josef-o commited on
Commit
679dbee
1 Parent(s): 0b6dae1

Adds ppo lunar lander model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 257.91 +/- 17.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78505be40af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78505be40b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78505be40c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78505be40ca0>", "_build": "<function ActorCriticPolicy._build at 0x78505be40d30>", "forward": "<function ActorCriticPolicy.forward at 0x78505be40dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78505be40e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78505be40ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x78505be40f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78505be41000>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78505be41090>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78505be41120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78505bddf880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693244156582963289, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNcn7yex6g/1cXqvSdT177Aq0K9o13+vQAAAAAAAAAAEDubPldiaD8ItNg+o5UKvzd90D7SIZM9AAAAAAAAAADGeTG+ccFOP9v92D3UsLG+ClOrvEWywDwAAAAAAAAAALP5SD1o0sM+IpA2vOFMZ76QwZU8Zi0PPgAAAAAAAAAAzQS8vUzRqj8mrE++6y6rvtXtGL5IcQq+AAAAAAAAAACzEiA9SNWWuiqgiTOMvlmurqT5um7JrbMAAIA/AACAP4CGsT1cO0a64DfXuO94JjRbubm6Q54AOAAAgD8AAIA/7r+Avjwwqz/+a7G+M5qTvmQbrL5LhFm9AAAAAAAAAAAIHIS+25yAPwByAD1gm8e+VmoGvpbI/D0AAAAAAAAAAJoel7z+veY+yxWwPa9Jnr4rR908I11CPQAAAAAAAAAA2hJivsHQhj92AiS+U0O0vhJMjb4GPNg9AAAAAAAAAAAN0oK9GT4VP81MoD3AhZa+w3REPRjTVLwAAAAAAAAAACAdD75VJ40/drFuvlJ+gL742F++F6UmvAAAAAAAAAAAmmZLPbhD/Lsqxnu8gUIiPQ+pWT0mBwS+AACAPwAAgD+GNw6+88iUPpDk2T2Rl1u+qbAcPAUKU70AAAAAAAAAAIBwRL0DGBe8vwgyPJJ1tjzfxYA9TAyWvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF7u+Vkc0ciMAWyUTegDjAF0lEdAlluTLW7OFHV9lChoBkdAcfsOt4iX6mgHTZUCaAhHQJZeDIGQjlh1fZQoaAZHQHBmEvf0mMRoB01NAmgIR0CWXwkv9LpSdX2UKGgGR0BxLKc5Ke05aAdNWgFoCEdAll8mNm16V3V9lChoBkdAckulKsdT52gHTdgBaAhHQJZhz7pFCsx1fZQoaAZHQHGGMYl6Z6VoB00hAWgIR0CWYlOB19v1dX2UKGgGR0ByPeejEehgaAdNhwFoCEdAlmKrrcCYC3V9lChoBkdAbyBRiPQv6GgHTYkBaAhHQJZkJWNm16V1fZQoaAZHQHBszzRQaaVoB00lAWgIR0CWZDiKR+z/dX2UKGgGR0BxPA43m3fAaAdNgwFoCEdAlmarm2b5M3V9lChoBkdAcIekDIRywWgHTcQBaAhHQJZqgFHJ9y91fZQoaAZHQG/Zg62fChxoB03kA2gIR0CWbQrPt2LYdX2UKGgGR0ByvkpmVZ9vaAdNnAFoCEdAlm0y1AqusHV9lChoBkdAcQZ/yGzrvGgHTXQBaAhHQJZwU88s+V11fZQoaAZHQG4o2YfGMn9oB00HAWgIR0CWcHy6tknUdX2UKGgGR0BwY0biqABlaAdNNgFoCEdAlnCfiYLLIXV9lChoBkdAcQqNs3yZr2gHTUgCaAhHQJZzx8IAwPB1fZQoaAZHQHDBlZTyauxoB01KA2gIR0CWdi0bLlmwdX2UKGgGR0BvYunZTQ3QaAdNDAJoCEdAlnj/9pAUtnV9lChoBkdAcq5ZNwiqyWgHTTgBaAhHQJZ9TL/0dzZ1fZQoaAZHQHDERFZxJd1oB02uAWgIR0CWkRJGvwEydX2UKGgGR0BwLm1UlzEKaAdNXgJoCEdAlpFa+i8Fp3V9lChoBkdAcPy0L+glGGgHTRQCaAhHQJaR8SZjQRh1fZQoaAZHQG9o9VWCEpRoB01UAmgIR0CWkt1SflIVdX2UKGgGR0Bvddlum78OaAdNyQJoCEdAlpRahpQDWHV9lChoBkdAb/0Emplz2mgHTW4BaAhHQJaU50wJw851fZQoaAZHQHFIbsa86FNoB02xAmgIR0CWlpZg5R0mdX2UKGgGR0Bv1S7mMfihaAdNRANoCEdAlpbd29tdiXV9lChoBkdAceY2r4nF52gHTVkBaAhHQJaXSReTmnx1fZQoaAZHQHF3v7WNFSdoB01OAWgIR0CWm/2iL2pRdX2UKGgGR0ByFeYOUdJbaAdNEwJoCEdAlp38XWOIZnV9lChoBkdAZmz8TBZZCGgHTegDaAhHQJag9Cv5gw51fZQoaAZHQHHO1HFxXGRoB012AWgIR0CWo5mShakidX2UKGgGR0BxBXOt4iX6aAdNJQFoCEdAlqZHnMdLhHV9lChoBkdAcLOicG1QZWgHTTkCaAhHQJanwfzSThZ1fZQoaAZHQG9a64+bExZoB01tAWgIR0CWp9LlmvnsdX2UKGgGR0Bx3ju7YkE+aAdNVAFoCEdAlqiHBP9DQnV9lChoBkdAb3LprULDymgHTeQCaAhHQJaqT7k4m1J1fZQoaAZHQHD26esgdOtoB024AWgIR0CWqsMxGlQ/dX2UKGgGR0BxL7ghr30xaAdNrgFoCEdAlqtR9w3o93V9lChoBkdAcNcoybhFVmgHTQYCaAhHQJat3+o99tx1fZQoaAZHQHDsCOaOPvNoB020AWgIR0CWrlgPmPo3dX2UKGgGR0BxoaIeo1k2aAdN2wFoCEdAlq/+SjgydnV9lChoBkdAYfOHqu8sc2gHTegDaAhHQJayFj0+TvB1fZQoaAZHQHAlK7Ackt5oB00pAWgIR0CWtNTN+so2dX2UKGgGR0BvfnAoG6f8aAdNXwJoCEdAlrX/642CNHV9lChoBkdAcO5ZvkzXSWgHTRMBaAhHQJa26HGjsUt1fZQoaAZHQHIFUJWvKU5oB00bAmgIR0CWtwUqhDgJdX2UKGgGR0BuwzVnVXmvaAdN8QFoCEdAlrjhpDeCTXV9lChoBkdAbcF8OTaCc2gHTS0CaAhHQJa5YMSbpeN1fZQoaAZHQHF75hrnDBNoB03PAWgIR0CWu82BJ7LMdX2UKGgGR0Bvw6xA0KqoaAdN5gFoCEdAlr+nS4OMEXV9lChoBkdAb7gj7ALy+mgHTawCaAhHQJbC/rmhdt51fZQoaAZHQG+FjHOryUdoB010AmgIR0CWwzwd8zAOdX2UKGgGR0Bw1m9rXUYsaAdNEwFoCEdAlsNaCUX533V9lChoBkdAb2tk6tDD0mgHTa0CaAhHQJbWrICEHt51fZQoaAZHQHD/o+wC8vpoB03VAWgIR0CW1sw3o9s8dX2UKGgGR0BuuUliSaE0aAdNZwFoCEdAltct7F85S3V9lChoBkdAVHQvwmVqvmgHTRoBaAhHQJbYNKlHjId1fZQoaAZHQHBtJrpJPIpoB005AmgIR0CW2cYht+CsdX2UKGgGR0BxTHDIikftaAdNhwFoCEdAltomZZ0Sy3V9lChoBkdAcPugTyrgfmgHTbICaAhHQJbbJ2GIsRR1fZQoaAZHQG9bjEWIoE1oB00lAWgIR0CW26fP5YYBdX2UKGgGR0BscMcIZ62OaAdNowFoCEdAlt6i22G7BnV9lChoBkdAcH30Qsf7rWgHTRICaAhHQJbio0UGmk51fZQoaAZHQHE21UlzEJloB00SA2gIR0CW5OonKGL2dX2UKGgGR0BxB7tKIznBaAdNOQFoCEdAluV2fGuLaXV9lChoBkdAbUJpg1FYuGgHTX8BaAhHQJbldVmz0H11fZQoaAZHQHJihMajveBoB01IAWgIR0CW6gQIUrTZdX2UKGgGR0Byb9K02LpBaAdNMQFoCEdAluqpc1O0s3V9lChoBkdAbeM5vLowEmgHTaEBaAhHQJbrPcdo3711fZQoaAZHQHDZuCkGiYdoB02OAWgIR0CW6+1nuiN9dX2UKGgGR0BvJEkyDZlGaAdNcAFoCEdAlu0OrU9ZBHV9lChoBkdAbe87EpAlfWgHTVgBaAhHQJbtgfFJg9h1fZQoaAZHQHBHQjQiRnxoB03YAWgIR0CW7ZGAkLQYdX2UKGgGR0BwhKhN/OMVaAdN0wFoCEdAlu6Kw6hg3XV9lChoBkdAccewVTJhfGgHTdQBaAhHQJbux36hxo91fZQoaAZHQHGwxXGOuJVoB02MAWgIR0CW7uGTcIqtdX2UKGgGR0ByfMBsANobaAdNaQFoCEdAlu/ju8brC3V9lChoBkdAcFRBrN4Z/GgHTVEBaAhHQJbxRgfEGaB1fZQoaAZHQGH87eVLSNRoB03oA2gIR0CW8hd92HLzdX2UKGgGR0BwX8ZwXIluaAdNYAFoCEdAlvOBdUsFuHV9lChoBkdAb6ASSNfgJmgHTWwBaAhHQJbznUH6dlN1fZQoaAZHQHC5r4etCAtoB01uAWgIR0CW8/0KJEYwdX2UKGgGR0Bw9PnKW9lFaAdNLwFoCEdAlvWXjlxOtXV9lChoBkdAcV0M2WIGhWgHTREBaAhHQJb2h9jPOY91fZQoaAZHQHEjWthd+odoB01tAWgIR0CW9vqIJqqPdX2UKGgGR0BxA+5tm+TNaAdNHQFoCEdAlvcXzcynDXV9lChoBkdAcUpCBPKuCGgHTUsBaAhHQJb6UNEw35x1fZQoaAZHQHB7/SH/LkloB01DAWgIR0CW+6r2g398dX2UKGgGR0BwcIPDpC8faAdNygFoCEdAlvxwwCbMHXV9lChoBkdAcSXvlU6xPmgHTQcCaAhHQJb9xmVZ9ux1fZQoaAZHQHCwFtXPqs5oB02hAWgIR0CW/hWu5jH5dX2UKGgGR0BwWqYTj/+9aAdNRAFoCEdAlv6ttQ9A5nV9lChoBkdAblVU4rBj4GgHTToBaAhHQJb/6gte2NN1fZQoaAZHQG1a/dIoVmBoB003AWgIR0CXAECHARChdX2UKGgGR0BuUrjtG/etaAdNRQFoCEdAlwA98eCCjHV9lChoBkdAbVoKHfuTimgHTYwBaAhHQJcAhVYISlF1fZQoaAZHQHBnwkTpPh1oB00cAmgIR0CXAMvze40/dX2UKGgGR0BxTRh5Pdl/aAdNKQFoCEdAlwFM1sLv1HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2950c6dfe5a64643db15825ed3f1aa6d4954067cf106b265f086dd49923893f8
3
+ size 146946
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78505be40af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78505be40b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78505be40c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78505be40ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78505be40d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78505be40dc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78505be40e50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78505be40ee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78505be40f70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78505be41000>