jruffle commited on
Commit
79d4401
·
verified ·
1 Parent(s): d8be6c1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +18 -22
README.md CHANGED
@@ -1,46 +1,42 @@
1
  ---
2
- title: Autoencoder General Purpose 2D
3
  emoji: 🧬
4
- colorFrom: blue
5
- colorTo: green
6
- sdk: pytorch
7
  tags:
8
  - transcriptomics
9
  - dimensionality-reduction
10
  - ae
11
- - general
12
  license: mit
13
  ---
14
 
15
- # Autoencoder (General Purpose, 2D)
16
 
17
- This model is part of the TRACERx Datathon 2025 transcriptomics analysis pipeline.
18
 
19
  ## Model Details
20
 
21
- - **Model Type**: Autoencoder
22
- - **Dataset**: General Purpose
23
- - **Latent Dimensions**: 2
24
- - **Compression Mode**: samples
25
- - **Framework**: PyTorch
26
 
27
  ## Usage
28
 
29
  This model is designed to be used with the TRACERx Datathon 2025 analysis pipeline.
30
  It will be automatically downloaded and cached when needed.
31
 
32
- ## Model Architecture
 
33
 
34
- - Input: Gene expression data
35
- - Hidden layers: [input_size, 512, 256, 128, 2]
36
- - Output: 2-dimensional latent representation
37
- - Activation: ELU with batch normalization
38
 
39
- ## Training Data
40
-
41
- Trained on broader open transcriptomics datasets
42
 
43
  ## Files
44
 
45
- - `autoencoder_2_latent_dims_oos_mode.pt`: Main model weights
46
- - `latent_df.csv`: Example latent representations (if available)
 
1
  ---
2
+ title: Autoencoder (Transcriptome-centric, 2D)
3
  emoji: 🧬
4
+ colorFrom: purple
5
+ colorTo: blue
6
+ sdk: python
7
  tags:
8
  - transcriptomics
9
  - dimensionality-reduction
10
  - ae
 
11
  license: mit
12
  ---
13
 
14
+ # Autoencoder (Transcriptome-centric, 2D)
15
 
16
+ Pre-trained Autoencoder model for transcriptomics data compression, part of the TRACERx Datathon 2025 project.
17
 
18
  ## Model Details
19
 
20
+ - **Method**: Autoencoder
21
+ - **Compression Mode**: Transcriptome-centric
22
+ - **Output Dimensions**: 2
23
+ - **Training Data**: TRACERx open dataset (VST-normalized counts)
 
24
 
25
  ## Usage
26
 
27
  This model is designed to be used with the TRACERx Datathon 2025 analysis pipeline.
28
  It will be automatically downloaded and cached when needed.
29
 
30
+ ```python
31
+ import joblib
32
 
33
+ # Load the model bundle
34
+ model_data = joblib.load("model.joblib")
 
 
35
 
36
+ # Access components based on model type
37
+ # See documentation for specific usage
38
+ ```
39
 
40
  ## Files
41
 
42
+ - `model.joblib`: Model bundle containing fitted model and preprocessing parameters