joshuaphua commited on
Commit
8dad6e3
1 Parent(s): 6b8c095

End of training

Browse files
Files changed (2) hide show
  1. README.md +11 -11
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8574398059934176
29
  - name: Recall
30
  type: recall
31
- value: 0.8764164305949008
32
  - name: F1
33
  type: f1
34
- value: 0.8668242710795901
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9705394637665554
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.2031
48
- - Precision: 0.8574
49
- - Recall: 0.8764
50
- - F1: 0.8668
51
- - Accuracy: 0.9705
52
 
53
  ## Model description
54
 
@@ -79,8 +79,8 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.1409 | 1.0 | 3922 | nan | 0.8533 | 0.8663 | 0.8598 | 0.9699 |
83
- | 0.0998 | 2.0 | 7844 | 0.2031 | 0.8574 | 0.8764 | 0.8668 | 0.9705 |
84
 
85
 
86
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8726823238566132
29
  - name: Recall
30
  type: recall
31
+ value: 0.875
32
  - name: F1
33
  type: f1
34
+ value: 0.8738396251436654
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9719608054269409
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.2170
48
+ - Precision: 0.8727
49
+ - Recall: 0.875
50
+ - F1: 0.8738
51
+ - Accuracy: 0.9720
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0728 | 1.0 | 3922 | 0.2114 | 0.8604 | 0.8688 | 0.8646 | 0.9699 |
83
+ | 0.0379 | 2.0 | 7844 | 0.2170 | 0.8727 | 0.875 | 0.8738 | 0.9720 |
84
 
85
 
86
  ### Framework versions
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7ebb924676628d2a1092b214f1d0ad3d9dd77b2e4bc4fe47cb3a5b5d16ccc15d
3
  size 260843682
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3ccd9dc840f454f444e42472ad9f0a73856cc04fc7685fcb73c169b6923322f
3
  size 260843682