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78505be41090>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78505be41120>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78505bddf880>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1693244156582963289,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNcn7yex6g/1cXqvSdT177Aq0K9o13+vQAAAAAAAAAAEDubPldiaD8ItNg+o5UKvzd90D7SIZM9AAAAAAAAAADGeTG+ccFOP9v92D3UsLG+ClOrvEWywDwAAAAAAAAAALP5SD1o0sM+IpA2vOFMZ76QwZU8Zi0PPgAAAAAAAAAAzQS8vUzRqj8mrE++6y6rvtXtGL5IcQq+AAAAAAAAAACzEiA9SNWWuiqgiTOMvlmurqT5um7JrbMAAIA/AACAP4CGsT1cO0a64DfXuO94JjRbubm6Q54AOAAAgD8AAIA/7r+Avjwwqz/+a7G+M5qTvmQbrL5LhFm9AAAAAAAAAAAIHIS+25yAPwByAD1gm8e+VmoGvpbI/D0AAAAAAAAAAJoel7z+veY+yxWwPa9Jnr4rR908I11CPQAAAAAAAAAA2hJivsHQhj92AiS+U0O0vhJMjb4GPNg9AAAAAAAAAAAN0oK9GT4VP81MoD3AhZa+w3REPRjTVLwAAAAAAAAAACAdD75VJ40/drFuvlJ+gL742F++F6UmvAAAAAAAAAAAmmZLPbhD/Lsqxnu8gUIiPQ+pWT0mBwS+AACAPwAAgD+GNw6+88iUPpDk2T2Rl1u+qbAcPAUKU70AAAAAAAAAAIBwRL0DGBe8vwgyPJJ1tjzfxYA9TAyWvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF7u+Vkc0ciMAWyUTegDjAF0lEdAlluTLW7OFHV9lChoBkdAcfsOt4iX6mgHTZUCaAhHQJZeDIGQjlh1fZQoaAZHQHBmEvf0mMRoB01NAmgIR0CWXwkv9LpSdX2UKGgGR0BxLKc5Ke05aAdNWgFoCEdAll8mNm16V3V9lChoBkdAckulKsdT52gHTdgBaAhHQJZhz7pFCsx1fZQoaAZHQHGGMYl6Z6VoB00hAWgIR0CWYlOB19v1dX2UKGgGR0ByPeejEehgaAdNhwFoCEdAlmKrrcCYC3V9lChoBkdAbyBRiPQv6GgHTYkBaAhHQJZkJWNm16V1fZQoaAZHQHBszzRQaaVoB00lAWgIR0CWZDiKR+z/dX2UKGgGR0BxPA43m3fAaAdNgwFoCEdAlmarm2b5M3V9lChoBkdAcIekDIRywWgHTcQBaAhHQJZqgFHJ9y91fZQoaAZHQG/Zg62fChxoB03kA2gIR0CWbQrPt2LYdX2UKGgGR0ByvkpmVZ9vaAdNnAFoCEdAlm0y1AqusHV9lChoBkdAcQZ/yGzrvGgHTXQBaAhHQJZwU88s+V11fZQoaAZHQG4o2YfGMn9oB00HAWgIR0CWcHy6tknUdX2UKGgGR0BwY0biqABlaAdNNgFoCEdAlnCfiYLLIXV9lChoBkdAcQqNs3yZr2gHTUgCaAhHQJZzx8IAwPB1fZQoaAZHQHDBlZTyauxoB01KA2gIR0CWdi0bLlmwdX2UKGgGR0BvYunZTQ3QaAdNDAJoCEdAlnj/9pAUtnV9lChoBkdAcq5ZNwiqyWgHTTgBaAhHQJZ9TL/0dzZ1fZQoaAZHQHDERFZxJd1oB02uAWgIR0CWkRJGvwEydX2UKGgGR0BwLm1UlzEKaAdNXgJoCEdAlpFa+i8Fp3V9lChoBkdAcPy0L+glGGgHTRQCaAhHQJaR8SZjQRh1fZQoaAZHQG9o9VWCEpRoB01UAmgIR0CWkt1SflIVdX2UKGgGR0Bvddlum78OaAdNyQJoCEdAlpRahpQDWHV9lChoBkdAb/0Emplz2mgHTW4BaAhHQJaU50wJw851fZQoaAZHQHFIbsa86FNoB02xAmgIR0CWlpZg5R0mdX2UKGgGR0Bv1S7mMfihaAdNRANoCEdAlpbd29tdiXV9lChoBkdAceY2r4nF52gHTVkBaAhHQJaXSReTmnx1fZQoaAZHQHF3v7WNFSdoB01OAWgIR0CWm/