Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +10 -10
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.61 +/- 0.23
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ea71980c02b06850b8557d7c10b967c720f9ab5f569b9be4c089af2ee8c1326
|
3 |
+
size 108011
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -46,7 +46,7 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[ 0.
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,7 +77,7 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff50fd5ec10>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7ff50fce11e0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1674274145398557870,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdYPVPh8bGTytZv4+dYPVPh8bGTytZv4+dYPVPh8bGTytZv4+dYPVPh8bGTytZv4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARpWNPUIesr/sHXm/OkOCv+vJUz763Y0/cx5Av5cd5D6UzZc/X0uqv6tnPb9LCJa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB1g9U+HxsZPK1m/j5l4gE8MC2Ouqc+DDx1g9U+HxsZPK1m/j5l4gE8MC2Ouqc+DDx1g9U+HxsZPK1m/j5l4gE8MC2Ouqc+DDx1g9U+HxsZPK1m/j5l4gE8MC2Ouqc+DDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.41701856 0.00934485 0.4968771 ]\n [0.41701856 0.00934485 0.4968771 ]\n [0.41701856 0.00934485 0.4968771 ]\n [0.41701856 0.00934485 0.4968771 ]]",
|
60 |
+
"desired_goal": "[[ 0.06913237 -1.3915484 -0.9731128 ]\n [-1.0176766 0.20682494 1.1083367 ]\n [-0.7504646 0.44553825 1.1859612 ]\n [-1.3304251 -0.7398631 -1.1721281 ]]",
|
61 |
+
"observation": "[[ 0.41701856 0.00934485 0.4968771 0.00792751 -0.00108472 0.00855986]\n [ 0.41701856 0.00934485 0.4968771 0.00792751 -0.00108472 0.00855986]\n [ 0.41701856 0.00934485 0.4968771 0.00792751 -0.00108472 0.00855986]\n [ 0.41701856 0.00934485 0.4968771 0.00792751 -0.00108472 0.00855986]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8YsKPv6ACT7jkKA8oFf7PTp0p71CuVU+gVNiPVSJDT5D+IE+jibwPBAQ7b3ouK09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.13529946 0.13428113 0.01960034]\n [ 0.12272573 -0.08176465 0.20871451]\n [ 0.05525542 0.13821918 0.2538472 ]\n [ 0.02931526 -0.11575329 0.08482534]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsU8AxchS87+UhpRSlIwBbJRLMowBdJRHQKTq4AskIHF1fZQoaAZoCWgPQwjoaFVLOgr3v5SGlFKUaBVLMmgWR0Ck6qZ4fOlgdX2UKGgGaAloD0MI6zao/dZO4b+UhpRSlGgVSzJoFkdApOprvPTodXV9lChoBmgJaA9DCME6jh8qzfO/lIaUUpRoFUsyaBZHQKTqMWY4Qz11fZQoaAZoCWgPQwim8naE04Luv5SGlFKUaBVLMmgWR0Ck695R8+ibdX2UKGgGaAloD0MIO1PovMau+7+UhpRSlGgVSzJoFkdApOulAPd2xXV9lChoBmgJaA9DCDBGJAot6/G/lIaUUpRoFUsyaBZHQKTraep4rz51fZQoaAZoCWgPQwj+ZffkYQEAwJSGlFKUaBVLMmgWR0Ck6y7AUL2IdX2UKGgGaAloD0MIscQDyqZc87+UhpRSlGgVSzJoFkdApOzSmO2iL3V9lChoBmgJaA9DCBmMEYlCy/C/lIaUUpRoFUsyaBZHQKTsmPjn3cp1fZQoaAZoCWgPQwhSnKOOjqvxv5SGlFKUaBVLMmgWR0Ck7F3i704BdX2UKGgGaAloD0MIzcth9x1D8L+UhpRSlGgVSzJoFkdApOwiuhbno3V9lChoBmgJaA9DCEzFxryOOO2/lIaUUpRoFUsyaBZHQKTtzaGHpKV1fZQoaAZoCWgPQwg012mkpbL4v5SGlFKUaBVLMmgWR0Ck7ZQkHD77dX2UKGgGaAloD0MIYAX4bvNG57+UhpRSlGgVSzJoFkdApO1ZLytmtnV9lChoBmgJaA9DCM2U1t8SgO6/lIaUUpRoFUsyaBZHQKTtHfw7T2F1fZQoaAZoCWgPQwhuMNRhhVvsv5SGlFKUaBVLMmgWR0Ck7tyowVTKdX2UKGgGaAloD0MIcsXFUbmJ7r+UhpRSlGgVSzJoFkdApO6i+6Ae73V9lChoBmgJaA9DCLqEQ2/xcPG/lIaUUpRoFUsyaBZHQKTuaBeXzDp1fZQoaAZoCWgPQwgPlxx3Sgfsv5SGlFKUaBVLMmgWR0Ck7i0W/JvHdX2UKGgGaAloD0MIo8nFGFhH47+UhpRSlGgVSzJoFkdApO/+/336AXV9lChoBmgJaA9DCEG62LRSyPK/lIaUUpRoFUsyaBZHQKTvxXdTHbR1fZQoaAZoCWgPQwiBQ6hSs8fwv5SGlFKUaBVLMmgWR0Ck74q6e5FxdX2UKGgGaAloD0MIPEuQEVDh8L+UhpRSlGgVSzJoFkdApO9P62v0RXV9lChoBmgJaA9DCBQhdTv7Svm/lIaUUpRoFUsyaBZHQKTw/zeXRgJ1fZQoaAZoCWgPQwg1mIbhI6Lxv5SGlFKUaBVLMmgWR0Ck8MWf029+dX2UKGgGaAloD0MIhxiveVVn57+UhpRSlGgVSzJoFkdApPCLa7EpAnV9lChoBmgJaA9DCIDz4sRXO/K/lIaUUpRoFUsyaBZHQKTwUQV9F4N1fZQoaAZoCWgPQwhHkiBcAYXqv5SGlFKUaBVLMmgWR0Ck8o/4REncdX2UKGgGaAloD0MInSrfMxKh5L+UhpRSlGgVSzJoFkdApPJXX2/SIHV9lChoBmgJaA9DCJ7uPPGcLfK/lIaUUpRoFUsyaBZHQKTyHXZGrjp1fZQoaAZoCWgPQwgq/1peuV7nv5SGlFKUaBVLMmgWR0Ck8eNbC79RdX2UKGgGaAloD0MIw4GQLGCC5b+UhpRSlGgVSzJoFkdApPQ+fEn9enV9lChoBmgJaA9DCC/9S1KZYuq/lIaUUpRoFUsyaBZHQKT0BWQwK0F1fZQoaAZoCWgPQwjp8BDGT2Pqv5SGlFKUaBVLMmgWR0Ck88tb1RLsdX2UKGgGaAloD0MIgLkWLUDb2b+UhpRSlGgVSzJoFkdApPORJGvwE3V9lChoBmgJaA9DCP7tsl93uuW/lIaUUpRoFUsyaBZHQKT1+I9kjHJ1fZQoaAZoCWgPQwi6L2e2K3Ttv5SGlFKUaBVLMmgWR0Ck9cBMrVe8dX2UKGgGaAloD0MIZ9Km6h5Z8b+UhpRSlGgVSzJoFkdApPWGNFSbY3V9lChoBmgJaA9DCEZ55uWw+9u/lIaUUpRoFUsyaBZHQKT1TEfDDTB1fZQoaAZoCWgPQwioGr0aoPT2v5SGlFKUaBVLMmgWR0Ck99NBF/hEdX2UKGgGaAloD0MI6x7ZXDVP67+UhpRSlGgVSzJoFkdApPeatxMnJHV9lChoBmgJaA9DCJFigEQTaPO/lIaUUpRoFUsyaBZHQKT3YPNFBpp1fZQoaAZoCWgPQwjac5maBG/pv5SGlFKUaBVLMmgWR0Ck9ybH6uW9dX2UKGgGaAloD0MIDtlAutg09b+UhpRSlGgVSzJoFkdApPmbk0aZQnV9lChoBmgJaA9DCNO+ub96XOW/lIaUUpRoFUsyaBZHQKT5YvMbFS91fZQoaAZoCWgPQwjABG7dzdPyv5SGlFKUaBVLMmgWR0Ck+Si2lVLjdX2UKGgGaAloD0MIPX5v0599+7+UhpRSlGgVSzJoFkdApPjuZNO/L3V9lChoBmgJaA9DCP0S8db5t+e/lIaUUpRoFUsyaBZHQKT7ZYwqRU51fZQoaAZoCWgPQwj67evAOSPsv5SGlFKUaBVLMmgWR0Ck+yw5FPSEdX2UKGgGaAloD0MILEme6/tw5L+UhpRSlGgVSzJoFkdApPrxUedTYXV9lChoBmgJaA9DCK1sH/KWK/6/lIaUUpRoFUsyaBZHQKT6toN/e+F1fZQoaAZoCWgPQwjO/dXjvhX3v5SGlFKUaBVLMmgWR0Ck/GHSOR1YdX2UKGgGaAloD0MIRPzDlh5N4L+UhpRSlGgVSzJoFkdApPwoYaYNRXV9lChoBmgJaA9DCAh2/BcIgui/lIaUUpRoFUsyaBZHQKT77Ynv2Gt1fZQoaAZoCWgPQwj/XZ8561Pqv5SGlFKUaBVLMmgWR0Ck+7KeTV2BdX2UKGgGaAloD0MIAWvVrgnp57+UhpRSlGgVSzJoFkdApP1y6H0sfHV9lChoBmgJaA9DCLwC0ZMyKeu/lIaUUpRoFUsyaBZHQKT9OZ6Uqx11fZQoaAZoCWgPQwj9SufDs4T5v5SGlFKUaBVLMmgWR0Ck/P7x/d6+dX2UKGgGaAloD0MI9iaG5GRi4b+UhpRSlGgVSzJoFkdApPzDy1/lQ3V9lChoBmgJaA9DCLIS86ykFeS/lIaUUpRoFUsyaBZHQKT+g+lj3Eh1fZQoaAZoCWgPQwjdQexMobP5v5SGlFKUaBVLMmgWR0Ck/kp4jbBXdX2UKGgGaAloD0MIKSFYVS+/7b+UhpRSlGgVSzJoFkdApP4PdweeWnV9lChoBmgJaA9