jordan2889 commited on
Commit
78be4f2
·
verified ·
1 Parent(s): b99d434

jordan2889/scenario_4

Browse files
Files changed (5) hide show
  1. README.md +85 -196
  2. config.json +43 -0
  3. model.safetensors +3 -0
  4. trainer_state.json +1631 -0
  5. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,88 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: mit
3
+ base_model: microsoft/mdeberta-v3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: scenario_4
13
+ results: []
14
  ---
15
 
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # scenario_4
20
+
21
+ This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1764
24
+ - Accuracy: 0.9704
25
+ - F1: 0.9704
26
+ - Precision: 0.9710
27
+ - Recall: 0.9704
28
+ - Accuracy Label Test: 0.9879
29
+ - Accuracy Label Train: 0.9536
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 2e-05
49
+ - train_batch_size: 16
50
+ - eval_batch_size: 16
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 32
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - lr_scheduler_warmup_steps: 500
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Test | Accuracy Label Train |
62
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------:|:--------------------:|
63
+ | 0.5515 | 0.1579 | 100 | 0.5194 | 0.7579 | 0.7415 | 0.8352 | 0.7579 | 0.5070 | 0.9992 |
64
+ | 0.2205 | 0.3157 | 200 | 0.2537 | 0.9300 | 0.9298 | 0.9361 | 0.9300 | 0.9883 | 0.8739 |
65
+ | 0.1106 | 0.4736 | 300 | 0.3450 | 0.9129 | 0.9124 | 0.9248 | 0.9129 | 0.9960 | 0.8329 |
66
+ | 0.0384 | 0.6314 | 400 | 0.1408 | 0.9683 | 0.9683 | 0.9687 | 0.9683 | 0.9835 | 0.9536 |
67
+ | 0.0631 | 0.7893 | 500 | 0.1517 | 0.9631 | 0.9631 | 0.9645 | 0.9631 | 0.9895 | 0.9377 |
68
+ | 0.0276 | 0.9471 | 600 | 0.3649 | 0.9387 | 0.9386 | 0.9444 | 0.9387 | 0.9948 | 0.8847 |
69
+ | 0.0245 | 1.1050 | 700 | 0.1339 | 0.9702 | 0.9702 | 0.9702 | 0.9702 | 0.9727 | 0.9679 |
70
+ | 0.0519 | 1.2628 | 800 | 0.4945 | 0.9186 | 0.9182 | 0.9299 | 0.9186 | 0.9992 | 0.8410 |
71
+ | 0.02 | 1.4207 | 900 | 0.2637 | 0.9549 | 0.9548 | 0.9580 | 0.9549 | 0.9960 | 0.9153 |
72
+ | 0.0325 | 1.5785 | 1000 | 0.1165 | 0.9708 | 0.9708 | 0.9712 | 0.9708 | 0.9851 | 0.9571 |
73
+ | 0.016 | 1.7364 | 1100 | 0.1007 | 0.9692 | 0.9692 | 0.9697 | 0.9692 | 0.9530 | 0.9849 |
74
+ | 0.0068 | 1.8942 | 1200 | 0.1679 | 0.9690 | 0.9690 | 0.9697 | 0.9690 | 0.9871 | 0.9516 |
75
+ | 0.0042 | 2.0521 | 1300 | 0.1182 | 0.9734 | 0.9734 | 0.9734 | 0.9734 | 0.9723 | 0.9745 |
76
+ | 0.0005 | 2.2099 | 1400 | 0.1432 | 0.9730 | 0.9730 | 0.9731 | 0.9730 | 0.9799 | 0.9663 |
77
+ | 0.0182 | 2.3678 | 1500 | 0.1460 | 0.9718 | 0.9718 | 0.9723 | 0.9718 | 0.9871 | 0.9571 |
78
+ | 0.0004 | 2.5257 | 1600 | 0.1383 | 0.9732 | 0.9732 | 0.9734 | 0.9732 | 0.9843 | 0.9625 |
79
+ | 0.0003 | 2.6835 | 1700 | 0.1381 | 0.9744 | 0.9744 | 0.9745 | 0.9744 | 0.9831 | 0.9660 |
80
+ | 0.0002 | 2.8414 | 1800 | 0.1599 | 0.9724 | 0.9724 | 0.9728 | 0.9724 | 0.9863 | 0.9590 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.44.0
86
+ - Pytorch 2.3.1
87
+ - Datasets 2.20.0
88
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mdeberta-v3-base",
3
+ "architectures": [
4
+ "DebertaV2ForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "benign",
12
+ "1": "phishing"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "benign": 0,
18
+ "phishing": 1
19
+ },
20
+ "layer_norm_eps": 1e-07,
21
+ "max_position_embeddings": 512,
22
+ "max_relative_positions": -1,
23
+ "model_type": "deberta-v2",
24
+ "norm_rel_ebd": "layer_norm",
25
+ "num_attention_heads": 12,
26
+ "num_hidden_layers": 12,
27
+ "pad_token_id": 0,
28
+ "pooler_dropout": 0,
29
+ "pooler_hidden_act": "gelu",
30
+ "pooler_hidden_size": 768,
31
+ "pos_att_type": [
32
+ "p2c",
33
+ "c2p"
34
+ ],
35
+ "position_biased_input": false,
36
+ "position_buckets": 256,
37
+ "relative_attention": true,
38
+ "share_att_key": true,
39
+ "torch_dtype": "float32",
40
+ "transformers_version": "4.44.0",
41
+ "type_vocab_size": 0,
42
+ "vocab_size": 251000
43
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3dcc407a6854838814a481239fe7a3e0772558a74588bc8e4636e79ba0fcf8c
3
+ size 1115268200
trainer_state.json ADDED
@@ -0,0 +1,1631 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.997632202052092,
5
+ "eval_steps": 100,
6
+ "global_step": 1899,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01578531965272297,
13
+ "grad_norm": 0.7275460362434387,
14
+ "learning_rate": 4.0000000000000003e-07,
15
+ "loss": 0.6962,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.03157063930544594,
20
+ "grad_norm": 0.5963730216026306,
21
+ "learning_rate": 8.000000000000001e-07,
22
+ "loss": 0.6989,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.0473559589581689,
27
+ "grad_norm": 1.253847360610962,
28
+ "learning_rate": 1.2000000000000002e-06,
29
+ "loss": 0.6935,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.06314127861089187,
34
+ "grad_norm": 1.5691624879837036,
35
+ "learning_rate": 1.6000000000000001e-06,
36
+ "loss": 0.6947,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.07892659826361484,
41
+ "grad_norm": 1.1631684303283691,
42
+ "learning_rate": 2.0000000000000003e-06,
43
+ "loss": 0.6889,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.0947119179163378,
48
+ "grad_norm": 1.152625322341919,
49
+ "learning_rate": 2.4000000000000003e-06,
50
+ "loss": 0.6776,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.11049723756906077,
55
+ "grad_norm": 1.720926284790039,
56
+ "learning_rate": 2.8000000000000003e-06,
57
+ "loss": 0.6468,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.12628255722178375,
62
+ "grad_norm": 3.781614065170288,