2iL2pRdX2UKGgGR0ByFeYOUdJbaAdNEwJoCEdAlp38XWOIZnV9lChoBkdAZmz8TBZZCGgHTegDaAhHQJag9Cv5gw51fZQoaAZHQHHO1HFxXGRoB012AWgIR0CWo5mShakidX2UKGgGR0BxBXOt4iX6aAdNJQFoCEdAlqZHnMdLhHV9lChoBkdAcLOicG1QZWgHTTkCaAhHQJanwfzSThZ1fZQoaAZHQG9a64+bExZoB01tAWgIR0CWp9LlmvnsdX2UKGgGR0Bx3ju7YkE+aAdNVAFoCEdAlqiHBP9DQnV9lChoBkdAb3LprULDymgHTeQCaAhHQJaqT7k4m1J1fZQoaAZHQHD26esgdOtoB024AWgIR0CWqsMxGlQ/dX2UKGgGR0BxL7ghr30xaAdNrgFoCEdAlqtR9w3o93V9lChoBkdAcNcoybhFVmgHTQYCaAhHQJat3+o99tx1fZQoaAZHQHDsCOaOPvNoB020AWgIR0CWrlgPmPo3dX2UKGgGR0BxoaIeo1k2aAdN2wFoCEdAlq/+SjgydnV9lChoBkdAYfOHqu8sc2gHTegDaAhHQJayFj0+TvB1fZQoaAZHQHAlK7Ackt5oB00pAWgIR0CWtNTN+so2dX2UKGgGR0BvfnAoG6f8aAdNXwJoCEdAlrX/642CNHV9lChoBkdAcO5ZvkzXSWgHTRMBaAhHQJa26HGjsUt1fZQoaAZHQHIFUJWvKU5oB00bAmgIR0CWtwUqhDgJdX2UKGgGR0BuwzVnVXmvaAdN8QFoCEdAlrjhpDeCTXV9lChoBkdAbcF8OTaCc2gHTS0CaAhHQJa5YMSbpeN1fZQoaAZHQHF75hrnDBNoB03PAWgIR0CWu82BJ7LMdX2UKGgGR0Bvw6xA0KqoaAdN5gFoCEdAlr+nS4OMEXV9lChoBkdAb7gj7ALy+mgHTawCaAhHQJbC/rmhdt51fZQoaAZHQG+FjHOryUdoB010AmgIR0CWwzwd8zAOdX2UKGgGR0Bw1m9rXUYsaAdNEwFoCEdAlsNaCUX533V9lChoBkdAb2tk6tDD0mgHTa0CaAhHQJbWrICEHt51fZQoaAZHQHD/o+wC8vpoB03VAWgIR0CW1sw3o9s8dX2UKGgGR0BuuUliSaE0aAdNZwFoCEdAltct7F85S3V9lChoBkdAVHQvwmVqvmgHTRoBaAhHQJbYNKlHjId1fZQoaAZHQHBtJrpJPIpoB005AmgIR0CW2cYht+CsdX2UKGgGR0BxTHDIikftaAdNhwFoCEdAltomZZ0Sy3V9lChoBkdAcPugTyrgfmgHTbICaAhHQJbbJ2GIsRR1fZQoaAZHQG9bjEWIoE1oB00lAWgIR0CW26fP5YYBdX2UKGgGR0BscMcIZ62OaAdNowFoCEdAlt6i22G7BnV9lChoBkdAcH30Qsf7rWgHTRICaAhHQJbio0UGmk51fZQoaAZHQHE21UlzEJloB00SA2gIR0CW5OonKGL2dX2UKGgGR0BxB7tKIznBaAdNOQFoCEdAluV2fGuLaXV9lChoBkdAbUJpg1FYuGgHTX8BaAhHQJbldVmz0H11fZQoaAZHQHJihMajveBoB01IAWgIR0CW6gQIUrTZdX2UKGgGR0Byb9K02LpBaAdNMQFoCEdAluqpc1O0s3V9lChoBkdAbeM5vLowEmgHTaEBaAhHQJbrPcdo3711fZQoaAZHQHDZuCkGiYdoB02OAWgIR0CW6+1nuiN9dX2UKGgGR0BvJEkyDZlGaAdNcAFoCEdAlu0OrU9ZBHV9lChoBkdAbe87EpAlfWgHTVgBaAhHQJbtgfFJg9h1fZQoaAZHQHBHQjQiRnxoB03YAWgIR0CW7ZGAkLQYdX2UKGgGR0BwhKhN/OMVaAdN0wFoCEdAlu6Kw6hg3XV9lChoBkdAccewVTJhfGgHTdQBaAhHQJbux36hxo91fZQoaAZHQHGwxXGOuJVoB02MAWgIR0CW7uGTcIqtdX2UKGgGR0ByfMBsANobaAdNaQFoCEdAlu/ju8brC3V9lChoBkdAcFRBrN4Z/GgHTVEBaAhHQJbxRgfEGaB1fZQoaAZHQGH87eVLSNRoB03oA2gIR0CW8hd92HLzdX2UKGgGR0BwX8ZwXIluaAdNYAFoCEdAlvOBdUsFuHV9lChoBkdAb6ASSNfgJmgHTWwBaAhHQJbznUH6dlN1fZQoaAZHQHC5r4etCAtoB01uAWgIR0CW8/0KJEYwdX2UKGgGR0Bw9PnKW