jpino commited on
Commit
bb490f7
·
1 Parent(s): e70cba8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -26
README.md CHANGED
@@ -1,5 +1,4 @@
1
  ---
2
- license: cc-by-nc-sa-4.0
3
  tags:
4
  - generated_from_trainer
5
  datasets:
@@ -24,16 +23,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9871382636655949
28
  - name: Recall
29
  type: recall
30
- value: 0.9935275080906149
31
  - name: F1
32
  type: f1
33
- value: 0.9903225806451612
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9992192379762649
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,13 +40,13 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  # layoutlmv3-finetuned-registros_100
43
 
44
- This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the data_registros_layoutv3 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0110
47
- - Precision: 0.9871
48
- - Recall: 0.9935
49
- - F1: 0.9903
50
- - Accuracy: 0.9992
51
 
52
  ## Model description
53
 
@@ -72,24 +71,18 @@ The following hyperparameters were used during training:
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
75
- - training_steps: 3000
76
 
77
  ### Training results
78
 
79
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
- |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | No log | 10.87 | 250 | 0.4325 | 0.2663 | 0.2638 | 0.2650 | 0.8982 |
82
- | 0.6304 | 21.74 | 500 | 0.2065 | 0.7715 | 0.8139 | 0.7921 | 0.9622 |
83
- | 0.6304 | 32.61 | 750 | 0.1058 | 0.9048 | 0.9385 | 0.9214 | 0.9866 |
84
- | 0.1413 | 43.48 | 1000 | 0.0600 | 0.9314 | 0.9660 | 0.9484 | 0.9944 |
85
- | 0.1413 | 54.35 | 1250 | 0.0377 | 0.9451 | 0.9741 | 0.9594 | 0.9969 |
86
- | 0.0558 | 65.22 | 1500 | 0.0277 | 0.9697 | 0.9838 | 0.9767 | 0.9981 |
87
- | 0.0558 | 76.09 | 1750 | 0.0199 | 0.9792 | 0.9903 | 0.9847 | 0.9988 |
88
- | 0.0307 | 86.96 | 2000 | 0.0160 | 0.9824 | 0.9919 | 0.9871 | 0.9989 |
89
- | 0.0307 | 97.83 | 2250 | 0.0147 | 0.9823 | 0.9903 | 0.9863 | 0.9988 |
90
- | 0.0211 | 108.7 | 2500 | 0.0122 | 0.9871 | 0.9935 | 0.9903 | 0.9992 |
91
- | 0.0211 | 119.57 | 2750 | 0.0113 | 0.9871 | 0.9935 | 0.9903 | 0.9992 |
92
- | 0.0174 | 130.43 | 3000 | 0.0110 | 0.9871 | 0.9935 | 0.9903 | 0.9992 |
93
 
94
 
95
  ### Framework versions
 
1
  ---
 
2
  tags:
3
  - generated_from_trainer
4
  datasets:
 
23
  metrics:
24
  - name: Precision
25
  type: precision
26
+ value: 0.9967585089141004
27
  - name: Recall
28
  type: recall
29
+ value: 0.9951456310679612
30
  - name: F1
31
  type: f1
32
+ value: 0.9959514170040485
33
  - name: Accuracy
34
  type: accuracy
35
+ value: 0.999531542785759
36
  ---
37
 
38
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
40
 
41
  # layoutlmv3-finetuned-registros_100
42
 
43
+ This model was trained from scratch on the data_registros_layoutv3 dataset.
44
  It achieves the following results on the evaluation set:
45
+ - Loss: 0.0050
46
+ - Precision: 0.9968
47
+ - Recall: 0.9951
48
+ - F1: 0.9960
49
+ - Accuracy: 0.9995
50
 
51
  ## Model description
52
 
 
71
  - seed: 42
72
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
  - lr_scheduler_type: linear
74
+ - training_steps: 600
75
 
76
  ### Training results
77
 
78
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | No log | 4.35 | 100 | 0.0106 | 0.9871 | 0.9935 | 0.9903 | 0.9991 |
81
+ | No log | 8.7 | 200 | 0.0073 | 0.9984 | 0.9968 | 0.9976 | 0.9997 |
82
+ | No log | 13.04 | 300 | 0.0061 | 0.9968 | 0.9968 | 0.9968 | 0.9997 |
83
+ | No log | 17.39 | 400 | 0.0048 | 0.9968 | 0.9984 | 0.9976 | 0.9997 |
84
+ | 0.0109 | 21.74 | 500 | 0.0053 | 0.9968 | 0.9968 | 0.9968 | 0.9997 |
85
+ | 0.0109 | 26.09 | 600 | 0.0050 | 0.9968 | 0.9951 | 0.9960 | 0.9995 |
 
 
 
 
 
 
86
 
87
 
88
  ### Framework versions