63
+ "learning_rate": 3.2000000000000003e-06,
64
+ "loss": 0.6133,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.1420678768745067,
69
+ "grad_norm": 2.526336669921875,
70
+ "learning_rate": 3.6000000000000003e-06,
71
+ "loss": 0.5555,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.15785319652722968,
76
+ "grad_norm": 2.09712290763855,
77
+ "learning_rate": 4.000000000000001e-06,
78
+ "loss": 0.5515,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.15785319652722968,
83
+ "eval_accuracy": 0.7578864353312302,
84
+ "eval_accuracy_label_test": 0.5070365902694008,
85
+ "eval_accuracy_label_train": 0.9992263056092844,
86
+ "eval_f1": 0.7415473366691369,
87
+ "eval_loss": 0.5193965435028076,
88
+ "eval_precision": 0.8351793628382634,
89
+ "eval_recall": 0.7578864353312302,
90
+ "eval_runtime": 14.5015,
91
+ "eval_samples_per_second": 349.758,
92
+ "eval_steps_per_second": 21.86,
93
+ "step": 100
94
+ },
95
+ {
96
+ "epoch": 0.17363851617995266,
97
+ "grad_norm": 1.363462209701538,
98
+ "learning_rate": 4.4e-06,
99
+ "loss": 0.5304,
100
+ "step": 110
101
+ },
102
+ {
103
+ "epoch": 0.1894238358326756,
104
+ "grad_norm": 1.779582142829895,
105
+ "learning_rate": 4.800000000000001e-06,
106
+ "loss": 0.5147,
107
+ "step": 120
108
+ },
109
+ {
110
+ "epoch": 0.2052091554853986,
111
+ "grad_norm": 3.7067956924438477,
112
+ "learning_rate": 5.2e-06,
113
+ "loss": 0.4892,
114
+ "step": 130
115
+ },
116
+ {
117
+ "epoch": 0.22099447513812154,
118
+ "grad_norm": 19.64886474609375,
119
+ "learning_rate": 5.600000000000001e-06,
120
+ "loss": 0.4963,
121
+ "step": 140
122
+ },
123
+ {
124
+ "epoch": 0.23677979479084452,
125
+ "grad_norm": 12.231091499328613,
126
+ "learning_rate": 6e-06,
127
+ "loss": 0.451,
128
+ "step": 150
129
+ },
130
+ {
131
+ "epoch": 0.2525651144435675,
132
+ "grad_norm": 5.452483654022217,
133
+ "learning_rate": 6.4000000000000006e-06,
134
+ "loss": 0.3406,
135
+ "step": 160
136
+ },
137
+ {
138
+ "epoch": 0.26835043409629045,
139
+ "grad_norm": 4.669571876525879,
140
+ "learning_rate": 6.800000000000001e-06,
141
+ "loss": 0.3745,
142
+ "step": 170
143
+ },
144
+ {
145
+ "epoch": 0.2841357537490134,
146
+ "grad_norm": 2.206510305404663,
147
+ "learning_rate": 7.2000000000000005e-06,
148
+ "loss": 0.3036,
149
+ "step": 180
150
+ },
151
+ {
152
+ "epoch": 0.2999210734017364,
153
+ "grad_norm": 6.932628631591797,
154
+ "learning_rate": 7.600000000000001e-06,
155
+ "loss": 0.2632,
156
+ "step": 190
157
+ },
158
+ {
159
+ "epoch": 0.31570639305445936,
160
+ "grad_norm": 3.4731557369232178,
161
+ "learning_rate": 8.000000000000001e-06,
162
+ "loss": 0.2205,
163
+ "step": 200
164
+ },
165
+ {
166
+ "epoch": 0.31570639305445936,
167
+ "eval_accuracy": 0.9300078864353313,
168
+ "eval_accuracy_label_test": 0.9883393646964214,
169
+ "eval_accuracy_label_train": 0.8738878143133463,
170
+ "eval_f1": 0.9298468332917054,
171
+ "eval_loss": 0.25367653369903564,
172
+ "eval_precision": 0.9361225540545063,
173
+ "eval_recall": 0.9300078864353313,
174
+ "eval_runtime": 14.577,
175
+ "eval_samples_per_second": 347.944,
176
+ "eval_steps_per_second": 21.747,
177
+ "step": 200
178
+ },
179
+ {
180
+ "epoch": 0.3314917127071823,
181
+ "grad_norm": 3.005352735519409,
182
+ "learning_rate": 8.400000000000001e-06,
183
+ "loss": 0.217,
184
+ "step": 210
185
+ },
186
+ {
187
+ "epoch": 0.3472770323599053,
188
+ "grad_norm": 5.314383506774902,
189
+ "learning_rate": 8.8e-06,
190
+ "loss": 0.1349,
191
+ "step": 220
192
+ },
193
+ {
194
+ "epoch": 0.36306235201262826,
195
+ "grad_norm": 1.332632303237915,
196
+ "learning_rate": 9.200000000000002e-06,
197
+ "loss": 0.092,
198
+ "step": 230
199
+ },
200
+ {
201
+ "epoch": 0.3788476716653512,
202
+ "grad_norm": 14.597169876098633,
203
+ "learning_rate": 9.600000000000001e-06,
204
+ "loss": 0.0767,
205
+ "step": 240
206
+ },
207
+ {
208
+ "epoch": 0.39463299131807417,
209
+ "grad_norm": 0.3883499503135681,
210
+ "learning_rate": 1e-05,
211
+ "loss": 0.1029,
212
+ "step": 250
213
+ },
214
+ {
215
+ "epoch": 0.4104183109707972,
216
+ "grad_norm": 18.310523986816406,
217
+ "learning_rate": 1.04e-05,
218
+ "loss": 0.0856,
219
+ "step": 260
220
+ },
221
+ {
222
+ "epoch": 0.4262036306235201,
223
+ "grad_norm": 6.817958354949951,
224
+ "learning_rate": 1.0800000000000002e-05,
225
+ "loss": 0.0514,
226
+ "step": 270
227
+ },
228
+ {
229
+ "epoch": 0.4419889502762431,
230
+ "grad_norm": 10.453371047973633,
231
+ "learning_rate": 1.1200000000000001e-05,
232
+ "loss": 0.0925,
233
+ "step": 280
234
+ },
235
+ {
236
+ "epoch": 0.4577742699289661,
237
+ "grad_norm": 0.29950886964797974,
238
+ "learning_rate": 1.16e-05,
239
+ "loss": 0.0727,
240
+ "step": 290
241
+ },
242
+ {
243
+ "epoch": 0.47355958958168903,
244
+ "grad_norm": 3.3916432857513428,
245
+ "learning_rate": 1.2e-05,
246
+ "loss": 0.1106,
247
+ "step": 300
248
+ },
249
+ {
250
+ "epoch": 0.47355958958168903,
251
+ "eval_accuracy": 0.9128548895899053,
252
+ "eval_accuracy_label_test": 0.995979091274628,
253
+ "eval_accuracy_label_train": 0.8328820116054159,
254
+ "eval_f1": 0.9123898201159903,
255
+ "eval_loss": 0.3449595868587494,
256
+ "eval_precision": 0.9248260970850004,
257
+ "eval_recall": 0.9128548895899053,
258
+ "eval_runtime": 14.6481,
259
+ "eval_samples_per_second": 346.258,
260
+ "eval_steps_per_second": 21.641,
261
+ "step": 300
262
+ },
263
+ {
264
+ "epoch": 0.489344909234412,
265
+ "grad_norm": 12.914605140686035,
266
+ "learning_rate": 1.2400000000000002e-05,
267
+ "loss": 0.061,
268
+ "step": 310
269
+ },
270
+ {
271
+ "epoch": 0.505130228887135,
272
+ "grad_norm": 0.24762243032455444,
