update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
model-index:
|
7 |
+
- name: kaelte
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# kaelte
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [svalabs/gbert-large-zeroshot-nli](https://huggingface.co/svalabs/gbert-large-zeroshot-nli) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0022
|
19 |
+
- F1: 1.0
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 16
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 4
|
43 |
+
- total_train_batch_size: 64
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 10
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
52 |
+
| No log | 0.94 | 11 | 0.6783 | 0.7786 |
|
53 |
+
| No log | 1.94 | 22 | 0.1718 | 0.9272 |
|
54 |
+
| No log | 2.94 | 33 | 0.0769 | 0.9887 |
|
55 |
+
| No log | 3.94 | 44 | 0.0686 | 0.9887 |
|
56 |
+
| No log | 4.94 | 55 | 0.0227 | 0.9887 |
|
57 |
+
| No log | 5.94 | 66 | 0.0075 | 1.0 |
|
58 |
+
| No log | 6.94 | 77 | 0.0099 | 1.0 |
|
59 |
+
| No log | 7.94 | 88 | 0.0025 | 1.0 |
|
60 |
+
| No log | 8.94 | 99 | 0.0023 | 1.0 |
|
61 |
+
| No log | 9.94 | 110 | 0.0022 | 1.0 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.22.2
|
67 |
+
- Pytorch 1.12.1+cu113
|
68 |
+
- Datasets 2.5.1
|
69 |
+
- Tokenizers 0.12.1
|