update model card README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
license: cc-by-nc-sa-4.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
@@ -24,16 +23,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -41,13 +40,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
41 |
|
42 |
# layoutlmv3-finetuned-registros_100
|
43 |
|
44 |
-
This model
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -72,24 +71,18 @@ The following hyperparameters were used during training:
|
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
-
- training_steps:
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
-
| Training Loss | Epoch
|
80 |
-
|
81 |
-
| No log |
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.0558 | 76.09 | 1750 | 0.0199 | 0.9792 | 0.9903 | 0.9847 | 0.9988 |
|
88 |
-
| 0.0307 | 86.96 | 2000 | 0.0160 | 0.9824 | 0.9919 | 0.9871 | 0.9989 |
|
89 |
-
| 0.0307 | 97.83 | 2250 | 0.0147 | 0.9823 | 0.9903 | 0.9863 | 0.9988 |
|
90 |
-
| 0.0211 | 108.7 | 2500 | 0.0122 | 0.9871 | 0.9935 | 0.9903 | 0.9992 |
|
91 |
-
| 0.0211 | 119.57 | 2750 | 0.0113 | 0.9871 | 0.9935 | 0.9903 | 0.9992 |
|
92 |
-
| 0.0174 | 130.43 | 3000 | 0.0110 | 0.9871 | 0.9935 | 0.9903 | 0.9992 |
|
93 |
|
94 |
|
95 |
### Framework versions
|
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
|
|
23 |
metrics:
|
24 |
- name: Precision
|
25 |
type: precision
|
26 |
+
value: 0.9967585089141004
|
27 |
- name: Recall
|
28 |
type: recall
|
29 |
+
value: 0.9951456310679612
|
30 |
- name: F1
|
31 |
type: f1
|
32 |
+
value: 0.9959514170040485
|
33 |
- name: Accuracy
|
34 |
type: accuracy
|
35 |
+
value: 0.999531542785759
|
36 |
---
|
37 |
|
38 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
40 |
|
41 |
# layoutlmv3-finetuned-registros_100
|
42 |
|
43 |
+
This model was trained from scratch on the data_registros_layoutv3 dataset.
|
44 |
It achieves the following results on the evaluation set:
|
45 |
+
- Loss: 0.0050
|
46 |
+
- Precision: 0.9968
|
47 |
+
- Recall: 0.9951
|
48 |
+
- F1: 0.9960
|
49 |
+
- Accuracy: 0.9995
|
50 |
|
51 |
## Model description
|
52 |
|
|
|
71 |
- seed: 42
|
72 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
- lr_scheduler_type: linear
|
74 |
+
- training_steps: 600
|
75 |
|
76 |
### Training results
|
77 |
|
78 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
79 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
80 |
+
| No log | 4.35 | 100 | 0.0106 | 0.9871 | 0.9935 | 0.9903 | 0.9991 |
|
81 |
+
| No log | 8.7 | 200 | 0.0073 | 0.9984 | 0.9968 | 0.9976 | 0.9997 |
|
82 |
+
| No log | 13.04 | 300 | 0.0061 | 0.9968 | 0.9968 | 0.9968 | 0.9997 |
|
83 |
+
| No log | 17.39 | 400 | 0.0048 | 0.9968 | 0.9984 | 0.9976 | 0.9997 |
|
84 |
+
| 0.0109 | 21.74 | 500 | 0.0053 | 0.9968 | 0.9968 | 0.9968 | 0.9997 |
|
85 |
+
| 0.0109 | 26.09 | 600 | 0.0050 | 0.9968 | 0.9951 | 0.9960 | 0.9995 |
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
### Framework versions
|