273
+ "learning_rate": 1.2800000000000001e-05,
274
+ "loss": 0.0929,
275
+ "step": 320
276
+ },
277
+ {
278
+ "epoch": 0.5209155485398579,
279
+ "grad_norm": 0.3279378116130829,
280
+ "learning_rate": 1.3200000000000002e-05,
281
+ "loss": 0.0511,
282
+ "step": 330
283
+ },
284
+ {
285
+ "epoch": 0.5367008681925809,
286
+ "grad_norm": 7.465598106384277,
287
+ "learning_rate": 1.3600000000000002e-05,
288
+ "loss": 0.0727,
289
+ "step": 340
290
+ },
291
+ {
292
+ "epoch": 0.5524861878453039,
293
+ "grad_norm": 0.9897856712341309,
294
+ "learning_rate": 1.4e-05,
295
+ "loss": 0.095,
296
+ "step": 350
297
+ },
298
+ {
299
+ "epoch": 0.5682715074980268,
300
+ "grad_norm": 19.12044334411621,
301
+ "learning_rate": 1.4400000000000001e-05,
302
+ "loss": 0.0386,
303
+ "step": 360
304
+ },
305
+ {
306
+ "epoch": 0.5840568271507498,
307
+ "grad_norm": 3.458350419998169,
308
+ "learning_rate": 1.48e-05,
309
+ "loss": 0.0467,
310
+ "step": 370
311
+ },
312
+ {
313
+ "epoch": 0.5998421468034728,
314
+ "grad_norm": 0.10713621973991394,
315
+ "learning_rate": 1.5200000000000002e-05,
316
+ "loss": 0.0316,
317
+ "step": 380
318
+ },
319
+ {
320
+ "epoch": 0.6156274664561957,
321
+ "grad_norm": 0.3854784071445465,
322
+ "learning_rate": 1.5600000000000003e-05,
323
+ "loss": 0.0396,
324
+ "step": 390
325
+ },
326
+ {
327
+ "epoch": 0.6314127861089187,
328
+ "grad_norm": 6.402571201324463,
329
+ "learning_rate": 1.6000000000000003e-05,
330
+ "loss": 0.0384,
331
+ "step": 400
332
+ },
333
+ {
334
+ "epoch": 0.6314127861089187,
335
+ "eval_accuracy": 0.9682570977917981,
336
+ "eval_accuracy_label_test": 0.983514274225975,
337
+ "eval_accuracy_label_train": 0.9535783365570599,
338
+ "eval_f1": 0.9682589499365617,
339
+ "eval_loss": 0.14084377884864807,
340
+ "eval_precision": 0.968730671942094,
341
+ "eval_recall": 0.9682570977917981,
342
+ "eval_runtime": 14.7066,
343
+ "eval_samples_per_second": 344.878,
344
+ "eval_steps_per_second": 21.555,
345
+ "step": 400
346
+ },
347
+ {
348
+ "epoch": 0.6471981057616417,
349
+ "grad_norm": 7.416443347930908,
350
+ "learning_rate": 1.64e-05,
351
+ "loss": 0.0354,
352
+ "step": 410
353
+ },
354
+ {
355
+ "epoch": 0.6629834254143646,
356
+ "grad_norm": 25.271848678588867,
357
+ "learning_rate": 1.6800000000000002e-05,
358
+ "loss": 0.1069,
359
+ "step": 420
360
+ },
361
+ {
362
+ "epoch": 0.6787687450670876,
363
+ "grad_norm": 0.10532895475625992,
364
+ "learning_rate": 1.72e-05,
365
+ "loss": 0.0411,
366
+ "step": 430
367
+ },
368
+ {
369
+ "epoch": 0.6945540647198106,
370
+ "grad_norm": 0.05838713422417641,
371
+ "learning_rate": 1.76e-05,
372
+ "loss": 0.0593,
373
+ "step": 440
374
+ },
375
+ {
376
+ "epoch": 0.7103393843725335,
377
+ "grad_norm": 0.06444909423589706,
378
+ "learning_rate": 1.8e-05,
379
+ "loss": 0.0073,
380
+ "step": 450
381
+ },
382
+ {
383
+ "epoch": 0.7261247040252565,
384
+ "grad_norm": 6.492961883544922,
385
+ "learning_rate": 1.8400000000000003e-05,
386
+ "loss": 0.0539,
387
+ "step": 460
388
+ },
389
+ {
390
+ "epoch": 0.7419100236779794,
391
+ "grad_norm": 0.08374536037445068,
392
+ "learning_rate": 1.88e-05,
393
+ "loss": 0.0757,
394
+ "step": 470
395
+ },
396
+ {
397
+ "epoch": 0.7576953433307024,
398
+ "grad_norm": 0.05994931235909462,
399
+ "learning_rate": 1.9200000000000003e-05,
400
+ "loss": 0.0201,
401
+ "step": 480
402
+ },
403
+ {
404
+ "epoch": 0.7734806629834254,
405
+ "grad_norm": 17.886022567749023,
406
+ "learning_rate": 1.9600000000000002e-05,
407
+ "loss": 0.0536,
408
+ "step": 490
409
+ },
410
+ {
411
+ "epoch": 0.7892659826361483,
412
+ "grad_norm": 2.434602737426758,
413
+ "learning_rate": 2e-05,
414
+ "loss": 0.0631,
415
+ "step": 500
416
+ },
417
+ {
418
+ "epoch": 0.7892659826361483,
419
+ "eval_accuracy": 0.9631309148264984,
420
+ "eval_accuracy_label_test": 0.989545637314033,
421
+ "eval_accuracy_label_train": 0.9377176015473888,
422
+ "eval_f1": 0.9631237556597715,
423
+ "eval_loss": 0.15165044367313385,
424
+ "eval_precision": 0.964482811637024,
425
+ "eval_recall": 0.9631309148264984,
426
+ "eval_runtime": 14.5963,
427
+ "eval_samples_per_second": 347.485,
428
+ "eval_steps_per_second": 21.718,
429
+ "step": 500
430
+ },
431
+ {
432
+ "epoch": 0.8050513022888713,
433
+ "grad_norm": 2.8019778728485107,
434
+ "learning_rate": 1.9857040743388135e-05,
435
+ "loss": 0.0191,
436
+ "step": 510
437
+ },
438
+ {
439
+ "epoch": 0.8208366219415943,
440
+ "grad_norm": 2.233394145965576,
441
+ "learning_rate": 1.971408148677627e-05,
442
+ "loss": 0.0317,
443
+ "step": 520
444
+ },
445
+ {
446
+ "epoch": 0.8366219415943172,
447
+ "grad_norm": 0.1284877210855484,
448
+ "learning_rate": 1.9571122230164405e-05,
449
+ "loss": 0.0467,
450
+ "step": 530
451
+ },
452
+ {
453
+ "epoch": 0.8524072612470402,
454
+ "grad_norm": 0.0791168138384819,
455
+ "learning_rate": 1.942816297355254e-05,
456
+ "loss": 0.0455,
457
+ "step": 540
458
+ },
459
+ {
460
+ "epoch": 0.8681925808997633,
461
+ "grad_norm": 0.35995563864707947,
462
+ "learning_rate": 1.928520371694067e-05,
463
+ "loss": 0.0253,
464
+ "step": 550
465
+ },
466
+ {
467
+ "epoch": 0.8839779005524862,
468
+ "grad_norm": 2.419013738632202,
469
+ "learning_rate": 1.9142244460328808e-05,
470
+ "loss": 0.0551,
471
+ "step": 560
472
+ },
473
+ {
474
+ "epoch": 0.8997632202052092,
475
+ "grad_norm": 12.438931465148926,
476
+ "learning_rate": 1.899928520371694e-05,
477
+ "loss": 0.0563,
478
+ "step": 570
479
+ },
480
+ {
481
+ "epoch": 0.9155485398579322,
482
+ "grad_norm": 0.049261171370744705,
483
+ "learning_rate": 1.8856325947105075e-05,
484
+ "loss": 0.0291,
485
+ "step": 580
