Adds ppo lunar lander model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 257.91 +/- 17.29
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78505be40af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78505be40b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78505be40c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78505be40ca0>", "_build": "<function ActorCriticPolicy._build at 0x78505be40d30>", "forward": "<function ActorCriticPolicy.forward at 0x78505be40dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78505be40e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78505be40ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x78505be40f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78505be41000>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78505be41090>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78505be41120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78505bddf880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693244156582963289, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNcn7yex6g/1cXqvSdT177Aq0K9o13+vQAAAAAAAAAAEDubPldiaD8ItNg+o5UKvzd90D7SIZM9AAAAAAAAAADGeTG+ccFOP9v92D3UsLG+ClOrvEWywDwAAAAAAAAAALP5SD1o0sM+IpA2vOFMZ76QwZU8Zi0PPgAAAAAAAAAAzQS8vUzRqj8mrE++6y6rvtXtGL5IcQq+AAAAAAAAAACzEiA9SNWWuiqgiTOMvlmurqT5um7JrbMAAIA/AACAP4CGsT1cO0a64DfXuO94JjRbubm6Q54AOAAAgD8AAIA/7r+Avjwwqz/+a7G+M5qTvmQbrL5LhFm9AAAAAAAAAAAIHIS+25yAPwByAD1gm8e+VmoGvpbI/D0AAAAAAAAAAJoel7z+veY+yxWwPa9Jnr4rR908I11CPQAAAAAAAAAA2hJivsHQhj92AiS+U0O0vhJMjb4GPNg9AAAAAAAAAAAN0oK9GT4VP81MoD3AhZa+w3REPRjTVLwAAAAAAAAAACAdD75VJ40/drFuvlJ+gL742F++F6UmvAAAAAAAAAAAmmZLPbhD/Lsqxnu8gUIiPQ+pWT0mBwS+AACAPwAAgD+GNw6+88iUPpDk2T2Rl1u+qbAcPAUKU70AAAAAAAAAAIBwRL0DGBe8vwgyPJJ1tjzfxYA9TAyWvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF7u+Vkc0ciMAWyUTegDjAF0lEdAlluTLW7OFHV9lChoBkdAcfsOt4iX6mgHTZUCaAhHQJZeDIGQjlh1fZQoaAZHQHBmEvf0mMRoB01NAmgIR0CWXwkv9LpSdX2UKGgGR0BxLKc5Ke05aAdNWgFoCEdAll8mNm16V3V9lChoBkdAckulKsdT52gHTdgBaAhHQJZhz7pFCsx1fZQoaAZHQHGGMYl6Z6VoB00hAWgIR0CWYlOB19v1dX2UKGgGR0ByPeejEehgaAdNhwFoCEdAlmKrrcCYC3V9lChoBkdAbyBRiPQv6GgHTYkBaAhHQJZkJWNm16V1fZQoaAZHQHBszzRQaaVoB00lAWgIR0CWZDiKR+z/dX2UKGgGR0BxPA43m3fAaAdNgwFoCEdAlmarm2b5M3V9lChoBkdAcIekDIRywWgHTcQBaAhHQJZqgFHJ9y91fZQoaAZHQG/Zg62fChxoB03kA2gIR0CWbQrPt2LYdX2UKGgGR0ByvkpmVZ9vaAdNnAFoCEdAlm0y1AqusHV9lChoBkdAcQZ/yGzrvGgHTXQBaAhHQJZwU88s+V11fZQoaAZHQG4o2YfGMn9oB00HAWgIR0CWcHy6tknUdX2UKGgGR0BwY0biqABlaAdNNgFoCEdAlnCfiYLLIXV9lChoBkdAcQqNs3yZr2gHTUgCaAhHQJZzx8IAwPB1fZQoaAZHQHDBlZTyauxoB01KA2gIR0CWdi0bLlmwdX2UKGgGR0BvYunZTQ3QaAdNDAJoCEdAlnj/9pAUtnV9lChoBkdAcq5ZNwiqyWgHTTgBaAhHQJZ9TL/0dzZ1fZQoaAZHQHDERFZxJd1oB02uAWgIR0CWkRJGvwEydX2UKGgGR0BwLm1UlzEKaAdNXgJoCEdAlpFa+i8Fp3V9lChoBkdAcPy0L+glGGgHTRQCaAhHQJaR8SZjQRh1fZQoaAZHQG9o9VWCEpRoB01UAmgIR0CWkt1SflIVdX2UKGgGR0Bvddlum78OaAdNyQJoCEdAlpRahpQDWHV9lChoBkdAb/0Emplz2mgHTW4BaAhHQJaU50wJw851fZQoaAZHQHFIbsa86FNoB02xAmgIR0CWlpZg5R0mdX2UKGgGR0Bv1S7mMfihaAdNRANoCEdAlpbd29tdiXV9lChoBkdAceY2r4nF52gHTVkBaAhHQJaXSReTmnx1fZQoaAZHQHF3v7WNFSdoB01OAWgIR0CWm/2iL2pRdX2UKGgGR0ByFeYOUdJbaAdNEwJoCEdAlp38XWOIZnV9lChoBkdAZmz8TBZZCGgHTegDaAhHQJag9Cv5gw51fZQoaAZHQHHO1HFxXGRoB012AWgIR0CWo5mShakidX2UKGgGR0BxBXOt4iX6aAdNJQFoCEdAlqZHnMdLhHV9lChoBkdAcLOicG1QZWgHTTkCaAhHQJanwfzSThZ1fZQoaAZHQG9a64+bExZoB01tAWgIR0CWp9LlmvnsdX2UKGgGR0Bx3ju7YkE+aAdNVAFoCEdAlqiHBP9DQnV9lChoBkdAb3LprULDymgHTeQCaAhHQJaqT7k4m1J1fZQoaAZHQHD26esgdOtoB024AWgIR0CWqsMxGlQ/dX2UKGgGR0BxL7ghr30xaAdNrgFoCEdAlqtR9w3o93V9lChoBkdAcNcoybhFVmgHTQYCaAhHQJat3+o99tx1fZQoaAZHQHDsCOaOPvNoB020AWgIR0CWrlgPmPo3dX2UKGgGR0BxoaIeo1k2aAdN2wFoCEdAlq/+SjgydnV9lChoBkdAYfOHqu8sc2gHTegDaAhHQJayFj0+TvB1fZQoaAZHQHAlK7Ackt5oB00pAWgIR0CWtNTN+so2dX2UKGgGR0BvfnAoG6f8aAdNXwJoCEdAlrX/642CNHV9lChoBkdAcO5ZvkzXSWgHTRMBaAhHQJa26HGjsUt1fZQoaAZHQHIFUJWvKU5oB00bAmgIR0CWtwUqhDgJdX2UKGgGR0BuwzVnVXmvaAdN8QFoCEdAlrjhpDeCTXV9lChoBkdAbcF8OTaCc2gHTS0CaAhHQJa5YMSbpeN1fZQoaAZHQHF75hrnDBNoB03PAWgIR0CWu82BJ7LMdX2UKGgGR0Bvw6xA0KqoaAdN5gFoCEdAlr+nS4OMEXV9lChoBkdAb7gj7ALy+mgHTawCaAhHQJbC/rmhdt51fZQoaAZHQG+FjHOryUdoB010AmgIR0CWwzwd8zAOdX2UKGgGR0Bw1m9rXUYsaAdNEwFoCEdAlsNaCUX533V9lChoBkdAb2tk6tDD0mgHTa0CaAhHQJbWrICEHt51fZQoaAZHQHD/o+wC8vpoB03VAWgIR0CW1sw3o9s8dX2UKGgGR0BuuUliSaE0aAdNZwFoCEdAltct7F85S3V9lChoBkdAVHQvwmVqvmgHTRoBaAhHQJbYNKlHjId1fZQoaAZHQHBtJrpJPIpoB005AmgIR0CW2cYht+CsdX2UKGgGR0BxTHDIikftaAdNhwFoCEdAltomZZ0Sy3V9lChoBkdAcPugTyrgfmgHTbICaAhHQJbbJ2GIsRR1fZQoaAZHQG9bjEWIoE1oB00lAWgIR0CW26fP5YYBdX2UKGgGR0BscMcIZ62OaAdNowFoCEdAlt6i22G7BnV9lChoBkdAcH30Qsf7rWgHTRICaAhHQJbio0UGmk51fZQoaAZHQHE21UlzEJloB00SA2gIR0CW5OonKGL2dX2UKGgGR0BxB7tKIznBaAdNOQFoCEdAluV2fGuLaXV9lChoBkdAbUJpg1FYuGgHTX8BaAhHQJbldVmz0H11fZQoaAZHQHJihMajveBoB01IAWgIR0CW6gQIUrTZdX2UKGgGR0Byb9K02LpBaAdNMQFoCEdAluqpc1O0s3V9lChoBkdAbeM5vLowEmgHTaEBaAhHQJbrPcdo3711fZQoaAZHQHDZuCkGiYdoB02OAWgIR0CW6+1nuiN9dX2UKGgGR0BvJEkyDZlGaAdNcAFoCEdAlu0OrU9ZBHV9lChoBkdAbe87EpAlfWgHTVgBaAhHQJbtgfFJg9h1fZQoaAZHQHBHQjQiRnxoB03YAWgIR0CW7ZGAkLQYdX2UKGgGR0BwhKhN/OMVaAdN0wFoCEdAlu6Kw6hg3XV9lChoBkdAccewVTJhfGgHTdQBaAhHQJbux36hxo91fZQoaAZHQHGwxXGOuJVoB02MAWgIR0CW7uGTcIqtdX2UKGgGR0ByfMBsANobaAdNaQFoCEdAlu/ju8brC3V9lChoBkdAcFRBrN4Z/GgHTVEBaAhHQJbxRgfEGaB1fZQoaAZHQGH87eVLSNRoB03oA2gIR0CW8hd92HLzdX2UKGgGR0BwX8ZwXIluaAdNYAFoCEdAlvOBdUsFuHV9lChoBkdAb6ASSNfgJmgHTWwBaAhHQJbznUH6dlN1fZQoaAZHQHC5r4etCAtoB01uAWgIR0CW8/0KJEYwdX2UKGgGR0Bw9PnKW9lFaAdNLwFoCEdAlvWXjlxOtXV9lChoBkdAcV0M2WIGhWgHTREBaAhHQJb2h9jPOY91fZQoaAZHQHEjWthd+odoB01tAWgIR0CW9vqIJqqPdX2UKGgGR0BxA+5tm+TNaAdNHQFoCEdAlvcXzcynDXV9lChoBkdAcUpCBPKuCGgHTUsBaAhHQJb6UNEw35x1fZQoaAZHQHB7/SH/LkloB01DAWgIR0CW+6r2g398dX2UKGgGR0BwcIPDpC8faAdNygFoCEdAlvxwwCbMHXV9lChoBkdAcSXvlU6xPmgHTQcCaAhHQJb9xmVZ9ux1fZQoaAZHQHCwFtXPqs5oB02hAWgIR0CW/hWu5jH5dX2UKGgGR0BwWqYTj/+9aAdNRAFoCEdAlv6ttQ9A5nV9lChoBkdAblVU4rBj4GgHTToBaAhHQJb/6gte2NN1fZQoaAZHQG1a/dIoVmBoB003AWgIR0CXAECHARChdX2UKGgGR0BuUrjtG/etaAdNRQFoCEdAlwA98eCCjHV9lChoBkdAbVoKHfuTimgHTYwBaAhHQJcAhVYISlF1fZQoaAZHQHBnwkTpPh1oB00cAmgIR0CXAMvze40/dX2UKGgGR0BxTRh5Pdl/aAdNKQFoCEdAlwFM1sLv1HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2950c6dfe5a64643db15825ed3f1aa6d4954067cf106b265f086dd49923893f8
|
3 |
+
size 146946
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78505be40af0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78505be40b80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78505be40c10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78505be40ca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78505be40d30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78505be40dc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78505be40e50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78505be40ee0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