a2c-PandaReachDense-v2 / config.json
joydragon's picture
New commit
e509d01
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ab419ea4310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ab419e8fac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 4000000, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691124716076951342, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxTw3PyH9wLxqFhQ/xTw3PyH9wLxqFhQ/xTw3PyH9wLxqFhQ/xTw3PyH9wLxqFhQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACYQ6P7dAi7/o7AS/FhOtP4LBzj/fS8e/48yWv4cIBj8yvkC+7da/Pwqtar8fqQQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADFPDc/If3AvGoWFD+kvjc9xXGpO0A+Mz3FPDc/If3AvGoWFD+kvjc9xXGpO0A+Mz3FPDc/If3AvGoWFD+kvjc9xXGpO0A+Mz3FPDc/If3AvGoWFD+kvjc9xXGpO0A+Mz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.715771 -0.0235582 0.578467 ]\n [ 0.715771 -0.0235582 0.578467 ]\n [ 0.715771 -0.0235582 0.578467 ]\n [ 0.715771 -0.0235582 0.578467 ]]", "desired_goal": "[[ 0.7285772 -1.0879124 -0.5192399 ]\n [ 1.352145 1.6152804 -1.5570029 ]\n [-1.1781276 0.5235676 -0.18822554]\n [ 1.4987465 -0.91670287 0.5182056 ]]", "observation": "[[ 0.715771 -0.0235582 0.578467 0.04485954 0.00517103 0.04376054]\n [ 0.715771 -0.0235582 0.578467 0.04485954 0.00517103 0.04376054]\n [ 0.715771 -0.0235582 0.578467 0.04485954 0.00517103 0.04376054]\n [ 0.715771 -0.0235582 0.578467 0.04485954 0.00517103 0.04376054]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApsIHPMzx0DuJbpY+HnsQvuKPn7yWSnM9lFF2vV4kAD4HUlg+SXNWvSPBxT2tu1A+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00828615 0.00637648 0.29381207]\n [-0.14109465 -0.01947779 0.0593973 ]\n [-0.06013639 0.12513873 0.21125041]\n [-0.05235604 0.09655979 0.20384093]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIclEtIorpMsCUhpRSlIwBbJRLMowBdJRHQMVi9TSThYN1fZQoaAZoCWgPQwh08ExokgQwwJSGlFKUaBVLMmgWR0DFYuXsw+MZdX2UKGgGaAloD0MIHnBdMSMsF8CUhpRSlGgVSzJoFkdAxWLWZ0jkdXV9lChoBmgJaA9DCMh5/x8nDBXAlIaUUpRoFUsyaBZHQMVixuYx+KF1fZQoaAZoCWgPQwjJ6IAk7BcxwJSGlFKUaBVLMmgWR0DFYzaJdjXndX2UKGgGaAloD0MIzm+YaJDOMcCUhpRSlGgVSzJoFkdAxWMnHc1wYXV9lChoBmgJaA9DCJ54zhYQ+iTAlIaUUpRoFUsyaBZHQMVjF4GdI5J1fZQoaAZoCWgPQwj5hVeSPB8iwJSGlFKUaBVLMmgWR0DFYwf1ct5EdX2UKGgGaAloD0MIWdx/ZDo0McCUhpRSlGgVSzJoFkdAxWN5aSs8xXV9lChoBmgJaA9DCDo8hPHTODDAlIaUUpRoFUsyaBZHQMVjafKp1ih1fZQoaAZoCWgPQwgtCVBTy+4twJSGlFKUaBVLMmgWR0DFY1paPjn3dX2UKGgGaAloD0MICFvs9lm9MMCUhpRSlGgVSzJoFkdAxWNKxrzoU3V9lChoBmgJaA9DCDpcqz3sZRbAlIaUUpRoFUsyaBZHQMVjuWzfJmx1fZQoaAZoCWgPQwhX6lkQyqM2wJSGlFKUaBVLMmgWR0DFY6oHX2/SdX2UKGgGaAloD0MI7MA5I0qjLsCUhpRSlGgVSzJoFkdAxWOadNFjNXV9lChoBmgJaA9DCNP4hVeS/CrAlIaUUpRoFUsyaBZHQMVjiuE25x11fZQoaAZoCWgPQwhVZ7XAHsMTwJSGlFKUaBVLMmgWR0DFY/1toBaLdX2UKGgGaAloD0MIC12JQPVHNsCUhpRSlGgVSzJoFkdAxWPt8zhxYXV9lChoBmgJaA9DCMb83NCUhSbAlIaUUpRoFUsyaBZHQMVj3lgDzRR1fZQoaAZoCWgPQwgyq3e4HdoWwJSGlFKUaBVLMmgWR0DFY860BwMqdX2UKGgGaAloD0MIaOc0C7RrGsCUhpRSlGgVSzJoFkdAxWQ/WvKU3XV9lChoBmgJaA9DCOoj8IefHxjAlIaUUpRoFUsyaBZHQMVkL+Kjzqd1fZQoaAZoCWgPQwjsF+yGbWMrwJSGlFKUaBVLMmgWR0DFZCBFTefqdX2UKGgGaAloD0MIkpGzsKeVIMCUhpRSlGgVSzJoFkdAxWQQr0aqCHV9lChoBmgJaA9DCLq+DwcJSSDAlIaUUpRoFUsyaBZHQMVkhocrAgx1fZQoaAZoCWgPQwiYpghweocZwJSGlFKUaBVLMmgWR0DFZHckSmIkdX2UKGgGaAloD0MIzEV8J2bFJcCUhpRSlGgVSzJoFkdAxWRnkWhysHV9lChoBmgJaA9DCKuYSj/h3BTAlIaUUpRoFUsyaBZHQMVkWAPuogp1fZQoaAZoCWgPQwgmbarukb0VwJSGlFKUaBVLMmgWR0DFZNYUQCjldX2UKGgGaAloD0MI+YGrPIGoL8CUhpRSlGgVSzJoFkdAxWTG5q/M4nV9lChoBmgJaA9DCLYr9MEyviHAlIaUUpRoFUsyaBZHQMVkt1zQu291fZQoaAZoCWgPQwgNUBpqFPIjwJSGlFKUaBVLMmgWR0DFZKfuG9HudX2UKGgGaAloD0MIWK1M+KW+FcCUhpRSlGgVSzJoFkdAxWU/DDTBqXV9lChoBmgJaA9DCFkxXB0AUSrAlIaUUpRoFUsyaBZHQMVlL8v/R3N1fZQoaAZoCWgPQwgmbarukS0gwJSGlFKUaBVLMmgWR0DFZSBNyo4udX2UKGgGaAloD0MIZ0Y/Gk5ZLcCUhpRSlGgVSzJoFkdAxWUQ5NGmUHV9lChoBmgJaA9DCM6luKrsOyrAlIaUUpRoFUsyaBZHQMVlqUaya/h1fZQoaAZoCWgPQwirzmqBPR4uwJSGlFKUaBVLMmgWR0DFZZoA+6iCdX2UKGgGaAloD0MIGyycpPk3NMCUhpRSlGgVSzJoFkdAxWWKkAxSHnV9lChoBmgJaA9DCGoUkszqTRbAlIaUUpRoFUsyaBZHQMVlexmbsnl1fZQoaAZoCWgPQwgUBI9v77IvwJSGlFKUaBVLMmgWR0DFZhdSflIVdX2UKGgGaAloD0MIJNBgU+fBGMCUhpRSlGgVSzJoFkdAxWYIDtgKGHV9lChoBmgJaA9DCOaSqu0mGDHAlIaUUpRoFUsyaBZHQMVl+JkoWpJ1fZQoaAZoCWgPQwgYYB+durYzwJSGlFKUaBVLMmgWR0DFZelRaX8gdX2UKGgGaAloD0MIFJfjFYgeHMCUhpRSlGgVSzJoFkdAxWaTsTnJT3V9lChoBmgJaA9DCI8AbhYvIjDAlIaUUpRoFUsyaBZHQMVmhIphF3J1fZQoaAZoCWgPQwgfaXBbW9gawJSGlFKUaBVLMmgWR0DFZnUhC+lCdX2UKGgGaAloD0MIjZjZ5zFKFcCUhpRSlGgVSzJoFkdAxWZl91EE1XV9lChoBmgJaA9DCC7jpgaaOzHAlIaUUpRoFUsyaBZHQMVm47Egntx1fZQoaAZoCWgPQwjAJJUp5jw6wJSGlFKUaBVLMmgWR0DFZtRIpYs/dX2UKGgGaAloD0MI5lsf1hvVMcCUhpRSlGgVSzJoFkdAxWbEtCAtnXV9lChoBmgJaA9DCKGjVS3pECPAlIaUUpRoFUsyaBZHQMVmtRPfsNV1fZQoaAZoCWgPQwg4vYv341YvwJSGlFKUaBVLMmgWR0DFZyawt8NQdX2UKGgGaAloD0MIoMTnTrDfKMCUhpRSlGgVSzJoFkdAxWcXOD8Lr3V9lChoBmgJaA9DCKn3VE57QijAlIaUUpRoFUsyaBZHQMVnB5ULlV91fZQoaAZoCWgPQwgMzXUaaV02wJSGlFKUaBVLMmgWR0DFZvgHu7YkdX2UKGgGaAloD0MIXYb/dANBNcCUhpRSlGgVSzJoFkdAxWdlu/k/8nV9lChoBmgJaA9DCJ0Te2gfKxTAlIaUUpRoFUsyaBZHQMVnVlAeJYV1fZQoaAZoCWgPQwitUQ/R6Io2wJSGlFKUaBVLMmgWR0DFZ0a99MK1dX2UKGgGaAloD0MIIAvRIXBsMsCUhpRSlGgVSzJoFkdAxWc3II4VAXV9lChoBmgJaA9DCPQZUG9GjR7AlIaUUpRoFUsyaBZHQMVnq992HL11fZQoaAZoCWgPQwjQX+gRo58vwJSGlFKUaBVLMmgWR0DFZ5x+UhV3dX2UKGgGaAloD0MIzo3pCUtcGsCUhpRSlGgVSzJoFkdAxWeM6bvw3HV9lChoBmgJaA9DCHyBWaFIizfAlIaUUpRoFUsyaBZHQMVnfVLamGd1fZQoaAZoCWgPQwiz0Tk/xRUywJSGlFKUaBVLMmgWR0DFZ+8XtShrdX2UKGgGaAloD0MISFM9mX/sJsCUhpRSlGgVSzJoFkdAxWffqNZNf3V9lChoBmgJaA9DCDYDXJAtwybAlIaUUpRoFUsyaBZHQMVn0AAAAAB1fZQoaAZoCWgPQwixpUdTPZkVwJSGlFKUaBVLMmgWR0DFZ8BwMpgDdX2UKGgGaAloD0MIRUjdzr4CMMCUhpRSlGgVSzJoFkdAxWgwMKkVOHV9lChoBmgJaA9DCGH9n8N8OSPAlIaUUpRoFUsyaBZHQMVoIK46Oo51fZQoaAZoCWgPQwgOTdnpBxk0wJSGlFKUaBVLMmgWR0DFaBEYoAn2dX2UKGgGaAloD0MI+fVDbLB8MMCUhpRSlGgVSzJoFkdAxWgBiLEUCnV9lChoBmgJaA9DCGHe40wTRhXAlIaUUpRoFUsyaBZHQMVoe6CDmKZ1fZQoaAZoCWgPQwixwi0fSYkfwJSGlFKUaBVLMmgWR0DFaGw1rIo3dX2UKGgGaAloD0MI04cuqG8RIsCUhpRSlGgVSzJoFkdAxWhctCiRGXV9lChoBmgJaA9DCLnH0ocuqCHAlIaUUpRoFUsyaBZHQMVoTTsY2sJ1fZQoaAZoCWgPQwgEyNCxg8oVwJSGlFKUaBVLMmgWR0DFaL5BcAzYdX2UKGgGaAloD0MIzv3V477lJMCUhpRSlGgVSzJoFkdAxWiuzhP0qnV9lChoBmgJaA9DCKmieJW1fSbAlIaUUpRoFUsyaBZHQMVonyZjQRh1fZQoaAZoCWgPQwjul09WDAcvwJSGlFKUaBVLMmgWR0DFaI+OU+s6dX2UKGgGaAloD0MITP28qUhtL8CUhpRSlGgVSzJoFkdAxWj9x0+1SnV9lChoBmgJaA9DCCCYo8fvZTfAlIaUUpRoFUsyaBZHQMVo7lImPYF1fZQoaAZoCWgPQwgG2h1SDPAuwJSGlFKUaBVLMmgWR0DFaN6v7m+1dX2UKGgGaAloD0MIZeQs7GkvLsCUhpRSlGgVSzJoFkdAxWjPCPZIx3V9lChoBmgJaA9DCN2ZCYZz5SzAlIaUUpRoFUsyaBZHQMVpP6HsTnJ1fZQoaAZoCWgPQwgxsmSO5b0ewJSGlFKUaBVLMmgWR0DFaTBDqnm8dX2UKGgGaAloD0MIrws/OJ/WNsCUhpRSlGgVSzJoFkdAxWkgy8jAz3V9lChoBmgJaA9DCOfj2lAx0jXAlIaUUpRoFUsyaBZHQMVpETYEnst1fZQoaAZoCWgPQwhubeF5qSAkwJSGlFKUaBVLMmgWR0DFaY0YbbUPdX2UKGgGaAloD0MI5Nwm3CvDF8CUhpRSlGgVSzJoFkdAxWl9m5lOGnV9lChoBmgJaA9DCJbnwd1ZQzDAlIaUUpRoFUsyaBZHQMVpbhXKbKB1fZQoaAZoCWgPQwjcf2Q6dBoewJSGlFKUaBVLMmgWR0DFaV6EYfnwdX2UKGgGaAloD0MIK4arAyAGL8CUhpRSlGgVSzJoFkdAxWnOE/0NBnV9lChoBmgJaA9DCL8OnDOidDLAlIaUUpRoFUsyaBZHQMVpvpxvNvB1fZQoaAZoCWgPQwiRRZp4BwQywJSGlFKUaBVLMmgWR0DFaa8GVzIWdX2UKGgGaAloD0MICyQofoxpHMCUhpRSlGgVSzJoFkdAxWmfYQJ5V3V9lChoBmgJaA9DCGgHXFfMkC7AlIaUUpRoFUsyaBZHQMVqDE4ecQR1fZQoaAZoCWgPQwio5Qeu8kQkwJSGlFKUaBVLMmgWR0DFafzpV0cPdX2UKGgGaAloD0MIONxHbk1SJMCUhpRSlGgVSzJoFkdAxWntQhOgx3V9lChoBmgJaA9DCOzdH+9VmxrAlIaUUpRoFUsyaBZHQMVp3aKtPpJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 200000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}