jordyvl commited on
Commit
21391c5
1 Parent(s): 1a9e18e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - ncbi_disease
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: biobert-base-cased-v1.2_ncbi_disease-softmax-labelall-ner
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: ncbi_disease
19
+ type: ncbi_disease
20
+ args: ncbi_disease
21
+ metrics:
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.8288508557457213
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.8614993646759848
28
+ - name: F1
29
+ type: f1
30
+ value: 0.8448598130841122
31
+ - name: Accuracy
32
+ type: accuracy
33
+ value: 0.9861487755016897
34
+ ---
35
+
36
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
37
+ should probably proofread and complete it, then remove this comment. -->
38
+
39
+ # biobert-base-cased-v1.2_ncbi_disease-softmax-labelall-ner
40
+
41
+ This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the ncbi_disease dataset.
42
+ It achieves the following results on the evaluation set:
43
+ - Loss: 0.0629
44
+ - Precision: 0.8289
45
+ - Recall: 0.8615
46
+ - F1: 0.8449
47
+ - Accuracy: 0.9861
48
+
49
+ ## Model description
50
+
51
+ More information needed
52
+
53
+ ## Intended uses & limitations
54
+
55
+ More information needed
56
+
57
+ ## Training and evaluation data
58
+
59
+ More information needed
60
+
61
+ ## Training procedure
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 2e-05
67
+ - train_batch_size: 4
68
+ - eval_batch_size: 4
69
+ - seed: 42
70
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
+ - lr_scheduler_type: linear
72
+ - lr_scheduler_warmup_ratio: 0.1
73
+ - num_epochs: 3
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | 0.0554 | 1.0 | 1359 | 0.0659 | 0.7814 | 0.8132 | 0.7970 | 0.9825 |
80
+ | 0.0297 | 2.0 | 2718 | 0.0445 | 0.8284 | 0.8895 | 0.8578 | 0.9876 |
81
+ | 0.0075 | 3.0 | 4077 | 0.0629 | 0.8289 | 0.8615 | 0.8449 | 0.9861 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.18.0
87
+ - Pytorch 1.10.2+cu102
88
+ - Datasets 2.3.2
89
+ - Tokenizers 0.12.1