joshuaphua commited on
Commit
f0345e3
1 Parent(s): 5825afb

End of training

Browse files
Files changed (2) hide show
  1. README.md +11 -11
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8726823238566132
29
  - name: Recall
30
  type: recall
31
- value: 0.875
32
  - name: F1
33
  type: f1
34
- value: 0.8738396251436654
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9719608054269409
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.2170
48
- - Precision: 0.8727
49
- - Recall: 0.875
50
- - F1: 0.8738
51
- - Accuracy: 0.9720
52
 
53
  ## Model description
54
 
@@ -79,8 +79,8 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0728 | 1.0 | 3922 | 0.2114 | 0.8604 | 0.8688 | 0.8646 | 0.9699 |
83
- | 0.0379 | 2.0 | 7844 | 0.2170 | 0.8727 | 0.875 | 0.8738 | 0.9720 |
84
 
85
 
86
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8732321490169024
29
  - name: Recall
30
  type: recall
31
+ value: 0.8964235127478754
32
  - name: F1
33
  type: f1
34
+ value: 0.8846758692993185
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9751049854635512
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: nan
48
+ - Precision: 0.8732
49
+ - Recall: 0.8964
50
+ - F1: 0.8847
51
+ - Accuracy: 0.9751
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0605 | 1.0 | 3922 | nan | 0.8717 | 0.8877 | 0.8796 | 0.9742 |
83
+ | 0.0296 | 2.0 | 7844 | nan | 0.8732 | 0.8964 | 0.8847 | 0.9751 |
84
 
85
 
86
  ### Framework versions
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:99b6666dfde93ce800af1b5615f1c5ae626b2eb99c63ff4fbce2f86ddb660800
3
  size 260843682
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4137bd4c7129849dcf1a1969602541e47b88f37c8b1a920a084eb5939b569653
3
  size 260843682