486
+ },
487
+ {
488
+ "epoch": 0.9313338595106551,
489
+ "grad_norm": 0.04032573848962784,
490
+ "learning_rate": 1.871336669049321e-05,
491
+ "loss": 0.0026,
492
+ "step": 590
493
+ },
494
+ {
495
+ "epoch": 0.9471191791633781,
496
+ "grad_norm": 1.215957522392273,
497
+ "learning_rate": 1.8570407433881345e-05,
498
+ "loss": 0.0276,
499
+ "step": 600
500
+ },
501
+ {
502
+ "epoch": 0.9471191791633781,
503
+ "eval_accuracy": 0.9386829652996845,
504
+ "eval_accuracy_label_test": 0.9947728186570165,
505
+ "eval_accuracy_label_train": 0.8847195357833656,
506
+ "eval_f1": 0.9385557615622165,
507
+ "eval_loss": 0.36488327383995056,
508
+ "eval_precision": 0.9444060841035706,
509
+ "eval_recall": 0.9386829652996845,
510
+ "eval_runtime": 14.5956,
511
+ "eval_samples_per_second": 347.502,
512
+ "eval_steps_per_second": 21.719,
513
+ "step": 600
514
+ },
515
+ {
516
+ "epoch": 0.9629044988161011,
517
+ "grad_norm": 0.0634990781545639,
518
+ "learning_rate": 1.842744817726948e-05,
519
+ "loss": 0.0267,
520
+ "step": 610
521
+ },
522
+ {
523
+ "epoch": 0.978689818468824,
524
+ "grad_norm": 0.029669882729649544,
525
+ "learning_rate": 1.8284488920657615e-05,
526
+ "loss": 0.0426,
527
+ "step": 620
528
+ },
529
+ {
530
+ "epoch": 0.994475138121547,
531
+ "grad_norm": 0.029255308210849762,
532
+ "learning_rate": 1.8141529664045748e-05,
533
+ "loss": 0.0556,
534
+ "step": 630
535
+ },
536
+ {
537
+ "epoch": 1.01026045777427,
538
+ "grad_norm": 0.0757206529378891,
539
+ "learning_rate": 1.799857040743388e-05,
540
+ "loss": 0.0458,
541
+ "step": 640
542
+ },
543
+ {
544
+ "epoch": 1.0260457774269929,
545
+ "grad_norm": 0.1398855596780777,
546
+ "learning_rate": 1.7855611150822018e-05,
547
+ "loss": 0.0641,
548
+ "step": 650
549
+ },
550
+ {
551
+ "epoch": 1.0418310970797158,
552
+ "grad_norm": 7.250219821929932,
553
+ "learning_rate": 1.771265189421015e-05,
554
+ "loss": 0.0204,
555
+ "step": 660
556
+ },
557
+ {
558
+ "epoch": 1.057616416732439,
559
+ "grad_norm": 0.022936342284083366,
560
+ "learning_rate": 1.7569692637598285e-05,
561
+ "loss": 0.002,
562
+ "step": 670
563
+ },
564
+ {
565
+ "epoch": 1.0734017363851618,
566
+ "grad_norm": 4.3541741371154785,
567
+ "learning_rate": 1.742673338098642e-05,
568
+ "loss": 0.0148,
569
+ "step": 680
570
+ },
571
+ {
572
+ "epoch": 1.0891870560378847,
573
+ "grad_norm": 0.024669496342539787,
574
+ "learning_rate": 1.7283774124374555e-05,
575
+ "loss": 0.062,
576
+ "step": 690
577
+ },
578
+ {
579
+ "epoch": 1.1049723756906078,
580
+ "grad_norm": 0.023665498942136765,
581
+ "learning_rate": 1.7140814867762688e-05,
582
+ "loss": 0.0245,
583
+ "step": 700
584
+ },
585
+ {
586
+ "epoch": 1.1049723756906078,
587
+ "eval_accuracy": 0.9702287066246057,
588
+ "eval_accuracy_label_test": 0.9726578206674709,
589
+ "eval_accuracy_label_train": 0.9678916827852998,
590
+ "eval_f1": 0.9702301478266859,
591
+ "eval_loss": 0.13387098908424377,
592
+ "eval_precision": 0.9702485636354361,
593
+ "eval_recall": 0.9702287066246057,
594
+ "eval_runtime": 14.562,
595
+ "eval_samples_per_second": 348.304,
596
+ "eval_steps_per_second": 21.769,
597
+ "step": 700
598
+ },
599
+ {
600
+ "epoch": 1.1207576953433307,
601
+ "grad_norm": 20.071300506591797,
602
+ "learning_rate": 1.6997855611150825e-05,
603
+ "loss": 0.0867,
604
+ "step": 710
605
+ },
606
+ {
607
+ "epoch": 1.1365430149960536,
608
+ "grad_norm": 0.016291845589876175,
609
+ "learning_rate": 1.6854896354538958e-05,
610
+ "loss": 0.0167,
611
+ "step": 720
612
+ },
613
+ {
614
+ "epoch": 1.1523283346487767,
615
+ "grad_norm": 0.02355334907770157,
616
+ "learning_rate": 1.671193709792709e-05,
617
+ "loss": 0.003,
618
+ "step": 730
619
+ },
620
+ {
621
+ "epoch": 1.1681136543014996,
622
+ "grad_norm": 0.014460445381700993,
623
+ "learning_rate": 1.6568977841315225e-05,
624
+ "loss": 0.0137,
625
+ "step": 740
626
+ },
627
+ {
628
+ "epoch": 1.1838989739542225,
629
+ "grad_norm": 9.110311508178711,
630
+ "learning_rate": 1.642601858470336e-05,
631
+ "loss": 0.0592,
632
+ "step": 750
633
+ },
634
+ {
635
+ "epoch": 1.1996842936069456,
636
+ "grad_norm": 0.03517633676528931,
637
+ "learning_rate": 1.6283059328091495e-05,
638
+ "loss": 0.0356,
639
+ "step": 760
640
+ },
641
+ {
642
+ "epoch": 1.2154696132596685,
643
+ "grad_norm": 1.65547776222229,
644
+ "learning_rate": 1.6140100071479628e-05,
645
+ "loss": 0.0206,
646
+ "step": 770
647
+ },
648
+ {
649
+ "epoch": 1.2312549329123914,
650
+ "grad_norm": 0.044892311096191406,
651
+ "learning_rate": 1.5997140814867765e-05,
652
+ "loss": 0.0138,
653
+ "step": 780
654
+ },
655
+ {
656
+ "epoch": 1.2470402525651145,
657
+ "grad_norm": 16.877887725830078,
658
+ "learning_rate": 1.5854181558255898e-05,
659
+ "loss": 0.0201,
660
+ "step": 790
661
+ },
662
+ {
663
+ "epoch": 1.2628255722178374,
664
+ "grad_norm": 13.245466232299805,
665
+ "learning_rate": 1.5711222301644035e-05,
666
+ "loss": 0.0519,
667
+ "step": 800
668
+ },
669
+ {
670
+ "epoch": 1.2628255722178374,
671
+ "eval_accuracy": 0.9185725552050473,
672
+ "eval_accuracy_label_test": 0.9991958182549256,
673
+ "eval_accuracy_label_train": 0.8410058027079303,
674
+ "eval_f1": 0.9181684151069668,
675
+ "eval_loss": 0.4945215582847595,
676
+ "eval_precision": 0.9299426884244839,
677
+ "eval_recall": 0.9185725552050473,
678
+ "eval_runtime": 14.6038,
679
+ "eval_samples_per_second": 347.306,
680
+ "eval_steps_per_second": 21.707,
681
+ "step": 800
682
+ },
683
+ {
684
+ "epoch": 1.2786108918705603,
685
+ "grad_norm": 12.54496955871582,
686
+ "learning_rate": 1.5568263045032168e-05,
687
+ "loss": 0.0505,
688
+ "step": 810
689
+ },
690
+ {