DCJCkpIehVeW/lIaUUpRoFUsyaBZHQKT91KvFFUh1fZQoaAZoCWgPQwgDPj+MEF7zv5SGlFKUaBVLMmgWR0Ck/6KPwNLEdX2UKGgGaAloD0MIxsN7DixH3r+UhpRSlGgVSzJoFkdApP9pDVpblnV9lChoBmgJaA9DCDV5ymq6Huq/lIaUUpRoFUsyaBZHQKT/LkVeruJ1fZQoaAZoCWgPQwhq2VpfJLTvv5SGlFKUaBVLMmgWR0Ck/vNJ4B3idX2UKGgGaAloD0MIyxRzEHT08b+UhpRSlGgVSzJoFkdApQCkW9DhL3V9lChoBmgJaA9DCPZiKCfalfS/lIaUUpRoFUsyaBZHQKUAawnH/951fZQoaAZoCWgPQwj53An2X2fsv5SGlFKUaBVLMmgWR0ClADA7YChfdX2UKGgGaAloD0MIEt4ehIB847+UhpRSlGgVSzJoFkdApP/1DMNc4nV9lChoBmgJaA9DCM9r7BLV2+u/lIaUUpRoFUsyaBZHQKUBvZV4oql1fZQoaAZoCWgPQwjbatYZ35fnv5SGlFKUaBVLMmgWR0ClAYQc5sCUdX2UKGgGaAloD0MIk6ZB0TyA4L+UhpRSlGgVSzJoFkdApQFJFAmiQHV9lChoBmgJaA9DCKMG0zB8xOy/lIaUUpRoFUsyaBZHQKUBDkNFz+51fZQoaAZoCWgPQwh+bmjKTr/xv5SGlFKUaBVLMmgWR0ClAs/eUILPdX2UKGgGaAloD0MI1SMNbmuL4b+UhpRSlGgVSzJoFkdApQKWOlwcYXV9lChoBmgJaA9DCMIv9fOm4vC/lIaUUpRoFUsyaBZHQKUCW1TisGR1fZQoaAZoCWgPQwiXGwx1WGHmv5SGlFKUaBVLMmgWR0ClAiBYeT3ZdX2UKGgGaAloD0MIfCjRksfT57+UhpRSlGgVSzJoFkdApQPqRr8BMnV9lChoBmgJaA9DCCEiNe1imty/lIaUUpRoFUsyaBZHQKUDsN70Fr51fZQoaAZoCWgPQwgpJQSr6uXnv5SGlFKUaBVLMmgWR0ClA3X1rZandX2UKGgGaAloD0MILLr1mh6U4b+UhpRSlGgVSzJoFkdApQM7DsMRYnV9lChoBmgJaA9DCLDG2XQEcN+/lIaUUpRoFUsyaBZHQKUFHs2NvO11fZQoaAZoCWgPQwgJU5RL4xfyv5SGlFKUaBVLMmgWR0ClBOZBC2MLdX2UKGgGaAloD0MI/S/XogXo6b+UhpRSlGgVSzJoFkdApQSrfk3juXV9lChoBmgJaA9DCAt/hjdrcOO/lIaUUpRoFUsyaBZHQKUEcLiMo+h1fZQoaAZoCWgPQwiFX+rnTQXzv5SGlFKUaBVLMmgWR0ClBjPXsgMddX2UKGgGaAloD0MIbJOKxtrf7L+UhpRSlGgVSzJoFkdApQX6curZJ3V9lChoBmgJaA9DCGZPAptzcOa/lIaUUpRoFUsyaBZHQKUFv5Rjz7N1fZQoaAZoCWgPQwjEJjJzgcvdv5SGlFKUaBVLMmgWR0ClBYS4e9zwdX2UKGgGaAloD0MIjexKy0j987+UhpRSlGgVSzJoFkdApQdi8g6ltXV9lChoBmgJaA9DCE0tW+uLxPC/lIaUUpRoFUsyaBZHQKUHKjs2NvR1fZQoaAZoCWgPQwgboZ+p163pv5SGlFKUaBVLMmgWR0ClBu+PBBRidX2UKGgGaAloD0MIpBzMJsAw8r+UhpRSlGgVSzJoFkdApQa02pAD73V9lChoBmgJaA9DCFJlGHeDqPC/lIaUUpRoFUsyaBZHQKUIgHNX5nF1fZQoaAZoCWgPQwiQ9GkV/SHmv5SGlFKUaBVLMmgWR0ClCEb48EFGdX2UKGgGaAloD0MIDVTGv8844b+UhpRSlGgVSzJoFkdApQgMGxD9fnV9lChoBmgJaA9DCF2o/Gt55ee/lIaUUpRoFUsyaBZHQKUH0PtD2J11ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2444531b45c072c9eaecbebdd40f6380547835217d80b1945ed8b3944288ac9
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bd2712f3d7a121e276cdcb2c9c435c7b4b4db99ca34f01eb4207fe473bc0774
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f46ec82e940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f46ec82b510>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674249156519793628, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGcjRPoMAjbzrMQY/GcjRPoMAjbzrMQY/GcjRPoMAjbzrMQY/GcjRPoMAjbzrMQY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEYYEP3agRT+RGCu/WInEv2VyQr/rDj+/P/qtPz+JKb+0pa6+LBm+Pm3g0D+pTbS9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAZyNE+gwCNvOsxBj/lkyw80nswu9bAzDsZyNE+gwCNvOsxBj/lkyw80nswu9bAzDsZyNE+gwCNvOsxBj/lkyw80nswu9bAzDsZyNE+gwCNvOsxBj/lkyw80nswu9bAzDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40972975 -0.01721216 0.5241992 ]\n [ 0.40972975 -0.01721216 0.5241992 ]\n [ 0.40972975 -0.01721216 0.5241992 ]\n [ 0.40972975 -0.01721216 0.5241992 ]]", "desired_goal": "[[ 0.5176707 0.7719797 -0.6683436 ]\n [-1.5354414 -0.759558 -0.7463214 ]\n [ 1.3591994 -0.66225046 -0.34110796]\n [ 0.3712858 1.6318489 -0.08803875]]", "observation": "[[ 0.40972975 -0.01721216 0.5241992 0.01053331 -0.00269293 0.00624857]\n [ 0.40972975 -0.01721216 0.5241992 0.01053331 -0.00269293 0.00624857]\n [ 0.40972975 -0.01721216 0.5241992 0.01053331 -0.00269293 0.00624857]\n [ 0.40972975 -0.01721216 0.5241992 0.01053331 -0.00269293 0.00624857]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaki9vUwK2bzn8Ak+uJyxPavDCz5+s5w9TZOQvYBp/71S7Eo+vzgQvlu3gT1wGJE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09242328 -0.02649417 0.13470803]\n [ 0.0867247 0.1364886 0.07651423]\n [-0.07059345 -0.12471294 0.19816712]\n [-0.14084147 0.063338 0.28338957]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0xQBTu/i5r+UhpRSlIwBbJRLMowBdJRHQKYPBo8IRiB1fZQoaAZoCWgPQwgiNlg4SbP0v5SGlFKUaBVLMmgWR0CmDsm9g4OudX2UKGgGaAloD0MIZCMQr+sX6r+UhpRSlGgVSzJoFkdApg6JoduHe3V9lChoBmgJaA9DCBcuq7AZ4OC/lIaUUpRoFUsyaBZHQKYOR8Jlar51fZQoaAZoCWgPQwgOMPMd/ETyv5SGlFKUaBVLMmgWR0CmEDQZ4wAVdX2UKGgGaAloD0MIBfwaSYLw9L+UhpRSlGgVSzJoFkdApg/3QID5kHV9lChoBmgJaA9DCOs3E9OFGPS/lIaUUpRoFUsyaBZHQKYPtx//ech1fZQoaAZoCWgPQwhNEkvK3efvv5SGlFKUaBVLMmgWR0CmD3UeEIw/dX2UKGgGaAloD0MIlstG5/wU9L+UhpRSlGgVSzJoFkdAphFZNTLntHV9lChoBmgJaA9DCI/FNqlobPK/lIaUUpRoFUsyaBZHQKYRHHYHxBp1fZQoaAZoCWgPQwjUYBqGj4juv5SGlFKUaBVLMmgWR0CmENxKxs2vdX2UKGgGaAloD0MI/wOsVbsm7r+UhpRSlGgVSzJoFkdAphCaed07sHV9lChoBmgJaA9DCKYpApzeRee/lIaUUpRoFUsyaBZHQKYSiJ+lTFV1fZQoaAZoCWgPQwhxPJ8B9Wbsv5SGlFKUaBVLMmgWR0CmEkvk7wKCdX2UKGgGaAloD0MI9Ix9ycZD/L+UhpRSlGgVSzJoFkdAphIL2YfGMnV9lChoBmgJaA9DCHbDtkWZjfi/lIaUUpRoFUsyaBZHQKYRydTYNAl1fZQoaAZoCWgPQwhdqWdBKK/3v5SGlFKUaBVLMmgWR0CmE7zPrv9cdX2UKGgGaAloD0MIePF+3H45/b+UhpRSlGgVSzJoFkdAphOAavRqoXV9lChoBmgJaA9DCARXeQJhZ/a/lIaUUpRoFUsyaBZHQKYTQDyOJch1fZQoaAZoCWgPQwjg9C7ej9vtv5SGlFKUaBVLMmgWR0CmEv4zi0fHdX2UKGgGaAloD0MIfxR15h4S/b+UhpRSlGgVSzJoFkdAphTi1uzhP3V9lChoBmgJaA9DCMfXnlkSoOq/lIaUUpRoFUsyaBZHQKYUph7Vrh11fZQoaAZoCWgPQwizCMVW0DT6v5SGlFKUaBVLMmgWR0CmFGX974SIdX2UKGgGaAloD0MIcqYJ20/G7r+UhpRSlGgVSzJoFkdAphQkF+uvEHV9lChoBmgJaA9DCF01zxH5LuW/lIaUUpRoFUsyaBZHQKYWDbQC0Wx1fZQoaAZoCWgPQwidLLXeb3T4v5SGlFKUaBVLMmgWR0CmFdD5CWu6dX2UKGgGaAloD0MI+WabG9OT77+UhpRSlGgVSzJoFkdAphWQ8W9DhXV9lChoBmgJaA9DCBeBsb6Bifi/lIaUUpRoFUsyaBZHQKYVTshxHXp1fZQoaAZoCWgPQwihLedSXBX5v5SGlFKUaBVLMmgWR0CmFzX9BKL9dX2UKGgGaAloD0MIRl1r71OV8r+UhpRSlGgVSzJoFkdAphb5RbbDdnV9lChoBmgJaA9DCE87/DVZI+2/lIaUUpRoFUsyaBZHQKYWuPbwjMV1fZQoaAZoCWgPQwi37uapDjnvv5SGlFKUaBVLMmgWR0CmFnb0WdmQdX2UKGgGaAloD0MI7NtJRPiX8r+UhpRSlGgVSzJoFkdAphhVyNn5BXV9lChoBmgJaA9DCJ7Swfo/h+2/lIaUUpRoFUsyaBZHQKYYGNHYpUh1fZQoaAZoCWgPQwgqyqXxC08BwJSGlFKUaBVLMmgWR0CmF9iOvMbFdX2UKGgGaAloD0MIdQDEXb2K7b+UhpRSlGgVSzJoFkdApheWRmseXHV9lChoBmgJaA9DCP6ABwYQvvG/lIaUUpRoFUsyaBZHQKYZkc5sCT51fZQoaAZoCWgPQwg1XyUfu4v1v5SGlFKUaBVLMmgWR0CmGVTollbvdX2UKGgGaAloD0MI/DcvTnw1+L+UhpRSlGgVSzJoFkdAphkUqnWJ8HV9lChoBmgJaA9DCC8UsB2M2O2/lIaUUpRoFUsyaBZHQKYY0tkFwDN1fZQoaAZoCWgPQwj0Fg/vOXD2v5SGlFKUaBVLMmgWR0CmGrXEhq0udX2UKGgGaAloD0MILgPOUrJc8L+UhpRSlGgVSzJoFkdAphp46QvHtHV9lChoBmgJaA9DCEMAcOzZ8++/lIaUUpRoFUsyaBZHQKYaOLF4s3B1fZQoaAZoCWgPQwgwaCEBo0v8v5SGlFKUaBVLMmgWR0CmGfbUwztUdX2UKGgGaAloD0MIouvCD86n77+UhpRSlGgVSzJoFkdAphvbWbwz+HV9lChoBmgJaA9DCLNg4o+iTvG/lIaUUpRoFUsyaBZHQKYbno/zJ6p1fZQoaAZoCWgPQwgrbAa4IBv1v5SGlFKUaBVLMmgWR0CmG154GD+SdX2UKGgGaAloD0MIV89J7xtf5L+UhpRSlGgVSzJoFkdAphscZ3s5XHV9lChoBmgJaA9DCE7yI37FGgPAlIaUUpRoFUsyaBZHQKYc41c+qzZ1fZQoaAZoCWgPQwj0/dR46aYDwJSGlFKUaBVLMmgWR0CmHKZB9kSVdX2UKGgGaAloD0MIhxqFJLM697+UhpRSlGgVSzJoFkdAphxmIInjQ3V9lChoBmgJaA9DCMizy7c+rPK/lIaUUpRoFUsyaBZHQKYcJB1s+FF1fZQoaAZoCWgPQwjF5XgFomf5v5SGlFKUaBVLMmgWR0CmHgLkbPyDdX2UKGgGaAloD0MIEk92M6Of7L+UhpRSlGgVSzJoFkdAph3F72L5ynV9lChoBmgJaA9DCNk9eViotfa/lIaUUpRoFUsyaBZHQKYdhaN+9al1fZQoaAZoCWgPQwgCfo0kQTjqv5SGlFKUaBVLMmgWR0CmHUPECNjtdX2UKGgGaAloD0MIhetRuB6F7r+UhpRSlGgVSzJoFkdAph8SHVPN3XV9lChoBmgJaA9DCMhD393K0gLAlIaUUpRoFUsyaBZHQKYe1S0BwMp1fZQoaAZoCWgPQwgYYB+dunLuv5SGlFKUaBVLMmgWR0CmHpTkp7TldX2UKGgGaAloD0MI5iSUvhBSBMCUhpRSlGgVSzJoFkdAph5Sp71Iy3V9lChoBmgJaA9DCLQ+5ZgsLva/lIaUUpRoFUsyaBZHQKYgM/bCaZx1fZQoaAZoCWgPQwh7Z7RVSaT9v5SGlFKUaBVLMmgWR0CmH/csMAmzdX2UKGgGaAloD0MIh1Pm5hvxAcCUhpRSlGgVSzJoFkdAph+2qaPS2HV9lChoBmgJaA9DCIhmnlxToAPAlIaUUpRoFUsyaBZHQKYfdFjNILB1fZQoaAZoCWgPQwhK8fEJ2VkDwJSGlFKUaBVLMmgWR0CmITKzRhMKdX2UKGgGaAloD0MI51YIq7GkBcCUhpRSlGgVSzJoFkdApiD19Dx9X3V9lChoBmgJaA9DCBIvT+eK0v+/lIaUUpRoFUsyaBZHQKYgtZpSJj51fZQoaAZoCWgPQwi5NH7hlQQCwJSGlFKUaBVLMmgWR0CmIHNoJzDGdX2UKGgGaAloD0MIJCpUNxf/7r+UhpRSlGgVSzJoFkdApiJKzVtoBnV9lChoBmgJaA9DCCrJOhxdJQDAlIaUUpRoFUsyaBZHQKYiDgCwKSh1fZQoaAZoCWgPQwj1KjI6IMkCwJSGlFKUaBVLMmgWR0CmIc2uxKQJdX2UKGgGaAloD0MIDr4wmSrY97+UhpRSlGgVSzJoFkdApiGL17IDHXV9lChoBmgJaA9DCGMMrOP4Yf+/lIaUUpRoFUsyaBZHQKYjW4+8oQZ1fZQoaAZoCWgPQwjLDvEPW3ryv5SGlFKUaBVLMmgWR0CmIx7S7Xg+dX2UKGgGaAloD0MIHxSUopU7AsCUhpRSlGgVSzJoFkdApiLef029+XV9lChoBmgJaA9DCGtJRzmYbQHAlIaUUpRoFUsyaBZHQKYinE+gUUR1fZQoaAZoCWgPQwjoLomzIuoDwJSGlFKUaBVLMmgWR0CmJG+UQkHEdX2UKGgGaAloD0MIZeCAlq4g/L+UhpRSlGgVSzJoFkdApiQy0+kgwHV9lChoBmgJaA9DCM6KqIk+3/W/lIaUUpRoFUsyaBZHQKYj8scQyyl1fZQoaAZoCWgPQwj5LTpZaj3uv5SGlFKUaBVLMmgWR0CmI7DBMzuXdX2UKGgGaAloD0MI6spneR5c6b+UhpRSlGgVSzJoFkdApiWKUTtb93V9lChoBmgJaA9DCE5GlWHcDfm/lIaUUpRoFUsyaBZHQKYlTctXgcd1fZQoaAZoCWgPQwiBs5QsJ6H4v5SGlFKUaBVLMmgWR0CmJQ2TPjXGdX2UKGgGaAloD0MIQrXBiehX9r+UhpRSlGgVSzJoFkdApiTLijtXxXV9lChoBmgJaA9DCHtJY7SOKuq/lIaUUpRoFUsyaBZHQKYmq0/GEPF1fZQoaAZoCWgPQwg9KZMa2oDxv5SGlFKUaBVLMmgWR0CmJm5VOsT4dX2UKGgGaAloD0MIMEs7NZcb+r+UhpRSlGgVSzJoFkdApiYuDUVi4XV9lChoBmgJaA9DCBpvK702m+q/lIaUUpRoFUsyaBZHQKYl6/qxC6Z1fZQoaAZoCWgPQwjx8nSuKCX4v5SGlFKUaBVLMmgWR0CmJ8n1OCXhdX2UKGgGaAloD0MIQPomTYPi+7+UhpRSlGgVSzJoFkdApieNGd7OV3V9lChoBmgJaA9DCDblCu9ykem/lIaUUpRoFUsyaBZHQKYnTN/vv0B1fZQoaAZoCWgPQwiIEFfO3pkAwJSGlFKUaBVLMmgWR0CmJwrQokRjdX2UKGgGaAloD0MIbAVNS6yM67+UhpRSlGgVSzJoFkdApij2XzDn/3V9lChoBmgJaA9DCI3w9iAE5O2/lIaUUpRoFUsyaBZHQKYoucJ+lTF1fZQoaAZoCWgPQwjrAl5m2Cjwv5SGlFKUaBVLMmgWR0CmKHmw7kn1dX2UKGgGaAloD0MIQPuRIjLs+b+UhpRSlGgVSzJoFkdApig30RODa3V9lChoBmgJaA9DCL0A++jUlee/lIaUUpRoFUsyaBZHQKYqIicoYvZ1fZQoaAZoCWgPQwiPHOkMjDzvv5SGlFKUaBVLMmgWR0CmKeVct5D7dX2UKGgGaAloD0MINxlVhnG38L+UhpRSlGgVSzJoFkdApimlUCJXQ3V9lChoBmgJaA9DCJLNVfMcEfC/lIaUUpRoFUsyaBZHQKYpY1yeZoh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff50fd5ec10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff50fce11e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674274145398557870, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdYPVPh8bGTytZv4+dYPVPh8bGTytZv4+dYPVPh8bGTytZv4+dYPVPh8bGTytZv4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARpWNPUIesr/sHXm/OkOCv+vJUz763Y0/cx5Av5cd5D6UzZc/X0uqv6tnPb9LCJa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB1g9U+HxsZPK1m/j5l4gE8MC2Ouqc+DDx1g9U+HxsZPK1m/j5l4gE8MC2Ouqc+DDx1g9U+HxsZPK1m/j5l4gE8MC2Ouqc+DDx1g9U+HxsZPK1m/j5l4gE8MC2Ouqc+DDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41701856 0.00934485 0.4968771 ]\n [0.41701856 0.00934485 0.4968771 ]\n [0.41701856 0.00934485 0.4968771 ]\n [0.41701856 0.00934485 0.4968771 ]]", "desired_goal": "[[ 0.06913237 -1.3915484 -0.9731128 ]\n [-1.0176766 0.20682494 1.1083367 ]\n [-0.7504646 0.44553825 1.1859612 ]\n [-1.3304251 -0.7398631 -1.1721281 ]]", "observation": "[[ 0.41701856 0.00934485 0.4968771 0.00792751 -0.00108472 0.00855986]\n [ 0.41701856 0.00934485 0.4968771 0.00792751 -0.00108472 0.00855986]\n [ 0.41701856 0.00934485 0.4968771 0.00792751 -0.00108472 0.00855986]\n [ 0.41701856 0.00934485 0.4968771 0.00792751 -0.00108472 0.00855986]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8YsKPv6ACT7jkKA8oFf7PTp0p71CuVU+gVNiPVSJDT5D+IE+jibwPBAQ7b3ouK09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13529946 0.13428113 0.01960034]\n [ 0.12272573 -0.08176465 0.20871451]\n [ 0.05525542 0.13821918 0.2538472 ]\n [ 0.02931526 -0.11575329 