Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +99 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 94.98 +/- 148.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5b803bed86367ba56dc99554a75310eb110457e5614fe6ba3dace577f0d7014
|
3 |
+
size 187994
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2472c68b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2472c68c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2472c68ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2472c68d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2472c68dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2472c68e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2472c68ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2472c68f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2472c00040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2472c000d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2472c00160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2472c001f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2472c03100>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
"log_std_init": -2,
|
25 |
+
"ortho_init": false
|
26 |
+
},
|
27 |
+
"num_timesteps": 2000000,
|
28 |
+
"_total_timesteps": 2000000,
|
29 |
+
"_num_timesteps_at_start": 0,
|
30 |
+
"seed": null,
|
31 |
+
"action_noise": null,
|
32 |
+
"start_time": 1682482881614226268,
|
33 |
+
"learning_rate": 3e-05,
|
34 |
+
"tensorboard_log": "logs/fit/20230426-042040",
|
35 |
+
"lr_schedule": {
|
36 |
+
":type:": "<class 'function'>",
|
37 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
38 |
+
},
|
39 |
+
"_last_obs": {
|
40 |
+
":type:": "<class 'numpy.ndarray'>",
|
41 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC/Uhr83v+Q/jJv5v1GU/7xB5ls9K+ukPWPrr70mh7U7NhmIv7pHmLsjIki/Fr8KvfcqQb9sMlS7eNwnP1uCjzzv8uK+zGh8ul9mKz88HZ88L3Zqv2ugBTo2LSG/cG3YvEVfHT9vkyE/BlMdP/aSOT/zXZo/qRPOv/OLDL9ELzI9z/ALwC4KDr9+KAK+D+E5PaqFpj8m5oG69eCDPyzSDr7oLI2/hGRdP2Mm1b1BB2DAPje2v+kTHLz7CLS/uXF9v/pkYb8OT5g/tm6QPxfP4b9FONC/cc3KvwZTHT+Pk7C/6/XOPr7hMj90a/w+p4A2PEhtX7w5FmI9ki3SvtG1Xb+BEo+/4Pu5O/Mvlz/k6Pa87g6gP08QQLtFcSg/c1rmPOd+iz/KgAK8n/AqP59hWrsspWq/Ben0O9YMvD+neNK+RV8dP2+TIT96SNC/j5Owvz2umb+ySig/LGYDP/WLZL2YsLc9T8rrPYByjb2sv6Y+dzCbP5EDyLoyXoS/GgKSvBrYOz3oDeE/ChooPz9KDbxde6a/sW9ePLgZED/5kWE7eJa3P3owzzqYV1W/daEqvUVfHT9xzcq/BlMdP/aSOT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