691
+ "epoch": 1.2943962115232832,
692
+ "grad_norm": 0.01659429259598255,
693
+ "learning_rate": 1.54253037884203e-05,
694
+ "loss": 0.0246,
695
+ "step": 820
696
+ },
697
+ {
698
+ "epoch": 1.3101815311760063,
699
+ "grad_norm": 0.03832576796412468,
700
+ "learning_rate": 1.5282344531808435e-05,
701
+ "loss": 0.0206,
702
+ "step": 830
703
+ },
704
+ {
705
+ "epoch": 1.3259668508287292,
706
+ "grad_norm": 4.976266384124756,
707
+ "learning_rate": 1.513938527519657e-05,
708
+ "loss": 0.011,
709
+ "step": 840
710
+ },
711
+ {
712
+ "epoch": 1.3417521704814521,
713
+ "grad_norm": 16.507583618164062,
714
+ "learning_rate": 1.4996426018584705e-05,
715
+ "loss": 0.0971,
716
+ "step": 850
717
+ },
718
+ {
719
+ "epoch": 1.3575374901341752,
720
+ "grad_norm": 9.206993103027344,
721
+ "learning_rate": 1.485346676197284e-05,
722
+ "loss": 0.0314,
723
+ "step": 860
724
+ },
725
+ {
726
+ "epoch": 1.3733228097868981,
727
+ "grad_norm": 0.040578652173280716,
728
+ "learning_rate": 1.4710507505360973e-05,
729
+ "loss": 0.0053,
730
+ "step": 870
731
+ },
732
+ {
733
+ "epoch": 1.389108129439621,
734
+ "grad_norm": 15.86640739440918,
735
+ "learning_rate": 1.4567548248749108e-05,
736
+ "loss": 0.0268,
737
+ "step": 880
738
+ },
739
+ {
740
+ "epoch": 1.4048934490923441,
741
+ "grad_norm": 1.9645894765853882,
742
+ "learning_rate": 1.4424588992137243e-05,
743
+ "loss": 0.0348,
744
+ "step": 890
745
+ },
746
+ {
747
+ "epoch": 1.420678768745067,
748
+ "grad_norm": 0.01832072250545025,
749
+ "learning_rate": 1.4281629735525378e-05,
750
+ "loss": 0.02,
751
+ "step": 900
752
+ },
753
+ {
754
+ "epoch": 1.420678768745067,
755
+ "eval_accuracy": 0.9548501577287066,
756
+ "eval_accuracy_label_test": 0.995979091274628,
757
+ "eval_accuracy_label_train": 0.9152804642166344,
758
+ "eval_f1": 0.9548094220396917,
759
+ "eval_loss": 0.26368606090545654,
760
+ "eval_precision": 0.958024003205365,
761
+ "eval_recall": 0.9548501577287066,
762
+ "eval_runtime": 14.5839,
763
+ "eval_samples_per_second": 347.781,
764
+ "eval_steps_per_second": 21.736,
765
+ "step": 900
766
+ },
767
+ {
768
+ "epoch": 1.43646408839779,
769
+ "grad_norm": 2.4122228622436523,
770
+ "learning_rate": 1.413867047891351e-05,
771
+ "loss": 0.0431,
772
+ "step": 910
773
+ },
774
+ {
775
+ "epoch": 1.452249408050513,
776
+ "grad_norm": 0.04305430129170418,
777
+ "learning_rate": 1.3995711222301644e-05,
778
+ "loss": 0.0382,
779
+ "step": 920
780
+ },
781
+ {
782
+ "epoch": 1.468034727703236,
783
+ "grad_norm": 0.045583341270685196,
784
+ "learning_rate": 1.385275196568978e-05,
785
+ "loss": 0.0345,
786
+ "step": 930
787
+ },
788
+ {
789
+ "epoch": 1.4838200473559588,
790
+ "grad_norm": 0.08313434571027756,
791
+ "learning_rate": 1.3709792709077914e-05,
792
+ "loss": 0.0229,
793
+ "step": 940
794
+ },
795
+ {
796
+ "epoch": 1.499605367008682,
797
+ "grad_norm": 0.040190890431404114,
798
+ "learning_rate": 1.3566833452466048e-05,
799
+ "loss": 0.0022,
800
+ "step": 950
801
+ },
802
+ {
803
+ "epoch": 1.5153906866614049,
804
+ "grad_norm": 0.12089771777391434,
805
+ "learning_rate": 1.3423874195854183e-05,
806
+ "loss": 0.0126,
807
+ "step": 960
808
+ },
809
+ {
810
+ "epoch": 1.5311760063141278,
811
+ "grad_norm": 0.0291321761906147,
812
+ "learning_rate": 1.3280914939242318e-05,
813
+ "loss": 0.0246,
814
+ "step": 970
815
+ },
816
+ {
817
+ "epoch": 1.5469613259668509,
818
+ "grad_norm": 0.06409675627946854,
819
+ "learning_rate": 1.3137955682630453e-05,
820
+ "loss": 0.0611,
821
+ "step": 980
822
+ },
823
+ {
824
+ "epoch": 1.5627466456195738,
825
+ "grad_norm": 9.994110107421875,
826
+ "learning_rate": 1.2994996426018586e-05,
827
+ "loss": 0.0102,
828
+ "step": 990
829
+ },
830
+ {
831
+ "epoch": 1.5785319652722967,
832
+ "grad_norm": 10.403185844421387,
833
+ "learning_rate": 1.285203716940672e-05,
834
+ "loss": 0.0325,
835
+ "step": 1000
836
+ },
837
+ {
838
+ "epoch": 1.5785319652722967,
839
+ "eval_accuracy": 0.9708201892744479,
840
+ "eval_accuracy_label_test": 0.9851226377161239,
841
+ "eval_accuracy_label_train": 0.9570599613152805,
842
+ "eval_f1": 0.970822203818026,
843
+ "eval_loss": 0.11654461175203323,
844
+ "eval_precision": 0.9712375667689825,
845
+ "eval_recall": 0.9708201892744479,
846
+ "eval_runtime": 14.5989,
847
+ "eval_samples_per_second": 347.423,
848
+ "eval_steps_per_second": 21.714,
849
+ "step": 1000
850
+ },
851
+ {
852
+ "epoch": 1.5943172849250198,
853
+ "grad_norm": 0.05680805817246437,
854
+ "learning_rate": 1.2709077912794854e-05,
855
+ "loss": 0.0028,
856
+ "step": 1010
857
+ },
858
+ {
859
+ "epoch": 1.6101026045777427,
860
+ "grad_norm": 0.017462020739912987,
861
+ "learning_rate": 1.2566118656182988e-05,
862
+ "loss": 0.0357,
863
+ "step": 1020
864
+ },
865
+ {
866
+ "epoch": 1.6258879242304656,
867
+ "grad_norm": 5.752472877502441,
868
+ "learning_rate": 1.2423159399571123e-05,
869
+ "loss": 0.0457,
870
+ "step": 1030
871
+ },
872
+ {
873
+ "epoch": 1.6416732438831887,
874
+ "grad_norm": 0.14555960893630981,
875
+ "learning_rate": 1.2280200142959258e-05,
876
+ "loss": 0.0062,
877
+ "step": 1040
878
+ },
879
+ {
880
+ "epoch": 1.6574585635359116,
881
+ "grad_norm": 0.019668666645884514,
882
+ "learning_rate": 1.2137240886347393e-05,
883
+ "loss": 0.0046,
884
+ "step": 1050
885
+ },
886
+ {
887
+ "epoch": 1.6732438831886345,
888
+ "grad_norm": 0.01673435978591442,
889
+ "learning_rate": 1.1994281629735528e-05,
890
+ "loss": 0.0535,
891
+ "step": 1060
892
+ },
893
+ {
894
+ "epoch": 1.6890292028413576,
895
+ "grad_norm": 4.553021430969238,
896
+ "learning_rate": 1.1851322373123661e-05,
897
+ "loss": 0.0767,
898