0.08482534]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsU8AxchS87+UhpRSlIwBbJRLMowBdJRHQKTq4AskIHF1fZQoaAZoCWgPQwjoaFVLOgr3v5SGlFKUaBVLMmgWR0Ck6qZ4fOlgdX2UKGgGaAloD0MI6zao/dZO4b+UhpRSlGgVSzJoFkdApOprvPTodXV9lChoBmgJaA9DCME6jh8qzfO/lIaUUpRoFUsyaBZHQKTqMWY4Qz11fZQoaAZoCWgPQwim8naE04Luv5SGlFKUaBVLMmgWR0Ck695R8+ibdX2UKGgGaAloD0MIO1PovMau+7+UhpRSlGgVSzJoFkdApOulAPd2xXV9lChoBmgJaA9DCDBGJAot6/G/lIaUUpRoFUsyaBZHQKTraep4rz51fZQoaAZoCWgPQwj+ZffkYQEAwJSGlFKUaBVLMmgWR0Ck6y7AUL2IdX2UKGgGaAloD0MIscQDyqZc87+UhpRSlGgVSzJoFkdApOzSmO2iL3V9lChoBmgJaA9DCBmMEYlCy/C/lIaUUpRoFUsyaBZHQKTsmPjn3cp1fZQoaAZoCWgPQwhSnKOOjqvxv5SGlFKUaBVLMmgWR0Ck7F3i704BdX2UKGgGaAloD0MIzcth9x1D8L+UhpRSlGgVSzJoFkdApOwiuhbno3V9lChoBmgJaA9DCEzFxryOOO2/lIaUUpRoFUsyaBZHQKTtzaGHpKV1fZQoaAZoCWgPQwg012mkpbL4v5SGlFKUaBVLMmgWR0Ck7ZQkHD77dX2UKGgGaAloD0MIYAX4bvNG57+UhpRSlGgVSzJoFkdApO1ZLytmtnV9lChoBmgJaA9DCM2U1t8SgO6/lIaUUpRoFUsyaBZHQKTtHfw7T2F1fZQoaAZoCWgPQwhuMNRhhVvsv5SGlFKUaBVLMmgWR0Ck7tyowVTKdX2UKGgGaAloD0MIcsXFUbmJ7r+UhpRSlGgVSzJoFkdApO6i+6Ae73V9lChoBmgJaA9DCLqEQ2/xcPG/lIaUUpRoFUsyaBZHQKTuaBeXzDp1fZQoaAZoCWgPQwgPlxx3Sgfsv5SGlFKUaBVLMmgWR0Ck7i0W/JvHdX2UKGgGaAloD0MIo8nFGFhH47+UhpRSlGgVSzJoFkdApO/+/336AXV9lChoBmgJaA9DCEG62LRSyPK/lIaUUpRoFUsyaBZHQKTvxXdTHbR1fZQoaAZoCWgPQwiBQ6hSs8fwv5SGlFKUaBVLMmgWR0Ck74q6e5FxdX2UKGgGaAloD0MIPEuQEVDh8L+UhpRSlGgVSzJoFkdApO9P62v0RXV9lChoBmgJaA9DCBQhdTv7Svm/lIaUUpRoFUsyaBZHQKTw/zeXRgJ1fZQoaAZoCWgPQwg1mIbhI6Lxv5SGlFKUaBVLMmgWR0Ck8MWf029+dX2UKGgGaAloD0MIhxiveVVn57+UhpRSlGgVSzJoFkdApPCLa7EpAnV9lChoBmgJaA9DCIDz4sRXO/K/lIaUUpRoFUsyaBZHQKTwUQV9F4N1fZQoaAZoCWgPQwhHkiBcAYXqv5SGlFKUaBVLMmgWR0Ck8o/4REncdX2UKGgGaAloD0MInSrfMxKh5L+UhpRSlGgVSzJoFkdApPJXX2/SIHV9lChoBmgJaA9DCJ7uPPGcLfK/lIaUUpRoFUsyaBZHQKTyHXZGrjp1fZQoaAZoCWgPQwgq/1peuV7nv5SGlFKUaBVLMmgWR0Ck8eNbC79RdX2UKGgGaAloD0MIw4GQLGCC5b+UhpRSlGgVSzJoFkdApPQ+fEn9enV9lChoBmgJaA9DCC/9S1KZYuq/lIaUUpRoFUsyaBZHQKT0BWQwK0F1fZQoaAZoCWgPQwjp8BDGT2Pqv5SGlFKUaBVLMmgWR0Ck88tb1RLsdX2UKGgGaAloD0MIgLkWLUDb2b+UhpRSlGgVSzJoFkdApPORJGvwE3V9lChoBmgJaA9DCP7tsl93uuW/lIaUUpRoFUsyaBZHQKT1+I9kjHJ1fZQoaAZoCWgPQwi6L2e2K3Ttv5SGlFKUaBVLMmgWR0Ck9cBMrVe8dX2UKGgGaAloD0MIZ9Km6h5Z8b+UhpRSlGgVSzJoFkdApPWGNFSbY3V9lChoBmgJaA9DCEZ55uWw+9u/lIaUUpRoFUsyaBZHQKT1TEfDDTB1fZQoaAZoCWgPQwioGr0aoPT2v5SGlFKUaBVLMmgWR0Ck99NBF/hEdX2UKGgGaAloD0MI6x7ZXDVP67+UhpRSlGgVSzJoFkdApPeatxMnJHV9lChoBmgJaA9DCJFigEQTaPO/lIaUUpRoFUsyaBZHQKT3YPNFBpp1fZQoaAZoCWgPQwjac5maBG/pv5SGlFKUaBVLMmgWR0Ck9ybH6uW9dX2UKGgGaAloD0MIDtlAutg09b+UhpRSlGgVSzJoFkdApPmbk0aZQnV9lChoBmgJaA9DCNO+ub96XOW/lIaUUpRoFUsyaBZHQKT5YvMbFS91fZQoaAZoCWgPQwjABG7dzdPyv5SGlFKUaBVLMmgWR0Ck+Si2lVLjdX2UKGgGaAloD0MIPX5v0599+7+UhpRSlGgVSzJoFkdApPjuZNO/L3V9lChoBmgJaA9DCP0S8db5t+e/lIaUUpRoFUsyaBZHQKT7ZYwqRU51fZQoaAZoCWgPQwj67evAOSPsv5SGlFKUaBVLMmgWR0Ck+yw5FPSEdX2UKGgGaAloD0MILEme6/tw5L+UhpRSlGgVSzJoFkdApPrxUedTYXV9lChoBmgJaA9DCK1sH/KWK/6/lIaUUpRoFUsyaBZHQKT6toN/e+F1fZQoaAZoCWgPQwjO/dXjvhX3v5SGlFKUaBVLMmgWR0Ck/GHSOR1YdX2UKGgGaAloD0MIRPzDlh5N4L+UhpRSlGgVSzJoFkdApPwoYaYNRXV9lChoBmgJaA9DCAh2/BcIgui/lIaUUpRoFUsyaBZHQKT77Ynv2Gt1fZQoaAZoCWgPQwj/XZ8561Pqv5SGlFKUaBVLMmgWR0Ck+7KeTV2BdX2UKGgGaAloD0MIAWvVrgnp57+UhpRSlGgVSzJoFkdApP1y6H0sfHV9lChoBmgJaA9DCLwC0ZMyKeu/lIaUUpRoFUsyaBZHQKT9OZ6Uqx11fZQoaAZoCWgPQwj9SufDs4T5v5SGlFKUaBVLMmgWR0Ck/P7x/d6+dX2UKGgGaAloD0MI9iaG5GRi4b+UhpRSlGgVSzJoFkdApPzDy1/lQ3V9lChoBmgJaA9DCLIS86ykFeS/lIaUUpRoFUsyaBZHQKT+g+lj3Eh1fZQoaAZoCWgPQwjdQexMobP5v5SGlFKUaBVLMmgWR0Ck/kp4jbBXdX2UKGgGaAloD0MIKSFYVS+/7b+UhpRSlGgVSzJoFkdApP4PdweeWnV9lChoBmgJaA9DCJCkpIehVeW/lIaUUpRoFUsyaBZHQKT91KvFFUh1fZQoaAZoCWgPQwgDPj+MEF7zv5SGlFKUaBVLMmgWR0Ck/6KPwNLEdX2UKGgGaAloD0MIxsN7DixH3r+UhpRSlGgVSzJoFkdApP9pDVpblnV9lChoBmgJaA9DCDV5ymq6Huq/lIaUUpRoFUsyaBZHQKT/LkVeruJ1fZQoaAZoCWgPQwhq2VpfJLTvv5SGlFKUaBVLMmgWR0Ck/vNJ4B3idX2UKGgGaAloD0MIyxRzEHT08b+UhpRSlGgVSzJoFkdApQCkW9DhL3V9lChoBmgJaA9DCPZiKCfalfS/lIaUUpRoFUsyaBZHQKUAawnH/951fZQoaAZoCWgPQwj53An2X2fsv5SGlFKUaBVLMmgWR0ClADA7YChfdX2UKGgGaAloD0MIEt4ehIB847+UhpRSlGgVSzJoFkdApP/1DMNc4nV9lChoBmgJaA9DCM9r7BLV2+u/lIaUUpRoFUsyaBZHQKUBvZV4oql1fZQoaAZoCWgPQwjbatYZ35fnv5SGlFKUaBVLMmgWR0ClAYQc5sCUdX2UKGgGaAloD0MIk6ZB0TyA4L+UhpRSlGgVSzJoFkdApQFJFAmiQHV9lChoBmgJaA9DCKMG0zB8xOy/lIaUUpRoFUsyaBZHQKUBDkNFz+51fZQoaAZoCWgPQwh+bmjKTr/xv5SGlFKUaBVLMmgWR0ClAs/eUILPdX2UKGgGaAloD0MI1SMNbmuL4b+UhpRSlGgVSzJoFkdApQKWOlwcYXV9lChoBmgJaA9DCMIv9fOm4vC/lIaUUpRoFUsyaBZHQKUCW1TisGR1fZQoaAZoCWgPQwiXGwx1WGHmv5SGlFKUaBVLMmgWR0ClAiBYeT3ZdX2UKGgGaAloD0MIfCjRksfT57+UhpRSlGgVSzJoFkdApQPqRr8BMnV9lChoBmgJaA9DCCEiNe1imty/lIaUUpRoFUsyaBZHQKUDsN70Fr51fZQoaAZoCWgPQwgpJQSr6uXnv5SGlFKUaBVLMmgWR0ClA3X1rZandX2UKGgGaAloD0MILLr1mh6U4b+UhpRSlGgVSzJoFkdApQM7DsMRYnV9lChoBmgJaA9DCLDG2XQEcN+/lIaUUpRoFUsyaBZHQKUFHs2NvO11fZQoaAZoCWgPQwgJU5RL4xfyv5SGlFKUaBVLMmgWR0ClBOZBC2MLdX2UKGgGaAloD0MI/S/XogXo6b+UhpRSlGgVSzJoFkdApQSrfk3juXV9lChoBmgJaA9DCAt/hjdrcOO/lIaUUpRoFUsyaBZHQKUEcLiMo+h1fZQoaAZoCWgPQwiFX+rnTQXzv5SGlFKUaBVLMmgWR0ClBjPXsgMddX2UKGgGaAloD0MIbJOKxtrf7L+UhpRSlGgVSzJoFkdApQX6curZJ3V9lChoBmgJaA9DCGZPAptzcOa/lIaUUpRoFUsyaBZHQKUFv5Rjz7N1fZQoaAZoCWgPQwjEJjJzgcvdv5SGlFKUaBVLMmgWR0ClBYS4e9zwdX2UKGgGaAloD0MIjexKy0j987+UhpRSlGgVSzJoFkdApQdi8g6ltXV9lChoBmgJaA9DCE0tW+uLxPC/lIaUUpRoFUsyaBZHQKUHKjs2NvR1fZQoaAZoCWgPQwgboZ+p163pv5SGlFKUaBVLMmgWR0ClBu+PBBRidX2UKGgGaAloD0MIpBzMJsAw8r+UhpRSlGgVSzJoFkdApQa02pAD73V9lChoBmgJaA9DCFJlGHeDqPC/lIaUUpRoFUsyaBZHQKUIgHNX5nF1fZQoaAZoCWgPQwiQ9GkV/SHmv5SGlFKUaBVLMmgWR0ClCEb48EFGdX2UKGgGaAloD0MIDVTGv8844b+UhpRSlGgVSzJoFkdApQgMGxD9fnV9lChoBmgJaA9DCF2o/Gt55ee/lIaUUpRoFUsyaBZHQKUH0PtD2J11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.6068560194107704, "std_reward": 0.2280357266417847, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T04:53:56.068876"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae906f2baf35989e1a359ed53d6cbcf981822a0746f3f0afe1da6b0c98a32164
|
3 |
size 3056
|