42 |
+
},
|
43 |
+
"_last_episode_starts": {
|
44 |
+
":type:": "<class 'numpy.ndarray'>",
|
45 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
46 |
+
},
|
47 |
+
"_last_original_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmZFy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALx9pPQAAAABMUvG/AAAAAOwGb70AAAAAJnjoPwAAAADTwGm9AAAAAOQ28T8AAAAAptn3vAAAAABtZOm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxpy4tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPlaDj4AAAAAEXTZvwAAAABjICc8AAAAALsH9j8AAAAArBsMvgAAAAA8tOk/AAAAAFMI3LwAAAAAufL2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBqAjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAqyZK8AAAAANQk378AAAAAg6GSvAAAAADNivM/AAAAAG1meLsAAAAADP/aPwAAAACpzNS8AAAAADeS4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwOpc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfho2vQAAAAB/2/y/AAAAAOVnpT0AAAAAIuDpPwAAAAAtRKu9AAAAAMM8+D8AAAAAFYj3uwAAAAAH1dm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_episode_num": 0,
|
52 |
+
"use_sde": true,
|
53 |
+
"sde_sample_freq": -1,
|
54 |
+
"_current_progress_remaining": 0.0,
|
55 |
+
"_stats_window_size": 100,
|
56 |
+
"ep_info_buffer": {
|
57 |
+
":type:": "<class 'collections.deque'>",
|
58 |
+
":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGw7HYpUgjiMAWyUTegDjAF0lEdAsOODTRYzSHV9lChoBkdAbxXU70WdmWgHTcEDaAhHQLDkOp2ll9V1fZQoaAZHQGPuguyu6mRoB03oA2gIR0Cw5Sxt+CsfdX2UKGgGR0Bizuhdt2s8aAdN6ANoCEdAsOmtbQkX13V9lChoBkdAbJWbLEDQq2gHTegDaAhHQLDre9deIEd1fZQoaAZHQFiNmMwUQCloB03oA2gIR0Cw6/5/9YOldX2UKGgGR0Bjm7DVH4GmaAdN6ANoCEdAsOzq2y9mH3V9lChoBkdAYuCdEsrd32gHTegDaAhHQLDwgJiAlOZ1fZQoaAZHQG6HxtP557hoB03oA2gIR0Cw8m+rELpidX2UKGgGR0Bwjo9lmOENaAdN6ANoCEdAsPMgtjCpFXV9lChoBkdAaK3KdxyXD2gHTegDaAhHQLD0CdxyXD51fZQoaAZHwF7GxT850bNoB01HAmgIR0Cw9UxxT850dX2UKGgGR0BxFdnjABT5aAdN6ANoCEdAsPpnitJWenV9lChoBke/8nA/LTx5LWgHSxRoCEdAsPqHpB5X2nV9lChoBkdAX+PBZZB9kWgHTegDaAhHQLD65ZSvTw51fZQoaAZHQHAoYqG1x85oB03oA2gIR0Cw+40Z75VPdX2UKGgGRz/OT5ftx+8XaAdLFGgIR0Cw+65MHryEdX2UKGgGR0BaABXXAdn1aAdN6ANoCEdAsPxkEq2BrnV9lChoBkdAEV7O3UhFE2gHTV4BaAhHQLD9J5Xlr/N1fZQoaAZHv8rZ6D5CWu5oB0tCaAhHQLD9lUGmk311fZQoaAZHQG8qavA44qBoB03oA2gIR0CxAQM7yQPqdX2UKGgGR0BjdPwNLDhtaAdN6ANoCEdAsQKYBOpKjHV9lChoBkdAcacmPo3aSWgHTegDaAhHQLEDnm2b5M11fZQoaAZHQDSomv4dp7FoB03oA2gIR0CxBYW3WnTBdX2UKGgGR0BZczfBN21VaAdNZAFoCEdAsQb8hTwUg3V9lChoBkdAbx7Kji4rjGgHTegDaAhHQLEJRNN8E3d1fZQoaAZHQGk8UD+zdDZoB01JA2gIR0CxCWgzch1UdX2UKGgGR0BkBkl5WzWxaAdN6ANoCEdAsQyTwqiGnHV9lChoBkdAUDXKYAsCk2gHTegDaAhHQLENt6jWTX91fZQoaAZHP9BV1fVqeshoB01dA2gIR0CxDw9SVGCqdX2UKGgGR8ASD1bqyGBXaAdN6ANoCEdAsRATq+rU9nV9lChoBkdAScjI91U2k2gHTSQCaAhHQLEQFYLb5/N1fZQoaAZHQGWNeYlY2bZoB03oA2gIR0CxFcyf16E8dX2UKGgGR0Bf/M7lq8DkaAdN6ANoCEdAsRcw9IPK+3V9lChoBkdAZCgpQ1rIo2gHTegDaAhHQLEYN3JxNqR1fZQoaAZHQHUgGAPNFBpoB03oA2gIR0CxGDlWfbsXdX2UKGgGR0BuMc2cawUyaAdN6ANoCEdAsRwu5tm+TXV9lChoBkdAUid9Brvb5GgHTdMCaAhHQLEcy31zySV1fZQoaAZHQGOFyXD3ueBoB03oA2gIR0CxHZHPZ7HAdX2UKGgGRz/cwcHWz4UOaAdLG2gIR0CxHb1a4c3mdX2UKGgGR0Ag+1og3cYZaAdNWQFoCEdAsR5mLCN0eXV9lChoBkdAV62N96Tnq2gHTegDaAhHQLEemWT5ftx1fZQoaAZHQGypCOvMbFVoB02bAmgIR0CxJBfr0J4TdX2UKGgGR0BD2JcgQpWnaAdN6ANoCEdAsST7Lq2SdXV9lChoBkdAaY7TAFgUlGgHTegDaAhHQLEl89SuQp51fZQoaAZHP+WNWEK3NLVoB0sUaAhHQLEmFGBWge11fZQoaAZHQGSrg6Mir1doB03oA2gIR0CxJswAZKnOdX2UKGgGR0BFp3ocJdB0aAdN6ANoCEdAsSr1Up/gBXV9lChoBkdAaR0A1ejVQWgHTegDaAhHQLEruKZDzAh1fZQoaAZHv+f1FH8TBZZoB0sUaAhHQLEr5nBLwnZ1fZQoaAZHQFC2HoHLRrtoB03oA2gIR0CxLNicslLOdX2UKGgGR0BvzAyoGY8daAdN6ANoCEdAsS2ZbxEv03V9lChoBkdAaSZ5O8Cgb2gHTegDaAhHQLEy+6xPfsN1fZQoaAZHwEWulSCOFQFoB03oA2gIR0CxNAuhoM8YdX2UKGgGR0BjpEVUMoc8aAdN6ANoCEdAsTUjSro4dnV9lChoBkdAZjBf51vETGgHTegDaAhHQLE14oZAIIF1fZQoaAZHQGakL0J4SpRoB03oA2gIR0CxOg9f1HvudX2UKGgGR0BYuiV0Lc9GaAdN6ANoCEdAsTrFYU34sXV9lChoBkdAWgsKIBRyfmgHTegDaAhHQLE7uzRx95R1fZQoaAZHQHGjiteUpuxoB03oA2gIR0CxPHibtqpMdX2UKGgGR0BB60SIxgy/aAdLkGgIR0CxPXKPCEYgdX2UKGgGR0Bo7j0xubZwaAdN6ANoCEdAsUG9MZgogHV9lChoBkdAZ6A5o4+8oWgHTegDaAhHQLFCzSlFc6h1fZQoaAZHQGQYTEzfrKNoB03oA2gIR0CxRA5VbRnfdX2UKGgGR0AwJgLZzxPPaAdN6ANoCEdAsUW6E384xXV9lChoBkdAY46WJJoTPGgHTegDaAhHQLFI6Sidrft1fZQoaAZHQGTqMFdLQHBoB03oA2gIR0CxSZCeI2wWdX2UKGgGR0Avd5ckdFOPaAdL6WgIR0CxSl4lQdjodX2UKGgGR0B04NqYZ2pyaAdN6ANoCEdAsUqG8M/hVHV9lChoBke/uVWS2Yv38GgHSxRoCEdAsUqzSjQAuXV9lChoBkfASxuOQyRB/2gHS9xoCEdAsUsv0aqCH3V9lChoBkdAQmYhwEQoTmgHTegDaAhHQLFMcjBVMmF1fZQoaAZHQGKMUqpcX3xoB02VA2gIR0CxUeCdOIqLdX2UKGgGR0Bk+naWX1J2aAdN6ANoCEdAsVMSEi+tbXV9lChoBkdAbwidzXBgu2gHTegDaAhHQLFTbu63AmB1fZQoaAZHQERNk5p8F6loB0ueaAhHQLFUFcbiqAB1fZQoaAZHQFVvxFAmiQFoB03oA2gIR0CxVJavJRwZdX2UKGgGR8AywmrKeTV2aAdL0WgIR0CxVWp1V5rydX2UKGgGR8AxCJq7AckuaAdNZQFoCEdAsVbXkFOfunV9lChoBkdAVZeqMm4RVmgHTekCaAhHQLFXBy4Wk8B1fZQoaAZHQDdohq0tyxRoB019AWgIR0CxWU64Ds+ndX2UKGgGR0BlcquZCv5haAdN6ANoCEdAsVnYOPNmlXV9lChoBkdAUkExREWqLmgHTVUBaAhHQLFbiJtBOYZ1fZQoaAZHwBcOVLSNOudoB03oA2gIR0CxW9xxLkCFdX2UKGgGR8ALSmKqGUOeaAdLFGgIR0CxW/z+aScLdX2UKGgGR0BEYtygf2boaAdN6ANoCEdAsV28/8l5W3V9lChoBkdAXGJme18b72gHTegDaAhHQLFh71dgOSZ1fZQoaAZHP+DRYRujynVoB0sUaAhHQLFiH6J66at1fZQoaAZHQGiOeF10T11oB00zAmgIR0CxYujKLbYcdX2UKGgGR0BvGW07bL2YaAdN6ANoCEdAsWO+/L1VYXV9lChoBkdAbjsLux8lX2gHTegDaAhHQLFkMosZpBZ1fZQoaAZHv8XffoA4n4RoB0sVaAhHQLFkVfpUxVR1fZQoaAZHQGNnomois4loB03oA2gIR0CxaKbzK9wndX2UKGgGR0BiTAI8hcJMaAdN6ANoCEdAsWlgQd0aInV9lChoBkdAZCpFERaouWgHTegDaAhHQLFqguy/sVt1fZQoaAZHQGeAVjiGWUtoB03oA2gIR0Cxay4bsF+vdX2UKGgGR0Bga/PiT+vRaAdN6ANoCEdAsXEI2Kl54XV9lChoBkdAX9k+zMRpUWgHTegDaAhHQLFx/Zwn6VN1fZQoaAZHQHAgd+b3Gn5oB03oA2gIR0CxctZBsyi3dX2UKGgGR0B0dpRLsa86aAdN6ANoCEdAsXNwLgGbC3VlLg=="
|
59 |
+
},
|
60 |
+
"ep_success_buffer": {
|
61 |
+
":type:": "<class 'collections.deque'>",
|
62 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
63 |
+
},
|
64 |
+
"_n_updates": 50000,
|
65 |
+
"n_steps": 10,
|
66 |
+
"gamma": 0.99,
|
67 |
+
"gae_lambda": 0.9,
|
68 |
+
"ent_coef": 0.5,
|
69 |
+
"vf_coef": 0.0,
|
70 |
+
"max_grad_norm": 0.5,
|
71 |
+
"normalize_advantage": false,
|
72 |
+
"observation_space": {
|
73 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
74 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
75 |
+
"dtype": "float32",
|
76 |
+
"_shape": [
|
77 |
+
28
|
78 |
+
],
|
79 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
80 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
81 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
82 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"action_space": {
|
86 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
87 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
88 |
+
"dtype": "float32",
|
89 |
+
"_shape": [
|
90 |
+
8
|
91 |
+
],
|
92 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
93 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
94 |
+
"bounded_below": "[ True True True True True True True True]",
|
95 |
+
"bounded_above": "[ True True True True True True True True]",
|
96 |
+
"_np_random": null
|
97 |
+
},
|
98 |
+
"n_envs": 4
|
99 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:787be4230fcdc38c9a8d4258e21021ef43038a95750a03d4262d3f6b0ac46e35
|
3 |
+
size 115440
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e12bb1994f4233ef474d96abd27d61e0c37f45720d2c822911e7d8660c767a5b