+ "step": 1070
899
+ },
900
+ {
901
+ "epoch": 1.7048145224940805,
902
+ "grad_norm": 0.33790552616119385,
903
+ "learning_rate": 1.1708363116511796e-05,
904
+ "loss": 0.0433,
905
+ "step": 1080
906
+ },
907
+ {
908
+ "epoch": 1.7205998421468034,
909
+ "grad_norm": 0.08579400181770325,
910
+ "learning_rate": 1.156540385989993e-05,
911
+ "loss": 0.0051,
912
+ "step": 1090
913
+ },
914
+ {
915
+ "epoch": 1.7363851617995265,
916
+ "grad_norm": 0.24498964846134186,
917
+ "learning_rate": 1.1422444603288063e-05,
918
+ "loss": 0.016,
919
+ "step": 1100
920
+ },
921
+ {
922
+ "epoch": 1.7363851617995265,
923
+ "eval_accuracy": 0.9692429022082019,
924
+ "eval_accuracy_label_test": 0.9529553679131484,
925
+ "eval_accuracy_label_train": 0.9849129593810445,
926
+ "eval_f1": 0.9692264691880251,
927
+ "eval_loss": 0.10065295547246933,
928
+ "eval_precision": 0.9696695972871102,
929
+ "eval_recall": 0.9692429022082019,
930
+ "eval_runtime": 14.644,
931
+ "eval_samples_per_second": 346.353,
932
+ "eval_steps_per_second": 21.647,
933
+ "step": 1100
934
+ },
935
+ {
936
+ "epoch": 1.7521704814522494,
937
+ "grad_norm": 3.6310765743255615,
938
+ "learning_rate": 1.1279485346676198e-05,
939
+ "loss": 0.0676,
940
+ "step": 1110
941
+ },
942
+ {
943
+ "epoch": 1.7679558011049723,
944
+ "grad_norm": 0.26799193024635315,
945
+ "learning_rate": 1.1136526090064333e-05,
946
+ "loss": 0.011,
947
+ "step": 1120
948
+ },
949
+ {
950
+ "epoch": 1.7837411207576954,
951
+ "grad_norm": 0.050716836005449295,
952
+ "learning_rate": 1.0993566833452468e-05,
953
+ "loss": 0.0474,
954
+ "step": 1130
955
+ },
956
+ {
957
+ "epoch": 1.7995264404104183,
958
+ "grad_norm": 0.03631124272942543,
959
+ "learning_rate": 1.0850607576840601e-05,
960
+ "loss": 0.0013,
961
+ "step": 1140
962
+ },
963
+ {
964
+ "epoch": 1.8153117600631412,
965
+ "grad_norm": 0.016972020268440247,
966
+ "learning_rate": 1.0707648320228736e-05,
967
+ "loss": 0.0098,
968
+ "step": 1150
969
+ },
970
+ {
971
+ "epoch": 1.8310970797158643,
972
+ "grad_norm": 0.01586087793111801,
973
+ "learning_rate": 1.0564689063616871e-05,
974
+ "loss": 0.0013,
975
+ "step": 1160
976
+ },
977
+ {
978
+ "epoch": 1.8468823993685872,
979
+ "grad_norm": 0.01447396818548441,
980
+ "learning_rate": 1.0421729807005006e-05,
981
+ "loss": 0.0148,
982
+ "step": 1170
983
+ },
984
+ {
985
+ "epoch": 1.8626677190213101,
986
+ "grad_norm": 0.08018597215414047,
987
+ "learning_rate": 1.0278770550393137e-05,
988
+ "loss": 0.0067,
989
+ "step": 1180
990
+ },
991
+ {
992
+ "epoch": 1.8784530386740332,
993
+ "grad_norm": 0.020933715626597404,
994
+ "learning_rate": 1.0135811293781272e-05,
995
+ "loss": 0.0177,
996
+ "step": 1190
997
+ },
998
+ {
999
+ "epoch": 1.8942383583267561,
1000
+ "grad_norm": 0.006128642242401838,
1001
+ "learning_rate": 9.992852037169407e-06,
1002
+ "loss": 0.0068,
1003
+ "step": 1200
1004
+ },
1005
+ {
1006
+ "epoch": 1.8942383583267561,
1007
+ "eval_accuracy": 0.9690457413249212,
1008
+ "eval_accuracy_label_test": 0.9871330920788098,
1009
+ "eval_accuracy_label_train": 0.9516441005802708,
1010
+ "eval_f1": 0.9690463008445059,
1011
+ "eval_loss": 0.16786406934261322,
1012
+ "eval_precision": 0.9696986578163762,
1013
+ "eval_recall": 0.9690457413249212,
1014
+ "eval_runtime": 14.5325,
1015
+ "eval_samples_per_second": 349.011,
1016
+ "eval_steps_per_second": 21.813,
1017
+ "step": 1200
1018
+ },
1019
+ {
1020
+ "epoch": 1.910023677979479,
1021
+ "grad_norm": 0.009371940977871418,
1022
+ "learning_rate": 9.849892780557542e-06,
1023
+ "loss": 0.024,
1024
+ "step": 1210
1025
+ },
1026
+ {
1027
+ "epoch": 1.9258089976322021,
1028
+ "grad_norm": 0.014078453183174133,
1029
+ "learning_rate": 9.706933523945676e-06,
1030
+ "loss": 0.0005,
1031
+ "step": 1220
1032
+ },
1033
+ {
1034
+ "epoch": 1.941594317284925,
1035
+ "grad_norm": 0.009515127167105675,
1036
+ "learning_rate": 9.56397426733381e-06,
1037
+ "loss": 0.0046,
1038
+ "step": 1230
1039
+ },
1040
+ {
1041
+ "epoch": 1.957379636937648,
1042
+ "grad_norm": 0.014615291729569435,
1043
+ "learning_rate": 9.421015010721944e-06,
1044
+ "loss": 0.0261,
1045
+ "step": 1240
1046
+ },
1047
+ {
1048
+ "epoch": 1.973164956590371,
1049
+ "grad_norm": 0.06883493065834045,
1050
+ "learning_rate": 9.278055754110079e-06,
1051
+ "loss": 0.0233,
1052
+ "step": 1250
1053
+ },
1054
+ {
1055
+ "epoch": 1.988950276243094,
1056
+ "grad_norm": 0.013247163034975529,
1057
+ "learning_rate": 9.135096497498214e-06,
1058
+ "loss": 0.0168,
1059
+ "step": 1260
1060
+ },
1061
+ {
1062
+ "epoch": 2.004735595895817,
1063
+ "grad_norm": 0.012575499713420868,
1064
+ "learning_rate": 8.992137240886349e-06,
1065
+ "loss": 0.0124,
1066
+ "step": 1270
1067
+ },
1068
+ {
1069
+ "epoch": 2.02052091554854,
1070
+ "grad_norm": 0.017276756465435028,
1071
+ "learning_rate": 8.849177984274482e-06,
1072
+ "loss": 0.0184,
1073
+ "step": 1280
1074
+ },
1075
+ {
1076
+ "epoch": 2.0363062352012626,
1077
+ "grad_norm": 0.03682788833975792,
1078
+ "learning_rate": 8.706218727662616e-06,
1079
+ "loss": 0.0092,
1080
+ "step": 1290
1081
+ },
1082
+ {
1083
+ "epoch": 2.0520915548539858,
1084
+ "grad_norm": 0.35351473093032837,
1085
+ "learning_rate": 8.56325947105075e-06,
1086
+ "loss": 0.0042,
1087
+ "step": 1300
1088
+ },
1089
+ {
1090
+ "epoch": 2.0520915548539858,
1091
+ "eval_accuracy": 0.9733832807570978,
1092
+ "eval_accuracy_label_test": 0.9722557297949337,
1093
+ "eval_accuracy_label_train": 0.9744680851063829,
1094
+ "eval_f1": 0.9733829671319272,
1095
+ "eval_loss": 0.11822589486837387,
1096
+ "eval_precision": 0.973383334857871,
1097
+ "eval_recall": 0.9733832807570978,
1098