78505be40f70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78505be41000>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78505be41090>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78505be41120>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78505bddf880>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1693244156582963289,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNcn7yex6g/1cXqvSdT177Aq0K9o13+vQAAAAAAAAAAEDubPldiaD8ItNg+o5UKvzd90D7SIZM9AAAAAAAAAADGeTG+ccFOP9v92D3UsLG+ClOrvEWywDwAAAAAAAAAALP5SD1o0sM+IpA2vOFMZ76QwZU8Zi0PPgAAAAAAAAAAzQS8vUzRqj8mrE++6y6rvtXtGL5IcQq+AAAAAAAAAACzEiA9SNWWuiqgiTOMvlmurqT5um7JrbMAAIA/AACAP4CGsT1cO0a64DfXuO94JjRbubm6Q54AOAAAgD8AAIA/7r+Avjwwqz/+a7G+M5qTvmQbrL5LhFm9AAAAAAAAAAAIHIS+25yAPwByAD1gm8e+VmoGvpbI/D0AAAAAAAAAAJoel7z+veY+yxWwPa9Jnr4rR908I11CPQAAAAAAAAAA2hJivsHQhj92AiS+U0O0vhJMjb4GPNg9AAAAAAAAAAAN0oK9GT4VP81MoD3AhZa+w3REPRjTVLwAAAAAAAAAACAdD75VJ40/drFuvlJ+gL742F++F6UmvAAAAAAAAAAAmmZLPbhD/Lsqxnu8gUIiPQ+pWT0mBwS+AACAPwAAgD+GNw6+88iUPpDk2T2Rl1u+qbAcPAUKU70AAAAAAAAAAIBwRL0DGBe8vwgyPJJ1tjzfxYA9TAyWvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF7u+Vkc0ciMAWyUTegDjAF0lEdAlluTLW7OFHV9lChoBkdAcfsOt4iX6mgHTZUCaAhHQJZeDIGQjlh1fZQoaAZHQHBmEvf0mMRoB01NAmgIR0CWXwkv9LpSdX2UKGgGR0BxLKc5Ke05aAdNWgFoCEdAll8mNm16V3V9lChoBkdAckulKsdT52gHTdgBaAhHQJZhz7pFCsx1fZQoaAZHQHGGMYl6Z6VoB00hAWgIR0CWYlOB19v1dX2UKGgGR0ByPeejEehgaAdNhwFoCEdAlmKrrcCYC3V9lChoBkdAbyBRiPQv6GgHTYkBaAhHQJZkJWNm16V1fZQoaAZHQHBszzRQaaVoB00lAWgIR0CWZDiKR+z/dX2UKGgGR0BxPA43m3fAaAdNgwFoCEdAlmarm2b5M3V9lChoBkdAcIekDIRywWgHTcQBaAhHQJZqgFHJ9y91fZQoaAZHQG/Zg62fChxoB03kA2gIR0CWbQrPt2LYdX2UKGgGR0ByvkpmVZ9vaAdNnAFoCEdAlm0y1AqusHV9lChoBkdAcQZ/yGzrvGgHTXQBaAhHQJZwU88s+V11fZQoaAZHQG4o2YfGMn9oB00HAWgIR0CWcHy6tknUdX2UKGgGR0BwY0biqABlaAdNNgFoCEdAlnCfiYLLIXV9lChoBkdAcQqNs3yZr2gHTUgCaAhHQJZzx8IAwPB1fZQoaAZHQHDBlZTyauxoB01KA2gIR0CWdi0bLlmwdX2UKGgGR0BvYunZTQ3QaAdNDAJoCEdAlnj/9pAUtnV9lChoBkdAcq5ZNwiqyWgHTTgBaAhHQJZ9TL/0dzZ1fZQoaAZHQHDERFZxJd1oB02uAWgIR0CWkRJGvwEydX2UKGgGR0BwLm1UlzEKaAdNXgJoCEdAlpFa+i8Fp3V9lChoBkdAcPy0L+glGGgHTRQCaAhHQJaR8SZjQRh1fZQoaAZHQG9o9VWCEpRoB01UAmgIR0CWkt1SflIVdX2UKGgGR0Bvddlum78OaAdNyQJoCEdAlpRahpQDWHV9lChoBkdAb/0Emplz2mgHTW4BaAhHQJaU50wJw851fZQoaAZHQHFIbsa86FNoB02xAmgIR0CWlpZg5R0mdX2UKGgGR0Bv1S7mMfihaAdNRANoCEdAlpbd29tdiXV9lChoBkdAceY2r4nF52gHTVkBaAhHQJaXSReTmnx1fZQoaAZHQHF3v7WNFSdoB01OAWgIR0CWm/2iL2pRdX2UKGgGR0ByFeYOUdJbaAdNEwJoCEdAlp38XWOIZnV9lChoBkdAZmz8TBZZCGgHTegDaAhHQJag9Cv5gw51fZQoaAZHQHHO1HFxXGRoB012AWgIR0CWo5mShakidX2UKGgGR0BxBXOt4iX6aAdNJQFoCEdAlqZHnMdLhHV9lChoBkdAcLOicG1QZWgHTTkCaAhHQJanwfzSThZ1fZQoaAZHQG9a64+bExZoB01tAWgIR0CWp9LlmvnsdX2UKGgGR0Bx3ju7YkE+aAdNVAFoCEdAlqiHBP9DQnV9lChoBkdAb3LprULDymgHTeQCaAhHQJaqT7k4m1J1fZQoaAZHQHD26esgdOtoB024AWgIR0CWqsMxGlQ/dX2UKGgGR0BxL7ghr30xaAdNrgFoCEdAlqtR9w3o93V9lChoBkdAcNcoybhFVmgHTQYCaAhHQJat3+o99tx1fZQoaAZHQHDsCOaOPvNoB020AWgIR0CWrlgPmPo3dX2UKGgGR0BxoaIeo1k2aAdN2wFoCEdAlq/+SjgydnV9lChoBkdAYfOHqu8sc2gHTegDaAhHQJayFj0+TvB1fZQoaAZHQHAlK7Ackt5oB00pAWgIR0CWtNTN+so2dX2UKGgGR0BvfnAoG6f8aAdNXwJoCEdAlrX/642CNHV9lChoBkdAcO5ZvkzXSWgHTRMBaAhHQJa26HGjsUt1fZQoaAZHQHIFUJWvKU5oB00bAmgIR0CWtwUqhDgJdX2UKGgGR0BuwzVnVXmvaAdN8QFoCEdAlrjhpDeCTXV9lChoBkdAbcF8OTaCc2gHTS0CaAhHQJa5YMSbpeN1fZQoaAZHQHF75hrnDBNoB03PAWgIR0CWu82BJ7LMdX2UKGgGR0Bvw6xA0KqoaAdN5gFoCEdAlr+nS4OMEXV9lChoBkdAb7gj7ALy+mgHTawCaAhHQJbC/rmhdt51fZQoaAZHQG+FjHOryUdoB010AmgIR0CWwzwd8zAOdX2UKGgGR0Bw1m9rXUYsaAdNEwFoCEdAlsNaCUX533V9lChoBkdAb2tk6tDD0mgHTa0CaAhHQJbWrICEHt51fZQoaAZHQHD/o+wC8vpoB03VAWgIR0CW1sw3o9s8dX2UKGgGR0BuuUliSaE0aAdNZwFoCEdAltct7F85S3V9lChoBkdAVHQvwmVqvmgHTRoBaAhHQJbYNKlHjId1fZQoaAZHQHBtJrpJPIpoB005AmgIR0CW2cYht+CsdX2UKGgGR0BxTHDIikftaAdNhwFoCEdAltomZZ0Sy3V9lChoBkdAcPugTyrgfmgHTbICaAhHQJbbJ2GIsRR1fZQoaAZHQG9bjEWIoE1oB00lAWgIR0CW26fP5YYBdX2UKGgGR0BscMcIZ62OaAdNowFoCEdAlt6i22G7BnV9lChoBkdAcH30Qsf7rWgHTRICaAhHQJbio0UGmk51fZQoaAZHQHE21UlzEJloB00SA2gIR0CW5OonKGL2dX2UKGgGR0BxB7tKIznBaAdNOQFoCEdAluV2fGuLaXV9lChoBkdAbUJpg1FYuGgHTX8BaAhHQJbldVmz0H11fZQoaAZHQHJihMajveBoB01IAWgIR0CW6gQIUrTZdX2UKGgGR0Byb9K02LpBaAdNMQFoCEdAluqpc1O0s3V9lChoBkdAbeM5vLowEmgHTaEBaAhHQJbrPcdo3711fZQoaAZHQHDZuCkGiYdoB02OAWgIR0CW6+1nuiN9dX2UKGgGR0BvJEkyDZlGaAdNcAFoCEdAlu0OrU9ZBHV9lChoBkdAbe87EpAlfWgHTVgBaAhHQJbtgfFJg9h1fZQoaAZHQHBHQjQiRnxoB03YAWgIR0CW7ZGAkLQYdX2UKGgGR0BwhKhN/OMVaAdN0wFoCEdAlu6Kw6hg3XV9lChoBkdAccewVTJhfGgHTdQBaAhHQJbux36hxo91fZQoaAZHQHGwxXGOuJVoB02MAWgIR0CW7uGTcIqtdX2UKGgGR0ByfMBsANobaAdNaQFoCEdAlu/ju8brC3V9lChoBkdAcFRBrN4Z/GgHTVEBaAhHQJbxRgfEGaB1fZQoaAZHQGH87eVLSNRoB03oA2gIR0CW8hd92HLzdX2UKGgGR0BwX8ZwXIluaAdNYAFoCEdAlvOBdUsFuHV9lChoBkdAb6ASSNfgJmgHTWwBaAhHQJbznUH6dlN1fZQoaAZHQHC5r4etCAtoB01uAWgIR0CW8/0KJEYwdX2UKGgGR0Bw9PnKW9lFaAdNLwFoCEdAlvWXjlxOtXV9lChoBkdAcV0M2WIGhWgHTREBaAhHQJb2h9jPOY91fZQoaAZHQHEjWthd+odoB01tAWgIR0CW9vqIJqqPdX2UKGgGR0BxA+5tm+TNaAdNHQFoCEdAlvcXzcynDXV9lChoBkdAcUpCBPKuCGgHTUsBaAhHQJb6UNEw35x1fZQoaAZHQHB7/SH/LkloB01DAWgIR0CW+6r2g398dX2UKGgGR0BwcIPDpC8faAdNygFoCEdAlvxwwCbMHXV9lChoBkdAcSXvlU6xPmgHTQcCaAhHQJb9xmVZ9ux1fZQoaAZHQHCwFtXPqs5oB02hAWgIR0CW/hWu5jH5dX2UKGgGR0BwWqYTj/+9aAdNRAFoCEdAlv6ttQ9A5nV9lChoBkdAblVU4rBj4GgHTToBaAhHQJb/6gte2NN1fZQoaAZHQG1a/dIoVmBoB003AWgIR0CXAECHARChdX2UKGgGR0BuUrjtG/etaAdNRQFoCEdAlwA98eCCjHV9lChoBkdAbVoKHfuTimgHTYwBaAhHQJcAhVYISlF1fZQoaAZHQHBnwkTpPh1oB00cAmgIR0CXAMvze40/dX2UKGgGR0BxTRh5Pdl/aAdNKQFoCEdAlwFM1sLv1HVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"n_steps": 1024,
|
56 |
+
"gamma": 0.999,
|
57 |
+
"gae_lambda": 0.98,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 4,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
+
"observation_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True True True True True]",
|
75 |
+
"bounded_above": "[ True True True True True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
8
|
78 |
+
],
|
79 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
80 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
81 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
82 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"action_space": {
|
86 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
+
"n": "4",
|
89 |
+
"start": "0",
|
90 |
+
"_shape": [],
|
91 |
+
"dtype": "int64",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 16,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7298e8cfbb7a269a829f6b30e32ff6c971ac28a901d992f1e4577b34a3ed2f99
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97bea75b238126fd1d8fe59149118ba15c7934d71c78f4e5190e47871163a3a2
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (160 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 257.9097198, "std_reward": 17.291503569068514, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-28T18:05:51.666176"}
|