9lFaAdNLwFoCEdAlvWXjlxOtXV9lChoBkdAcV0M2WIGhWgHTREBaAhHQJb2h9jPOY91fZQoaAZHQHEjWthd+odoB01tAWgIR0CW9vqIJqqPdX2UKGgGR0BxA+5tm+TNaAdNHQFoCEdAlvcXzcynDXV9lChoBkdAcUpCBPKuCGgHTUsBaAhHQJb6UNEw35x1fZQoaAZHQHB7/SH/LkloB01DAWgIR0CW+6r2g398dX2UKGgGR0BwcIPDpC8faAdNygFoCEdAlvxwwCbMHXV9lChoBkdAcSXvlU6xPmgHTQcCaAhHQJb9xmVZ9ux1fZQoaAZHQHCwFtXPqs5oB02hAWgIR0CW/hWu5jH5dX2UKGgGR0BwWqYTj/+9aAdNRAFoCEdAlv6ttQ9A5nV9lChoBkdAblVU4rBj4GgHTToBaAhHQJb/6gte2NN1fZQoaAZHQG1a/dIoVmBoB003AWgIR0CXAECHARChdX2UKGgGR0BuUrjtG/etaAdNRQFoCEdAlwA98eCCjHV9lChoBkdAbVoKHfuTimgHTYwBaAhHQJcAhVYISlF1fZQoaAZHQHBnwkTpPh1oB00cAmgIR0CXAMvze40/dX2UKGgGR0BxTRh5Pdl/aAdNKQFoCEdAlwFM1sLv1HVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "n_steps": 1024,
56
+ "gamma": 0.999,
57
+ "gae_lambda": 0.98,
58
+ "ent_coef": 0.01,
59
+ "vf_coef": 0.5,
60
+ "max_grad_norm": 0.5,
61
+ "batch_size": 64,
62
+ "n_epochs": 4,
63
+ "clip_range": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
66
+ },
67
+ "clip_range_vf": null,
68
+ "normalize_advantage": true,
69
+ "target_kl": null,
70
+ "observation_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True True True True True True True True]",
75
+ "bounded_above": "[ True True True True True True True True]",
76
+ "_shape": [
77
+ 8
78
+ ],
79
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
80
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
81
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
82
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
83
+ "_np_random": null
84
+ },
85
+ "action_space": {
86
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
87
+ ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
88
+ "n": "4",
89
+ "start": "0",
90
+ "_shape": [],
91
+ "dtype": "int64",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 16,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7298e8cfbb7a269a829f6b30e32ff6c971ac28a901d992f1e4577b34a3ed2f99
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97bea75b238126fd1d8fe59149118ba15c7934d71c78f4e5190e47871163a3a2
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (160 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 257.9097198, "std_reward": 17.291503569068514, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-28T18:05:51.666176"}