+ "eval_runtime": 14.5763,
1099
+ "eval_samples_per_second": 347.961,
1100
+ "eval_steps_per_second": 21.748,
1101
+ "step": 1300
1102
+ },
1103
+ {
1104
+ "epoch": 2.067876874506709,
1105
+ "grad_norm": 0.012184061110019684,
1106
+ "learning_rate": 8.420300214438886e-06,
1107
+ "loss": 0.0441,
1108
+ "step": 1310
1109
+ },
1110
+ {
1111
+ "epoch": 2.0836621941594315,
1112
+ "grad_norm": 0.0278099924325943,
1113
+ "learning_rate": 8.27734095782702e-06,
1114
+ "loss": 0.008,
1115
+ "step": 1320
1116
+ },
1117
+ {
1118
+ "epoch": 2.0994475138121547,
1119
+ "grad_norm": 0.9140133261680603,
1120
+ "learning_rate": 8.134381701215154e-06,
1121
+ "loss": 0.0017,
1122
+ "step": 1330
1123
+ },
1124
+ {
1125
+ "epoch": 2.115232833464878,
1126
+ "grad_norm": 1.3029474020004272,
1127
+ "learning_rate": 7.991422444603289e-06,
1128
+ "loss": 0.0007,
1129
+ "step": 1340
1130
+ },
1131
+ {
1132
+ "epoch": 2.1310181531176005,
1133
+ "grad_norm": 0.010257584042847157,
1134
+ "learning_rate": 7.848463187991422e-06,
1135
+ "loss": 0.0158,
1136
+ "step": 1350
1137
+ },
1138
+ {
1139
+ "epoch": 2.1468034727703236,
1140
+ "grad_norm": 0.010051756165921688,
1141
+ "learning_rate": 7.705503931379557e-06,
1142
+ "loss": 0.0034,
1143
+ "step": 1360
1144
+ },
1145
+ {
1146
+ "epoch": 2.1625887924230467,
1147
+ "grad_norm": 0.10394269973039627,
1148
+ "learning_rate": 7.562544674767692e-06,
1149
+ "loss": 0.0404,
1150
+ "step": 1370
1151
+ },
1152
+ {
1153
+ "epoch": 2.1783741120757694,
1154
+ "grad_norm": 0.011765426024794579,
1155
+ "learning_rate": 7.419585418155826e-06,
1156
+ "loss": 0.0004,
1157
+ "step": 1380
1158
+ },
1159
+ {
1160
+ "epoch": 2.1941594317284925,
1161
+ "grad_norm": 1.1091564893722534,
1162
+ "learning_rate": 7.276626161543961e-06,
1163
+ "loss": 0.0006,
1164
+ "step": 1390
1165
+ },
1166
+ {
1167
+ "epoch": 2.2099447513812156,
1168
+ "grad_norm": 0.010108958929777145,
1169
+ "learning_rate": 7.133666904932095e-06,
1170
+ "loss": 0.0005,
1171
+ "step": 1400
1172
+ },
1173
+ {
1174
+ "epoch": 2.2099447513812156,
1175
+ "eval_accuracy": 0.9729889589905363,
1176
+ "eval_accuracy_label_test": 0.9798954563731403,
1177
+ "eval_accuracy_label_train": 0.9663442940038685,
1178
+ "eval_f1": 0.9729913291480798,
1179
+ "eval_loss": 0.1431707739830017,
1180
+ "eval_precision": 0.9730972588569067,
1181
+ "eval_recall": 0.9729889589905363,
1182
+ "eval_runtime": 14.631,
1183
+ "eval_samples_per_second": 346.662,
1184
+ "eval_steps_per_second": 21.666,
1185
+ "step": 1400
1186
+ },
1187
+ {
1188
+ "epoch": 2.2257300710339383,
1189
+ "grad_norm": 0.02260042168200016,
1190
+ "learning_rate": 6.99070764832023e-06,
1191
+ "loss": 0.0014,
1192
+ "step": 1410
1193
+ },
1194
+ {
1195
+ "epoch": 2.2415153906866614,
1196
+ "grad_norm": 0.0077365124598145485,
1197
+ "learning_rate": 6.847748391708363e-06,
1198
+ "loss": 0.0004,
1199
+ "step": 1420
1200
+ },
1201
+ {
1202
+ "epoch": 2.2573007103393845,
1203
+ "grad_norm": 0.008837452158331871,
1204
+ "learning_rate": 6.704789135096498e-06,
1205
+ "loss": 0.0153,
1206
+ "step": 1430
1207
+ },
1208
+ {
1209
+ "epoch": 2.273086029992107,
1210
+ "grad_norm": 0.021829022094607353,
1211
+ "learning_rate": 6.561829878484632e-06,
1212
+ "loss": 0.0003,
1213
+ "step": 1440
1214
+ },
1215
+ {
1216
+ "epoch": 2.2888713496448303,
1217
+ "grad_norm": 0.014965805225074291,
1218
+ "learning_rate": 6.418870621872767e-06,
1219
+ "loss": 0.0246,
1220
+ "step": 1450
1221
+ },
1222
+ {
1223
+ "epoch": 2.3046566692975534,
1224
+ "grad_norm": 0.013634726405143738,
1225
+ "learning_rate": 6.275911365260901e-06,
1226
+ "loss": 0.0339,
1227
+ "step": 1460
1228
+ },
1229
+ {
1230
+ "epoch": 2.320441988950276,
1231
+ "grad_norm": 6.8833794593811035,
1232
+ "learning_rate": 6.1329521086490355e-06,
1233
+ "loss": 0.0059,
1234
+ "step": 1470
1235
+ },
1236
+ {
1237
+ "epoch": 2.336227308602999,
1238
+ "grad_norm": 0.04814034327864647,
1239
+ "learning_rate": 5.98999285203717e-06,
1240
+ "loss": 0.0122,
1241
+ "step": 1480
1242
+ },
1243
+ {
1244
+ "epoch": 2.3520126282557223,
1245
+ "grad_norm": 0.026584748178720474,
1246
+ "learning_rate": 5.847033595425305e-06,
1247
+ "loss": 0.0022,
1248
+ "step": 1490
1249
+ },
1250
+ {
1251
+ "epoch": 2.367797947908445,
1252
+ "grad_norm": 0.015504554845392704,
1253
+ "learning_rate": 5.704074338813439e-06,
1254
+ "loss": 0.0182,
1255
+ "step": 1500
1256
+ },
1257
+ {
1258
+ "epoch": 2.367797947908445,
1259
+ "eval_accuracy": 0.9718059936908517,
1260
+ "eval_accuracy_label_test": 0.9871330920788098,
1261
+ "eval_accuracy_label_train": 0.9570599613152805,
1262
+ "eval_f1": 0.9718076387635299,
1263
+ "eval_loss": 0.14604002237319946,
1264
+ "eval_precision": 0.972280875829533,
1265
+ "eval_recall": 0.9718059936908517,
1266
+ "eval_runtime": 14.6031,
1267
+ "eval_samples_per_second": 347.324,
1268
+ "eval_steps_per_second": 21.708,
1269
+ "step": 1500
1270
+ },
1271
+ {
1272
+ "epoch": 2.383583267561168,
1273
+ "grad_norm": 0.07147639244794846,
1274
+ "learning_rate": 5.561115082201572e-06,
1275
+ "loss": 0.0005,
1276
+ "step": 1510
1277
+ },
1278
+ {
1279
+ "epoch": 2.3993685872138912,
1280
+ "grad_norm": 0.024004925042390823,
1281
+ "learning_rate": 5.418155825589707e-06,
1282
+ "loss": 0.0439,
1283
+ "step": 1520
1284
+ },
1285
+ {
1286
+ "epoch": 2.415153906866614,
1287
+ "grad_norm": 0.07405655831098557,
1288
+ "learning_rate": 5.275196568977842e-06,
1289
+ "loss": 0.0004,
1290
+ "step": 1530
1291
+ },
1292
+ {
1293
+ "epoch": 2.430939226519337,
1294
+ "grad_norm": 0.01881037838757038,
1295
+ "learning_rate": 5.132237312365976e-06,
1296
+ "loss": 0.0004,
1297
