joseph-supples
commited on
Commit
•
7b987c9
1
Parent(s):
02a3600
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 255.63 +/- 18.66
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0603524f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0603529040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06035290d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0603529160>", "_build": "<function ActorCriticPolicy._build at 0x7f06035291f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0603529280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0603529310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06035293a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0603529430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06035294c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0603529550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06035295e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0603528800>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680816509069444286, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABplmT3sWZ+5i/PcO0bamTo0OvO5e2uGOwAAAAAAAAAA8wdKvgWZFj6DNio+D7FDvsAUqzxtMZE8AAAAAAAAAADNS3y99mpHvE9jQTya95E8STKwPU7wbr0AAIA/AACAPzPx072H71c/7vtzvUzxxb5r7IO9L7MXvAAAAAAAAAAAjb8rvkoDnD8V3cG+I70Qv4g4Rr6AIri9AAAAAAAAAAC2/78+I657P1sD9jr82ay+8x1cPtpYwL0AAAAAAAAAAJqUr7xNQhM+/zq6PAT5jr47RSs7dCUHvAAAAAAAAAAAQLURPotdoz/Veeo+HtWrviamMT58MRY+AAAAAAAAAACaUS+9toMXvKAZcz2fzwY9eM+EvfYV2z0AAIA/AACAP6Y1lD24JsW562QsO6x7GjYHccQ6Ye4iNQAAAAAAAIA/ukYXvnPw7z5L+Kc9n59nvkrkKL28rcQ9AAAAAAAAAACacgy9uI+nu861a7u1MnA8SP5AvHqb+rwAAIA/AACAP5osqz0YdRk/WsRKvnMrob7nJQO9TaD0vQAAAAAAAAAAEyJlvicNEL0cUgI7ICOlOUAEfj5F5i+6AACAPwAAgD/mSao9Tt1FP9H3jrwlnpO+fIQyPTA37boAAAAAAAAAAIZEfD538CS9/HWgur0pYDmzcY6+ytLaOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYto39xcDcECUhpRSlIwBbJRNGgGMAXSUR0CRErLoOhCddX2UKGgGaAloD0MICr5p+myQbUCUhpRSlGgVTQABaBZHQJETMxqO9391fZQoaAZoCWgPQwh81jVaDgBGQJSGlFKUaBVLzmgWR0CRFE4TsY2sdX2UKGgGaAloD0MIceMW83NZbkCUhpRSlGgVTRQBaBZHQJEVA7ZFoct1fZQoaAZoCWgPQwhNEeD07kNyQJSGlFKUaBVNVgFoFkdAkRUT4Hoou3V9lChoBmgJaA9DCMsO8Q8b63BAlIaUUpRoFU0IAWgWR0CRFSHRkVesdX2UKGgGaAloD0MIRQ98DNYfcECUhpRSlGgVTQkBaBZHQJEWF4Z/CqJ1fZQoaAZoCWgPQwjh8IKIFJpwQJSGlFKUaBVNKgFoFkdAkRZfJV81GnV9lChoBmgJaA9DCK5nCMesGG5AlIaUUpRoFU0OAWgWR0CRFxgflp49dX2UKGgGaAloD0MIS+mZXuLib0CUhpRSlGgVTRoBaBZHQJEXiq2jO9p1fZQoaAZoCWgPQwgwurw53B1iQJSGlFKUaBVN6ANoFkdAkRhAR9PUKHV9lChoBmgJaA9DCNMW1/jMgG5AlIaUUpRoFU0SAWgWR0CRGFCUX531dX2UKGgGaAloD0MIDkktlAwWcECUhpRSlGgVS/BoFkdAkRiC/bj943V9lChoBmgJaA9DCBK8IY0KzG9AlIaUUpRoFU0dAWgWR0CRGM4BFNL2dX2UKGgGaAloD0MIchQgCqa8cECUhpRSlGgVTSkBaBZHQJEZhOHnEEV1fZQoaAZoCWgPQwitFthj4uFxQJSGlFKUaBVNMwFoFkdAkRmjM3ZPEnV9lChoBmgJaA9DCNVcbjBU5XFAlIaUUpRoFUv4aBZHQJEZ4q3Eycl1fZQoaAZoCWgPQwgZkpOJWwFxQJSGlFKUaBVNIgFoFkdAkRpuT7l7t3V9lChoBmgJaA9DCGjNj7/0FnBAlIaUUpRoFUv1aBZHQJEbR7WuoxZ1fZQoaAZoCWgPQwhbJsPxfEJuQJSGlFKUaBVL+GgWR0CRG3djoZAIdX2UKGgGaAloD0MIoGtfQK+ibkCUhpRSlGgVTRYBaBZHQJEcOdmQKa51fZQoaAZoCWgPQwhgsBu27U5wQJSGlFKUaBVNEQFoFkdAkR2WvfTCtXV9lChoBmgJaA9DCCzxgLKpL3BAlIaUUpRoFU0dAWgWR0CRHZ/PgNwzdX2UKGgGaAloD0MIzOuIQ7Z9b0CUhpRSlGgVS+loFkdAkR5+ruIAO3V9lChoBmgJaA9DCOdVndWCEnBAlIaUUpRoFU0YAWgWR0CRHpY9xIatdX2UKGgGaAloD0MIa9PYXotwbECUhpRSlGgVTQ0BaBZHQJEff/p+tr91fZQoaAZoCWgPQwgonrMFhNBwQJSGlFKUaBVNBgFoFkdAkR+W4EwFknV9lChoBmgJaA9DCHegTnl0D3JAlIaUUpRoFU1LAWgWR0CRIIb2Dg62dX2UKGgGaAloD0MIjnQGRl5mbkCUhpRSlGgVTSABaBZHQJEgqbgCOm11fZQoaAZoCWgPQwjk9zb9WZBuQJSGlFKUaBVNCwFoFkdAkSDhm03OwHV9lChoBmgJaA9DCIdSexFtkHFAlIaUUpRoFU0QAWgWR0CRISqwQlKLdX2UKGgGaAloD0MIArfu5ik8bkCUhpRSlGgVTS4BaBZHQJEiPuUliSd1fZQoaAZoCWgPQwg8FtukIjByQJSGlFKUaBVNNgFoFkdAkSMlEVnEl3V9lChoBmgJaA9DCCbhQh7BiHJAlIaUUpRoFU0jAWgWR0CRI5M5fdAPdX2UKGgGaAloD0MIstR6v9G8T0CUhpRSlGgVS9NoFkdAkSSGYOUdJnV9lChoBmgJaA9DCCno9pKGCHBAlIaUUpRoFU1NAWgWR0CRJO5HEuQIdX2UKGgGaAloD0MIluttM5WycECUhpRSlGgVTTABaBZHQJEk6dRR/Ex1fZQoaAZoCWgPQwi6aMh4FDtwQJSGlFKUaBVNJQFoFkdAkSX49TxXn3V9lChoBmgJaA9DCPrS25+LbW5AlIaUUpRoFU0oAWgWR0CRJgfAKv3bdX2UKGgGaAloD0MImmA413DQcUCUhpRSlGgVTQ4BaBZHQJEmKPFNtZV1fZQoaAZoCWgPQwjhm6bPTnlxQJSGlFKUaBVNDAFoFkdAkSb0W69TP3V9lChoBmgJaA9DCNb/OcyX/3JAlIaUUpRoFUv9aBZHQJEniR4hUzd1fZQoaAZoCWgPQwjJAbuaPPluQJSGlFKUaBVL9WgWR0CRJ6nc+JP7dX2UKGgGaAloD0MIf4gNFg7ocECUhpRSlGgVTSkBaBZHQJEnz349HMF1fZQoaAZoCWgPQwjWxAJfUdZvQJSGlFKUaBVNEAFoFkdAkSgkgr6LwXV9lChoBmgJaA9DCMB7R41Jb3NAlIaUUpRoFU05AWgWR0CRKaW+XZ5BdX2UKGgGaAloD0MIt+wQ/7C3cECUhpRSlGgVTRcBaBZHQJEp2Lm6oVF1fZQoaAZoCWgPQwh324Xm+jNxQJSGlFKUaBVNJwFoFkdAkTzCHymQ83V9lChoBmgJaA9DCAVqMXiY7W5AlIaUUpRoFU0ZAWgWR0CRPL8n/kvLdX2UKGgGaAloD0MIOSuiJjqzcECUhpRSlGgVTQQBaBZHQJE9UpPRArx1fZQoaAZoCWgPQwh+yFuuPhVxQJSGlFKUaBVNCAFoFkdAkT4Mer+5v3V9lChoBmgJaA9DCPuxSX7EGm9AlIaUUpRoFU0AAWgWR0CRPzbjcVQAdX2UKGgGaAloD0MIpwTEJBzycUCUhpRSlGgVTSgBaBZHQJE/X2wmmch1fZQoaAZoCWgPQwia7Qp9MG5yQJSGlFKUaBVNGAFoFkdAkUBF8w5/9nV9lChoBmgJaA9DCGpnmNrSM25AlIaUUpRoFUv8aBZHQJFBig2606Z1fZQoaAZoCWgPQwhF2PD0iqlyQJSGlFKUaBVNSQFoFkdAkUKq/Efkm3V9lChoBmgJaA9DCKlQ3Vz8G3JAlIaUUpRoFU0yAWgWR0CRQxJOFg2IdX2UKGgGaAloD0MIw2M/i6UYXUCUhpRSlGgVTegDaBZHQJFDnDl5nlJ1fZQoaAZoCWgPQwjXhopxfudvQJSGlFKUaBVNGQFoFkdAkUPfEXLvC3V9lChoBmgJaA9DCFyN7EpLM3JAlIaUUpRoFU0oAWgWR0CRQ/oLofSydX2UKGgGaAloD0MIz/dT4yWPckCUhpRSlGgVTUwBaBZHQJFFFWCEpRZ1fZQoaAZoCWgPQwjgvDjx1QFxQJSGlFKUaBVNFgFoFkdAkUZn7+DODHV9lChoBmgJaA9DCB6jPPOykXBAlIaUUpRoFU0lAWgWR0CRRrkqMFUydX2UKGgGaAloD0MIx/Xv+kzQbUCUhpRSlGgVS/1oFkdAkUftHhCMP3V9lChoBmgJaA9DCNAJoYMuGm9AlIaUUpRoFU0PAWgWR0CRSBmYjSogdX2UKGgGaAloD0MIiNUfYRgPbkCUhpRSlGgVTSUBaBZHQJFJC1kUbkx1fZQoaAZoCWgPQwhBu0OKwV1xQJSGlFKUaBVNIAFoFkdAkUsywSrYG3V9lChoBmgJaA9DCHbAdcWMhkxAlIaUUpRoFUvpaBZHQJFLPDdgv111fZQoaAZoCWgPQwgw9l58UZlyQJSGlFKUaBVNPgFoFkdAkUtJ6IFeOXV9lChoBmgJaA9DCIDxDBo6pXBAlIaUUpRoFU0NAWgWR0CRS2eCTUy6dX2UKGgGaAloD0MIv2INF/l3cECUhpRSlGgVTSQBaBZHQJFLcAjps411fZQoaAZoCWgPQwjltn2P+vVSQJSGlFKUaBVLyWgWR0CRS8o0ALiNdX2UKGgGaAloD0MIzhySWqiZcUCUhpRSlGgVS/VoFkdAkU0DXe3x4XV9lChoBmgJaA9DCBgmUwVjPnFAlIaUUpRoFU0VAWgWR0CRTQuKoAGTdX2UKGgGaAloD0MIkBDlC9pVcUCUhpRSlGgVTRoBaBZHQJFNZ9Dx9Xt1fZQoaAZoCWgPQwi86gHzkB9wQJSGlFKUaBVNKAFoFkdAkU9ODJ2dNHV9lChoBmgJaA9DCDwRxHm4fXFAlIaUUpRoFUvjaBZHQJFPYT6BRQ91fZQoaAZoCWgPQwgBNbVs7S1wQJSGlFKUaBVNBgFoFkdAkVFCULUkOnV9lChoBmgJaA9DCKacL/ZeWnJAlIaUUpRoFU1AAWgWR0CRUV1+AmRedX2UKGgGaAloD0MIJGB0eTPvcUCUhpRSlGgVTUsBaBZHQJFRe6xxDLN1fZQoaAZoCWgPQwiAEMmQ49VyQJSGlFKUaBVNBAFoFkdAkVNFfzBhyHV9lChoBmgJaA9DCCCb5Ed8SnBAlIaUUpRoFU0MAWgWR0CRU09vS+g2dX2UKGgGaAloD0MIZHWr5+TicECUhpRSlGgVTRUBaBZHQJFT1KbrkbR1fZQoaAZoCWgPQwiHM7+aw2twQJSGlFKUaBVNIQFoFkdAkVTA0fozN3V9lChoBmgJaA9DCHZSX5Z233BAlIaUUpRoFU03AWgWR0CRVNt/WlMzdX2UKGgGaAloD0MIq3tkc5UocUCUhpRSlGgVTVsBaBZHQJFV6uSwGGF1fZQoaAZoCWgPQwjMJyuGK9JxQJSGlFKUaBVNHAFoFkdAkVYThxYJV3V9lChoBmgJaA9DCEeRtYaS0nBAlIaUUpRoFU0RAWgWR0CRVjIe5nUUdX2UKGgGaAloD0MIy73ArJAzcUCUhpRSlGgVTQ4BaBZHQJFYP/p+tr91fZQoaAZoCWgPQwjZPuQtV2FvQJSGlFKUaBVNGwFoFkdAkViX974SH3V9lChoBmgJaA9DCJLp0Ok5Z3FAlIaUUpRoFU1uAWgWR0CRWLFNtZV5dX2UKGgGaAloD0MItFn1uVq/cUCUhpRSlGgVTQkBaBZHQJFaBmUW2w51fZQoaAZoCWgPQwi4AZ8fhlVxQJSGlFKUaBVNKAFoFkdAkVr26GxlhHV9lChoBmgJaA9DCKsINxmVKHFAlIaUUpRoFUv2aBZHQJFbwwFkhA51fZQoaAZoCWgPQwhWR450BuJUQJSGlFKUaBVLx2gWR0CRXIAtnPE9dX2UKGgGaAloD0MIVFOSdbjQbUCUhpRSlGgVTRsBaBZHQJFcgV32VVx1fZQoaAZoCWgPQwi7050nHsxxQJSGlFKUaBVNJQFoFkdAkVzdFa0Qb3V9lChoBmgJaA9DCCFzZVDti25AlIaUUpRoFU0hAWgWR0CRXiL/CIk7dX2UKGgGaAloD0MI5pSAmMTvcUCUhpRSlGgVTZsBaBZHQJFeuPKdQO51fZQoaAZoCWgPQwiDTggdtJRyQJSGlFKUaBVNGwFoFkdAkV8QS8J2MnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97e1a46924a2384e81e40db0af93a7481de449fa0a6ac3abe0eecc9ac5d388b0
|
3 |
+
size 147400
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0603524f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0603529040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06035290d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0603529160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f06035291f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0603529280>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0603529310>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06035293a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0603529430>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06035294c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0603529550>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06035295e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f0603528800>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1680816509069444286,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABplmT3sWZ+5i/PcO0bamTo0OvO5e2uGOwAAAAAAAAAA8wdKvgWZFj6DNio+D7FDvsAUqzxtMZE8AAAAAAAAAADNS3y99mpHvE9jQTya95E8STKwPU7wbr0AAIA/AACAPzPx072H71c/7vtzvUzxxb5r7IO9L7MXvAAAAAAAAAAAjb8rvkoDnD8V3cG+I70Qv4g4Rr6AIri9AAAAAAAAAAC2/78+I657P1sD9jr82ay+8x1cPtpYwL0AAAAAAAAAAJqUr7xNQhM+/zq6PAT5jr47RSs7dCUHvAAAAAAAAAAAQLURPotdoz/Veeo+HtWrviamMT58MRY+AAAAAAAAAACaUS+9toMXvKAZcz2fzwY9eM+EvfYV2z0AAIA/AACAP6Y1lD24JsW562QsO6x7GjYHccQ6Ye4iNQAAAAAAAIA/ukYXvnPw7z5L+Kc9n59nvkrkKL28rcQ9AAAAAAAAAACacgy9uI+nu861a7u1MnA8SP5AvHqb+rwAAIA/AACAP5osqz0YdRk/WsRKvnMrob7nJQO9TaD0vQAAAAAAAAAAEyJlvicNEL0cUgI7ICOlOUAEfj5F5i+6AACAPwAAgD/mSao9Tt1FP9H3jrwlnpO+fIQyPTA37boAAAAAAAAAAIZEfD538CS9/HWgur0pYDmzcY6+ytLaOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYto39xcDcECUhpRSlIwBbJRNGgGMAXSUR0CRErLoOhCddX2UKGgGaAloD0MICr5p+myQbUCUhpRSlGgVTQABaBZHQJETMxqO9391fZQoaAZoCWgPQwh81jVaDgBGQJSGlFKUaBVLzmgWR0CRFE4TsY2sdX2UKGgGaAloD0MIceMW83NZbkCUhpRSlGgVTRQBaBZHQJEVA7ZFoct1fZQoaAZoCWgPQwhNEeD07kNyQJSGlFKUaBVNVgFoFkdAkRUT4Hoou3V9lChoBmgJaA9DCMsO8Q8b63BAlIaUUpRoFU0IAWgWR0CRFSHRkVesdX2UKGgGaAloD0MIRQ98DNYfcECUhpRSlGgVTQkBaBZHQJEWF4Z/CqJ1fZQoaAZoCWgPQwjh8IKIFJpwQJSGlFKUaBVNKgFoFkdAkRZfJV81GnV9lChoBmgJaA9DCK5nCMesGG5AlIaUUpRoFU0OAWgWR0CRFxgflp49dX2UKGgGaAloD0MIS+mZXuLib0CUhpRSlGgVTRoBaBZHQJEXiq2jO9p1fZQoaAZoCWgPQwgwurw53B1iQJSGlFKUaBVN6ANoFkdAkRhAR9PUKHV9lChoBmgJaA9DCNMW1/jMgG5AlIaUUpRoFU0SAWgWR0CRGFCUX531dX2UKGgGaAloD0MIDkktlAwWcECUhpRSlGgVS/BoFkdAkRiC/bj943V9lChoBmgJaA9DCBK8IY0KzG9AlIaUUpRoFU0dAWgWR0CRGM4BFNL2dX2UKGgGaAloD0MIchQgCqa8cECUhpRSlGgVTSkBaBZHQJEZhOHnEEV1fZQoaAZoCWgPQwitFthj4uFxQJSGlFKUaBVNMwFoFkdAkRmjM3ZPEnV9lChoBmgJaA9DCNVcbjBU5XFAlIaUUpRoFUv4aBZHQJEZ4q3Eycl1fZQoaAZoCWgPQwgZkpOJWwFxQJSGlFKUaBVNIgFoFkdAkRpuT7l7t3V9lChoBmgJaA9DCGjNj7/0FnBAlIaUUpRoFUv1aBZHQJEbR7WuoxZ1fZQoaAZoCWgPQwhbJsPxfEJuQJSGlFKUaBVL+GgWR0CRG3djoZAIdX2UKGgGaAloD0MIoGtfQK+ibkCUhpRSlGgVTRYBaBZHQJEcOdmQKa51fZQoaAZoCWgPQwhgsBu27U5wQJSGlFKUaBVNEQFoFkdAkR2WvfTCtXV9lChoBmgJaA9DCCzxgLKpL3BAlIaUUpRoFU0dAWgWR0CRHZ/PgNwzdX2UKGgGaAloD0MIzOuIQ7Z9b0CUhpRSlGgVS+loFkdAkR5+ruIAO3V9lChoBmgJaA9DCOdVndWCEnBAlIaUUpRoFU0YAWgWR0CRHpY9xIatdX2UKGgGaAloD0MIa9PYXotwbECUhpRSlGgVTQ0BaBZHQJEff/p+tr91fZQoaAZoCWgPQwgonrMFhNBwQJSGlFKUaBVNBgFoFkdAkR+W4EwFknV9lChoBmgJaA9DCHegTnl0D3JAlIaUUpRoFU1LAWgWR0CRIIb2Dg62dX2UKGgGaAloD0MIjnQGRl5mbkCUhpRSlGgVTSABaBZHQJEgqbgCOm11fZQoaAZoCWgPQwjk9zb9WZBuQJSGlFKUaBVNCwFoFkdAkSDhm03OwHV9lChoBmgJaA9DCIdSexFtkHFAlIaUUpRoFU0QAWgWR0CRISqwQlKLdX2UKGgGaAloD0MIArfu5ik8bkCUhpRSlGgVTS4BaBZHQJEiPuUliSd1fZQoaAZoCWgPQwg8FtukIjByQJSGlFKUaBVNNgFoFkdAkSMlEVnEl3V9lChoBmgJaA9DCCbhQh7BiHJAlIaUUpRoFU0jAWgWR0CRI5M5fdAPdX2UKGgGaAloD0MIstR6v9G8T0CUhpRSlGgVS9NoFkdAkSSGYOUdJnV9lChoBmgJaA9DCCno9pKGCHBAlIaUUpRoFU1NAWgWR0CRJO5HEuQIdX2UKGgGaAloD0MIluttM5WycECUhpRSlGgVTTABaBZHQJEk6dRR/Ex1fZQoaAZoCWgPQwi6aMh4FDtwQJSGlFKUaBVNJQFoFkdAkSX49TxXn3V9lChoBmgJaA9DCPrS25+LbW5AlIaUUpRoFU0oAWgWR0CRJgfAKv3bdX2UKGgGaAloD0MImmA413DQcUCUhpRSlGgVTQ4BaBZHQJEmKPFNtZV1fZQoaAZoCWgPQwjhm6bPTnlxQJSGlFKUaBVNDAFoFkdAkSb0W69TP3V9lChoBmgJaA9DCNb/OcyX/3JAlIaUUpRoFUv9aBZHQJEniR4hUzd1fZQoaAZoCWgPQwjJAbuaPPluQJSGlFKUaBVL9WgWR0CRJ6nc+JP7dX2UKGgGaAloD0MIf4gNFg7ocECUhpRSlGgVTSkBaBZHQJEnz349HMF1fZQoaAZoCWgPQwjWxAJfUdZvQJSGlFKUaBVNEAFoFkdAkSgkgr6LwXV9lChoBmgJaA9DCMB7R41Jb3NAlIaUUpRoFU05AWgWR0CRKaW+XZ5BdX2UKGgGaAloD0MIt+wQ/7C3cECUhpRSlGgVTRcBaBZHQJEp2Lm6oVF1fZQoaAZoCWgPQwh324Xm+jNxQJSGlFKUaBVNJwFoFkdAkTzCHymQ83V9lChoBmgJaA9DCAVqMXiY7W5AlIaUUpRoFU0ZAWgWR0CRPL8n/kvLdX2UKGgGaAloD0MIOSuiJjqzcECUhpRSlGgVTQQBaBZHQJE9UpPRArx1fZQoaAZoCWgPQwh+yFuuPhVxQJSGlFKUaBVNCAFoFkdAkT4Mer+5v3V9lChoBmgJaA9DCPuxSX7EGm9AlIaUUpRoFU0AAWgWR0CRPzbjcVQAdX2UKGgGaAloD0MIpwTEJBzycUCUhpRSlGgVTSgBaBZHQJE/X2wmmch1fZQoaAZoCWgPQwia7Qp9MG5yQJSGlFKUaBVNGAFoFkdAkUBF8w5/9nV9lChoBmgJaA9DCGpnmNrSM25AlIaUUpRoFUv8aBZHQJFBig2606Z1fZQoaAZoCWgPQwhF2PD0iqlyQJSGlFKUaBVNSQFoFkdAkUKq/Efkm3V9lChoBmgJaA9DCKlQ3Vz8G3JAlIaUUpRoFU0yAWgWR0CRQxJOFg2IdX2UKGgGaAloD0MIw2M/i6UYXUCUhpRSlGgVTegDaBZHQJFDnDl5nlJ1fZQoaAZoCWgPQwjXhopxfudvQJSGlFKUaBVNGQFoFkdAkUPfEXLvC3V9lChoBmgJaA9DCFyN7EpLM3JAlIaUUpRoFU0oAWgWR0CRQ/oLofSydX2UKGgGaAloD0MIz/dT4yWPckCUhpRSlGgVTUwBaBZHQJFFFWCEpRZ1fZQoaAZoCWgPQwjgvDjx1QFxQJSGlFKUaBVNFgFoFkdAkUZn7+DODHV9lChoBmgJaA9DCB6jPPOykXBAlIaUUpRoFU0lAWgWR0CRRrkqMFUydX2UKGgGaAloD0MIx/Xv+kzQbUCUhpRSlGgVS/1oFkdAkUftHhCMP3V9lChoBmgJaA9DCNAJoYMuGm9AlIaUUpRoFU0PAWgWR0CRSBmYjSogdX2UKGgGaAloD0MIiNUfYRgPbkCUhpRSlGgVTSUBaBZHQJFJC1kUbkx1fZQoaAZoCWgPQwhBu0OKwV1xQJSGlFKUaBVNIAFoFkdAkUsywSrYG3V9lChoBmgJaA9DCHbAdcWMhkxAlIaUUpRoFUvpaBZHQJFLPDdgv111fZQoaAZoCWgPQwgw9l58UZlyQJSGlFKUaBVNPgFoFkdAkUtJ6IFeOXV9lChoBmgJaA9DCIDxDBo6pXBAlIaUUpRoFU0NAWgWR0CRS2eCTUy6dX2UKGgGaAloD0MIv2INF/l3cECUhpRSlGgVTSQBaBZHQJFLcAjps411fZQoaAZoCWgPQwjltn2P+vVSQJSGlFKUaBVLyWgWR0CRS8o0ALiNdX2UKGgGaAloD0MIzhySWqiZcUCUhpRSlGgVS/VoFkdAkU0DXe3x4XV9lChoBmgJaA9DCBgmUwVjPnFAlIaUUpRoFU0VAWgWR0CRTQuKoAGTdX2UKGgGaAloD0MIkBDlC9pVcUCUhpRSlGgVTRoBaBZHQJFNZ9Dx9Xt1fZQoaAZoCWgPQwi86gHzkB9wQJSGlFKUaBVNKAFoFkdAkU9ODJ2dNHV9lChoBmgJaA9DCDwRxHm4fXFAlIaUUpRoFUvjaBZHQJFPYT6BRQ91fZQoaAZoCWgPQwgBNbVs7S1wQJSGlFKUaBVNBgFoFkdAkVFCULUkOnV9lChoBmgJaA9DCKacL/ZeWnJAlIaUUpRoFU1AAWgWR0CRUV1+AmRedX2UKGgGaAloD0MIJGB0eTPvcUCUhpRSlGgVTUsBaBZHQJFRe6xxDLN1fZQoaAZoCWgPQwiAEMmQ49VyQJSGlFKUaBVNBAFoFkdAkVNFfzBhyHV9lChoBmgJaA9DCCCb5Ed8SnBAlIaUUpRoFU0MAWgWR0CRU09vS+g2dX2UKGgGaAloD0MIZHWr5+TicECUhpRSlGgVTRUBaBZHQJFT1KbrkbR1fZQoaAZoCWgPQwiHM7+aw2twQJSGlFKUaBVNIQFoFkdAkVTA0fozN3V9lChoBmgJaA9DCHZSX5Z233BAlIaUUpRoFU03AWgWR0CRVNt/WlMzdX2UKGgGaAloD0MIq3tkc5UocUCUhpRSlGgVTVsBaBZHQJFV6uSwGGF1fZQoaAZoCWgPQwjMJyuGK9JxQJSGlFKUaBVNHAFoFkdAkVYThxYJV3V9lChoBmgJaA9DCEeRtYaS0nBAlIaUUpRoFU0RAWgWR0CRVjIe5nUUdX2UKGgGaAloD0MIy73ArJAzcUCUhpRSlGgVTQ4BaBZHQJFYP/p+tr91fZQoaAZoCWgPQwjZPuQtV2FvQJSGlFKUaBVNGwFoFkdAkViX974SH3V9lChoBmgJaA9DCJLp0Ok5Z3FAlIaUUpRoFU1uAWgWR0CRWLFNtZV5dX2UKGgGaAloD0MItFn1uVq/cUCUhpRSlGgVTQkBaBZHQJFaBmUW2w51fZQoaAZoCWgPQwi4AZ8fhlVxQJSGlFKUaBVNKAFoFkdAkVr26GxlhHV9lChoBmgJaA9DCKsINxmVKHFAlIaUUpRoFUv2aBZHQJFbwwFkhA51fZQoaAZoCWgPQwhWR450BuJUQJSGlFKUaBVLx2gWR0CRXIAtnPE9dX2UKGgGaAloD0MIVFOSdbjQbUCUhpRSlGgVTRsBaBZHQJFcgV32VVx1fZQoaAZoCWgPQwi7050nHsxxQJSGlFKUaBVNJQFoFkdAkVzdFa0Qb3V9lChoBmgJaA9DCCFzZVDti25AlIaUUpRoFU0hAWgWR0CRXiL/CIk7dX2UKGgGaAloD0MI5pSAmMTvcUCUhpRSlGgVTZsBaBZHQJFeuPKdQO51fZQoaAZoCWgPQwiDTggdtJRyQJSGlFKUaBVNGwFoFkdAkV8QS8J2MnVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:631c73be6858b3c6f702400916e2ddfbeb5f22c0eb9bc3fb49ee58831fb68e68
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6c2a4c08e788009a454d9cb017fd01318ea0d5def1d9b39c22d867eef9287ce
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (230 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 255.62512401356162, "std_reward": 18.663076605743505, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-06T22:02:07.798622"}
|