1
|
23 |
+
type: rouge
|
24 |
+
value: 0.906
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# flan-t5-small-coref
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the winograd_wsc dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.5656
|
35 |
+
- Rouge1: 0.906
|
36 |
+
- Rouge2: 0.8192
|
37 |
+
- Rougel: 0.9016
|
38 |
+
- Rougelsum: 0.9026
|
39 |
+
- Gen Len: 23.1724
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 2e-05
|
59 |
+
- train_batch_size: 16
|
60 |
+
- eval_batch_size: 16
|
61 |
+
- seed: 42
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 20
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
|
70 |
+
| No log | 1.0 | 16 | 1.0901 | 0.6849 | 0.561 | 0.6734 | 0.6746 | 18.4483 |
|
71 |
+
| No log | 2.0 | 32 | 0.9083 | 0.8512 | 0.7509 | 0.8438 | 0.8437 | 21.1379 |
|
72 |
+
| No log | 3.0 | 48 | 0.8132 | 0.8638 | 0.7728 | 0.8588 | 0.8595 | 21.8276 |
|
73 |
+
| No log | 4.0 | 64 | 0.7590 | 0.8786 | 0.7842 | 0.8744 | 0.876 | 22.2069 |
|
74 |
+
| No log | 5.0 | 80 | 0.7225 | 0.8846 | 0.7928 | 0.8805 | 0.8817 | 22.3793 |
|
75 |
+
| No log | 6.0 | 96 | 0.6920 | 0.886 | 0.7942 | 0.8821 | 0.8827 | 22.4483 |
|
76 |
+
| No log | 7.0 | 112 | 0.6660 | 0.8861 | 0.7922 | 0.8816 | 0.8827 | 22.5172 |
|
77 |
+
| No log | 8.0 | 128 | 0.6470 | 0.8879 | 0.7953 | 0.8836 | 0.8849 | 22.6897 |
|
78 |
+
| No log | 9.0 | 144 | 0.6318 | 0.8968 | 0.806 | 0.8923 | 0.8933 | 23.069 |
|
79 |
+
| No log | 10.0 | 160 | 0.6160 | 0.8968 | 0.806 | 0.8923 | 0.8933 | 23.069 |
|
80 |
+
| No log | 11.0 | 176 | 0.6055 | 0.9056 | 0.822 | 0.9014 | 0.9021 | 23.1724 |
|
81 |
+
| No log | 12.0 | 192 | 0.5962 | 0.9056 | 0.822 | 0.9014 | 0.9021 | 23.1724 |
|
82 |
+
| No log | 13.0 | 208 | 0.5884 | 0.9074 | 0.8246 | 0.9033 | 0.9042 | 23.2069 |
|
83 |
+
| No log | 14.0 | 224 | 0.5825 | 0.9049 | 0.8182 | 0.9005 | 0.9016 | 23.2414 |
|
84 |
+
| No log | 15.0 | 240 | 0.5769 | 0.9049 | 0.8182 | 0.9005 | 0.9016 | 23.2414 |
|
85 |
+
| No log | 16.0 | 256 | 0.5727 | 0.903 | 0.8132 | 0.8991 | 0.8997 | 23.1724 |
|
86 |
+
| No log | 17.0 | 272 | 0.5698 | 0.906 | 0.8192 | 0.9016 | 0.9026 | 23.1724 |
|
87 |
+
| No log | 18.0 | 288 | 0.5673 | 0.906 | 0.8192 | 0.9016 | 0.9026 | 23.1724 |
|
88 |
+
| No log | 19.0 | 304 | 0.5661 | 0.906 | 0.8192 | 0.9016 | 0.9026 | 23.1724 |
|
89 |
+
| No log | 20.0 | 320 | 0.5656 | 0.906 | 0.8192 | 0.9016 | 0.9026 | 23.1724 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.25.1
|
95 |
+
- Pytorch 1.13.0+cu116
|
96 |
+
- Datasets 2.7.1
|
97 |
+
- Tokenizers 0.13.2
|