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2472c68b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2472c68c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2472c68ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2472c68d30>", "_build": "<function ActorCriticPolicy._build at 0x7f2472c68dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2472c68e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2472c68ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2472c68f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2472c00040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2472c000d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2472c00160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2472c001f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2472c03100>"}, "verbose": 1, "policy_kwargs": {"log_std_init": -2, "ortho_init": false}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682482881614226268, "learning_rate": 3e-05, "tensorboard_log": "logs/fit/20230426-042040", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC/Uhr83v+Q/jJv5v1GU/7xB5ls9K+ukPWPrr70mh7U7NhmIv7pHmLsjIki/Fr8KvfcqQb9sMlS7eNwnP1uCjzzv8uK+zGh8ul9mKz88HZ88L3Zqv2ugBTo2LSG/cG3YvEVfHT9vkyE/BlMdP/aSOT/zXZo/qRPOv/OLDL9ELzI9z/ALwC4KDr9+KAK+D+E5PaqFpj8m5oG69eCDPyzSDr7oLI2/hGRdP2Mm1b1BB2DAPje2v+kTHLz7CLS/uXF9v/pkYb8OT5g/tm6QPxfP4b9FONC/cc3KvwZTHT+Pk7C/6/XOPr7hMj90a/w+p4A2PEhtX7w5FmI9ki3SvtG1Xb+BEo+/4Pu5O/Mvlz/k6Pa87g6gP08QQLtFcSg/c1rmPOd+iz/KgAK8n/AqP59hWrsspWq/Ben0O9YMvD+neNK+RV8dP2+TIT96SNC/j5Owvz2umb+ySig/LGYDP/WLZL2YsLc9T8rrPYByjb2sv6Y+dzCbP5EDyLoyXoS/GgKSvBrYOz3oDeE/ChooPz9KDbxde6a/sW9ePLgZED/5kWE7eJa3P3owzzqYV1W/daEqvUVfHT9xzcq/BlMdP/aSOT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmZFy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALx9pPQAAAABMUvG/AAAAAOwGb70AAAAAJnjoPwAAAADTwGm9AAAAAOQ28T8AAAAAptn3vAAAAABtZOm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxpy4tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPlaDj4AAAAAEXTZvwAAAABjICc8AAAAALsH9j8AAAAArBsMvgAAAAA8tOk/AAAAAFMI3LwAAAAAufL2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBqAjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAqyZK8AAAAANQk378AAAAAg6GSvAAAAADNivM/AAAAAG1meLsAAAAADP/aPwAAAACpzNS8AAAAADeS4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwOpc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfho2vQAAAAB/2/y/AAAAAOVnpT0AAAAAIuDpPwAAAAAtRKu9AAAAAMM8+D8AAAAAFYj3uwAAAAAH1dm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGw7HYpUgjiMAWyUTegDjAF0lEdAsOODTRYzSHV9lChoBkdAbxXU70WdmWgHTcEDaAhHQLDkOp2ll9V1fZQoaAZHQGPuguyu6mRoB03oA2gIR0Cw5Sxt+CsfdX2UKGgGR0Bizuhdt2s8aAdN6ANoCEdAsOmtbQkX13V9lChoBkdAbJWbLEDQq2gHTegDaAhHQLDre9deIEd1fZQoaAZHQFiNmMwUQCloB03oA2gIR0Cw6/5/9YOldX2UKGgGR0Bjm7DVH4GmaAdN6ANoCEdAsOzq2y9mH3V9lChoBkdAYuCdEsrd32gHTegDaAhHQLDwgJiAlOZ1fZQoaAZHQG6HxtP557hoB03oA2gIR0Cw8m+rELpidX2UKGgGR0Bwjo9lmOENaAdN6ANoCEdAsPMgtjCpFXV9lChoBkdAaK3KdxyXD2gHTegDaAhHQLD0CdxyXD51fZQoaAZHwF7GxT850bNoB01HAmgIR0Cw9UxxT850dX2UKGgGR0BxFdnjABT5aAdN6ANoCEdAsPpnitJWenV9lChoBke/8nA/LTx5LWgHSxRoCEdAsPqHpB5X2nV9lChoBkdAX+PBZZB9kWgHTegDaAhHQLD65ZSvTw51fZQoaAZHQHAoYqG1x85oB03oA2gIR0Cw+40Z75VPdX2UKGgGRz/OT5ftx+8XaAdLFGgIR0Cw+65MHryEdX2UKGgGR0BaABXXAdn1aAdN6ANoCEdAsPxkEq2BrnV9lChoBkdAEV7O3UhFE2gHTV4BaAhHQLD9J5Xlr/N1fZQoaAZHv8rZ6D5CWu5oB0tCaAhHQLD9lUGmk311fZQoaAZHQG8qavA44qBoB03oA2gIR0CxAQM7yQPqdX2UKGgGR0BjdPwNLDhtaAdN6ANoCEdAsQKYBOpKjHV9lChoBkdAcacmPo3aSWgHTegDaAhHQLEDnm2b5M11fZQoaAZHQDSomv4dp7FoB03oA2gIR0CxBYW3WnTBdX2UKGgGR0BZczfBN21VaAdNZAFoCEdAsQb8hTwUg3V9lChoBkdAbx7Kji4rjGgHTegDaAhHQLEJRNN8E3d1fZQoaAZHQGk8UD+zdDZoB01JA2gIR0CxCWgzch1UdX2UKGgGR0BkBkl5WzWxaAdN6ANoCEdAsQyTwqiGnHV9lChoBkdAUDXKYAsCk2gHTegDaAhHQLENt6jWTX91fZQoaAZHP9BV1fVqeshoB01dA2gIR0CxDw9SVGCqdX2UKGgGR8ASD1bqyGBXaAdN6ANoCEdAsRATq+rU9nV9lChoBkdAScjI91U2k2gHTSQCaAhHQLEQFYLb5/N1fZQoaAZHQGWNeYlY2bZoB03oA2gIR0CxFcyf16E8dX2UKGgGR0Bf/M7lq8DkaAdN6ANoCEdAsRcw9IPK+3V9lChoBkdAZCgpQ1rIo2gHTegDaAhHQLEYN3JxNqR1fZQoaAZHQHUgGAPNFBpoB03oA2gIR0CxGDlWfbsXdX2UKGgGR0BuMc2cawUyaAdN6ANoCEdAsRwu5tm+TXV9lChoBkdAUid9Brvb5GgHTdMCaAhHQLEcy31zySV1fZQoaAZHQGOFyXD3ueBoB03oA2gIR0CxHZHPZ7HAdX2UKGgGRz/cwcHWz4UOaAdLG2gIR0CxHb1a4c3mdX2UKGgGR0Ag+1og3cYZaAdNWQFoCEdAsR5mLCN0eXV9lChoBkdAV62N96Tnq2gHTegDaAhHQLEemWT5ftx1fZQoaAZHQGypCOvMbFVoB02bAmgIR0CxJBfr0J4TdX2UKGgGR0BD2JcgQpWnaAdN6ANoCEdAsST7Lq2SdXV9lChoBkdAaY7TAFgUlGgHTegDaAhHQLEl89SuQp51fZQoaAZHP+WNWEK3NLVoB0sUaAhHQLEmFGBWge11fZQoaAZHQGSrg6Mir1doB03oA2gIR0CxJswAZKnOdX2UKGgGR0BFp3ocJdB0aAdN6ANoCEdAsSr1Up/gBXV9lChoBkdAaR0A1ejVQWgHTegDaAhHQLEruKZDzAh1fZQoaAZHv+f1FH8TBZZoB0sUaAhHQLEr5nBLwnZ1fZQoaAZHQFC2HoHLRrtoB03oA2gIR0CxLNicslLOdX2UKGgGR0BvzAyoGY8daAdN6ANoCEdAsS2ZbxEv03V9lChoBkdAaSZ5O8Cgb2gHTegDaAhHQLEy+6xPfsN1fZQoaAZHwEWulSCOFQFoB03oA2gIR0CxNAuhoM8YdX2UKGgGR0BjpEVUMoc8aAdN6ANoCEdAsTUjSro4dnV9lChoBkdAZjBf51vETGgHTegDaAhHQLE14oZAIIF1fZQoaAZHQGakL0J4SpRoB03oA2gIR0CxOg9f1HvudX2UKGgGR0BYuiV0Lc9GaAdN6ANoCEdAsTrFYU34sXV9lChoBkdAWgsKIBRyfmgHTegDaAhHQLE7uzRx95R1fZQoaAZHQHGjiteUpuxoB03oA2gIR0CxPHibtqpMdX2UKGgGR0BB60SIxgy/aAdLkGgIR0CxPXKPCEYgdX2UKGgGR0Bo7j0xubZwaAdN6ANoCEdAsUG9MZgogHV9lChoBkdAZ6A5o4+8oWgHTegDaAhHQLFCzSlFc6h1fZQoaAZHQGQYTEzfrKNoB03oA2gIR0CxRA5VbRnfdX2UKGgGR0AwJgLZzxPPaAdN6ANoCEdAsUW6E384xXV9lChoBkdAY46WJJoTPGgHTegDaAhHQLFI6Sidrft1fZQoaAZHQGTqMFdLQHBoB03oA2gIR0CxSZCeI2wWdX2UKGgGR0Avd5ckdFOPaAdL6WgIR0CxSl4lQdjodX2UKGgGR0B04NqYZ2pyaAdN6ANoCEdAsUqG8M/hVHV9lChoBke/uVWS2Yv38GgHSxRoCEdAsUqzSjQAuXV9lChoBkfASxuOQyRB/2gHS9xoCEdAsUsv0aqCH3V9lChoBkdAQmYhwEQoTmgHTegDaAhHQLFMcjBVMmF1fZQoaAZHQGKMUqpcX3xoB02VA2gIR0CxUeCdOIqLdX2UKGgGR0Bk+naWX1J2aAdN6ANoCEdAsVMSEi+tbXV9lChoBkdAbwidzXBgu2gHTegDaAhHQLFTbu63AmB1fZQoaAZHQERNk5p8F6loB0ueaAhHQLFUFcbiqAB1fZQoaAZHQFVvxFAmiQFoB03oA2gIR0CxVJavJRwZdX2UKGgGR8AywmrKeTV2aAdL0WgIR0CxVWp1V5rydX2UKGgGR8AxCJq7AckuaAdNZQFoCEdAsVbXkFOfunV9lChoBkdAVZeqMm4RVmgHTekCaAhHQLFXBy4Wk8B1fZQoaAZHQDdohq0tyxRoB019AWgIR0CxWU64Ds+ndX2UKGgGR0BlcquZCv5haAdN6ANoCEdAsVnYOPNmlXV9lChoBkdAUkExREWqLmgHTVUBaAhHQLFbiJtBOYZ1fZQoaAZHwBcOVLSNOudoB03oA2gIR0CxW9xxLkCFdX2UKGgGR8ALSmKqGUOeaAdLFGgIR0CxW/z+aScLdX2UKGgGR0BEYtygf2boaAdN6ANoCEdAsV28/8l5W3V9lChoBkdAXGJme18b72gHTegDaAhHQLFh71dgOSZ1fZQoaAZHP+DRYRujynVoB0sUaAhHQLFiH6J66at1fZQoaAZHQGiOeF10T11oB00zAmgIR0CxYujKLbYcdX2UKGgGR0BvGW07bL2YaAdN6ANoCEdAsWO+/L1VYXV9lChoBkdAbjsLux8lX2gHTegDaAhHQLFkMosZpBZ1fZQoaAZHv8XffoA4n4RoB0sVaAhHQLFkVfpUxVR1fZQoaAZHQGNnomois4loB03oA2gIR0CxaKbzK9wndX2UKGgGR0BiTAI8hcJMaAdN6ANoCEdAsWlgQd0aInV9lChoBkdAZCpFERaouWgHTegDaAhHQLFqguy/sVt1fZQoaAZHQGeAVjiGWUtoB03oA2gIR0Cxay4bsF+vdX2UKGgGR0Bga/PiT+vRaAdN6ANoCEdAsXEI2Kl54XV9lChoBkdAX9k+zMRpUWgHTegDaAhHQLFx/Zwn6VN1fZQoaAZHQHAgd+b3Gn5oB03oA2gIR0CxctZBsyi3dX2UKGgGR0B0dpRLsa86aAdN6ANoCEdAsXNwLgGbC3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 10, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.5, "vf_coef": 0.0, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (290 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 94.98355639465153, "std_reward": 148.69631060053212, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-26T05:26:39.454721"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7871d2d10916b62f441afcce3871a65c063ec386fdbe99d1542f0ac44c65675
|
3 |
+
size 2170
|