Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,46 +1,42 @@
|
|
| 1 |
---
|
| 2 |
-
title: Autoencoder
|
| 3 |
emoji: 🧬
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk:
|
| 7 |
tags:
|
| 8 |
- transcriptomics
|
| 9 |
- dimensionality-reduction
|
| 10 |
- ae
|
| 11 |
-
- general
|
| 12 |
license: mit
|
| 13 |
---
|
| 14 |
|
| 15 |
-
# Autoencoder (
|
| 16 |
|
| 17 |
-
|
| 18 |
|
| 19 |
## Model Details
|
| 20 |
|
| 21 |
-
- **
|
| 22 |
-
- **
|
| 23 |
-
- **
|
| 24 |
-
- **
|
| 25 |
-
- **Framework**: PyTorch
|
| 26 |
|
| 27 |
## Usage
|
| 28 |
|
| 29 |
This model is designed to be used with the TRACERx Datathon 2025 analysis pipeline.
|
| 30 |
It will be automatically downloaded and cached when needed.
|
| 31 |
|
| 32 |
-
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
- Output: 2-dimensional latent representation
|
| 37 |
-
- Activation: ELU with batch normalization
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
|
| 43 |
## Files
|
| 44 |
|
| 45 |
-
- `
|
| 46 |
-
- `latent_df.csv`: Example latent representations (if available)
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Autoencoder (Transcriptome-centric, 2D)
|
| 3 |
emoji: 🧬
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: python
|
| 7 |
tags:
|
| 8 |
- transcriptomics
|
| 9 |
- dimensionality-reduction
|
| 10 |
- ae
|
|
|
|
| 11 |
license: mit
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# Autoencoder (Transcriptome-centric, 2D)
|
| 15 |
|
| 16 |
+
Pre-trained Autoencoder model for transcriptomics data compression, part of the TRACERx Datathon 2025 project.
|
| 17 |
|
| 18 |
## Model Details
|
| 19 |
|
| 20 |
+
- **Method**: Autoencoder
|
| 21 |
+
- **Compression Mode**: Transcriptome-centric
|
| 22 |
+
- **Output Dimensions**: 2
|
| 23 |
+
- **Training Data**: TRACERx open dataset (VST-normalized counts)
|
|
|
|
| 24 |
|
| 25 |
## Usage
|
| 26 |
|
| 27 |
This model is designed to be used with the TRACERx Datathon 2025 analysis pipeline.
|
| 28 |
It will be automatically downloaded and cached when needed.
|
| 29 |
|
| 30 |
+
```python
|
| 31 |
+
import joblib
|
| 32 |
|
| 33 |
+
# Load the model bundle
|
| 34 |
+
model_data = joblib.load("model.joblib")
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
# Access components based on model type
|
| 37 |
+
# See documentation for specific usage
|
| 38 |
+
```
|
| 39 |
|
| 40 |
## Files
|
| 41 |
|
| 42 |
+
- `model.joblib`: Model bundle containing fitted model and preprocessing parameters
|
|
|