+ "step": 1540
1298
+ },
1299
+ {
1300
+ "epoch": 2.44672454617206,
1301
+ "grad_norm": 0.05772541090846062,
1302
+ "learning_rate": 4.98927805575411e-06,
1303
+ "loss": 0.0059,
1304
+ "step": 1550
1305
+ },
1306
+ {
1307
+ "epoch": 2.462509865824783,
1308
+ "grad_norm": 0.014262210577726364,
1309
+ "learning_rate": 4.846318799142245e-06,
1310
+ "loss": 0.0004,
1311
+ "step": 1560
1312
+ },
1313
+ {
1314
+ "epoch": 2.478295185477506,
1315
+ "grad_norm": 0.005270448978990316,
1316
+ "learning_rate": 4.703359542530379e-06,
1317
+ "loss": 0.0003,
1318
+ "step": 1570
1319
+ },
1320
+ {
1321
+ "epoch": 2.494080505130229,
1322
+ "grad_norm": 0.008271850645542145,
1323
+ "learning_rate": 4.560400285918514e-06,
1324
+ "loss": 0.0231,
1325
+ "step": 1580
1326
+ },
1327
+ {
1328
+ "epoch": 2.5098658247829517,
1329
+ "grad_norm": 0.013198798522353172,
1330
+ "learning_rate": 4.417441029306648e-06,
1331
+ "loss": 0.0034,
1332
+ "step": 1590
1333
+ },
1334
+ {
1335
+ "epoch": 2.525651144435675,
1336
+ "grad_norm": 0.07948605716228485,
1337
+ "learning_rate": 4.274481772694782e-06,
1338
+ "loss": 0.0004,
1339
+ "step": 1600
1340
+ },
1341
+ {
1342
+ "epoch": 2.525651144435675,
1343
+ "eval_accuracy": 0.973186119873817,
1344
+ "eval_accuracy_label_test": 0.9843184559710495,
1345
+ "eval_accuracy_label_train": 0.9624758220502901,
1346
+ "eval_f1": 0.973188538207199,
1347
+ "eval_loss": 0.13827118277549744,
1348
+ "eval_precision": 0.973445480376393,
1349
+ "eval_recall": 0.973186119873817,
1350
+ "eval_runtime": 14.6108,
1351
+ "eval_samples_per_second": 347.14,
1352
+ "eval_steps_per_second": 21.696,
1353
+ "step": 1600
1354
+ },
1355
+ {
1356
+ "epoch": 2.541436464088398,
1357
+ "grad_norm": 0.24930787086486816,
1358
+ "learning_rate": 4.131522516082916e-06,
1359
+ "loss": 0.0221,
1360
+ "step": 1610
1361
+ },
1362
+ {
1363
+ "epoch": 2.5572217837411206,
1364
+ "grad_norm": 0.011009340174496174,
1365
+ "learning_rate": 3.988563259471051e-06,
1366
+ "loss": 0.0003,
1367
+ "step": 1620
1368
+ },
1369
+ {
1370
+ "epoch": 2.5730071033938438,
1371
+ "grad_norm": 0.02251257933676243,
1372
+ "learning_rate": 3.845604002859185e-06,
1373
+ "loss": 0.0003,
1374
+ "step": 1630
1375
+ },
1376
+ {
1377
+ "epoch": 2.5887924230465664,
1378
+ "grad_norm": 0.004396820440888405,
1379
+ "learning_rate": 3.70264474624732e-06,
1380
+ "loss": 0.0332,
1381
+ "step": 1640
1382
+ },
1383
+ {
1384
+ "epoch": 2.6045777426992895,
1385
+ "grad_norm": 1.1856316328048706,
1386
+ "learning_rate": 3.5596854896354545e-06,
1387
+ "loss": 0.0006,
1388
+ "step": 1650
1389
+ },
1390
+ {
1391
+ "epoch": 2.6203630623520127,
1392
+ "grad_norm": 0.019586117938160896,
1393
+ "learning_rate": 3.4167262330235886e-06,
1394
+ "loss": 0.0132,
1395
+ "step": 1660
1396
+ },
1397
+ {
1398
+ "epoch": 2.636148382004736,
1399
+ "grad_norm": 0.010670648887753487,
1400
+ "learning_rate": 3.273766976411723e-06,
1401
+ "loss": 0.0007,
1402
+ "step": 1670
1403
+ },
1404
+ {
1405
+ "epoch": 2.6519337016574585,
1406
+ "grad_norm": 0.37919822335243225,
1407
+ "learning_rate": 3.130807719799857e-06,
1408
+ "loss": 0.0003,
1409
+ "step": 1680
1410
+ },
1411
+ {
1412
+ "epoch": 2.6677190213101816,
1413
+ "grad_norm": 0.2330523133277893,
1414
+ "learning_rate": 2.987848463187992e-06,
1415
+ "loss": 0.0004,
1416
+ "step": 1690
1417
+ },
1418
+ {
1419
+ "epoch": 2.6835043409629042,
1420
+ "grad_norm": 0.007127601653337479,
1421
+ "learning_rate": 2.8448892065761256e-06,
1422
+ "loss": 0.0003,
1423
+ "step": 1700
1424
+ },
1425
+ {
1426
+ "epoch": 2.6835043409629042,
1427
+ "eval_accuracy": 0.9743690851735016,
1428
+ "eval_accuracy_label_test": 0.9831121833534379,
1429
+ "eval_accuracy_label_train": 0.9659574468085106,
1430
+ "eval_f1": 0.9743714686586191,
1431
+ "eval_loss": 0.13812877237796783,
1432
+ "eval_precision": 0.9745341434373056,
1433
+ "eval_recall": 0.9743690851735016,
1434
+ "eval_runtime": 14.5972,
1435
+ "eval_samples_per_second": 347.464,
1436
+ "eval_steps_per_second": 21.717,
1437
+ "step": 1700
1438
+ },
1439
+ {
1440
+ "epoch": 2.6992896606156274,
1441
+ "grad_norm": 0.005769920535385609,
1442
+ "learning_rate": 2.7019299499642602e-06,
1443
+ "loss": 0.0005,
1444
+ "step": 1710
1445
+ },
1446
+ {
1447
+ "epoch": 2.7150749802683505,
1448
+ "grad_norm": 0.005288603249937296,
1449
+ "learning_rate": 2.5589706933523952e-06,
1450
+ "loss": 0.0006,
1451
+ "step": 1720
1452
+ },
1453
+ {
1454
+ "epoch": 2.7308602999210736,
1455
+ "grad_norm": 0.005266103427857161,
1456
+ "learning_rate": 2.416011436740529e-06,
1457
+ "loss": 0.0032,
1458
+ "step": 1730
1459
+ },
1460
+ {
1461
+ "epoch": 2.7466456195737963,
1462
+ "grad_norm": 0.005252339411526918,
1463
+ "learning_rate": 2.2730521801286635e-06,
1464
+ "loss": 0.0006,
1465
+ "step": 1740
1466
+ },
1467
+ {
1468
+ "epoch": 2.7624309392265194,
1469
+ "grad_norm": 0.004924137610942125,
1470
+ "learning_rate": 2.1300929235167977e-06,
1471
+ "loss": 0.0002,
1472
+ "step": 1750
1473
+ },
1474
+ {
1475
+ "epoch": 2.778216258879242,
1476
+ "grad_norm": 0.003662313334643841,
1477
+ "learning_rate": 1.9871336669049322e-06,
1478
+ "loss": 0.0017,
1479
+ "step": 1760
1480
+ },
1481
+ {
1482
+ "epoch": 2.794001578531965,
1483
+ "grad_norm": 0.00455325935035944,
1484
+ "learning_rate": 1.8441744102930666e-06,
1485
+ "loss": 0.0002,
1486
+ "step": 1770
1487
+ },
1488
+ {
1489
+ "epoch": 2.8097868981846883,
1490
+ "grad_norm": 0.0084315724670887,
1491
+ "learning_rate": 1.701215153681201e-06,
1492
+ "loss": 0.0007,
1493
+ "step": 1780
1494
+ },
1495
+ {
1496
+ "epoch": 2.8255722178374114,
1497
+ "grad_norm": 0.021251995116472244,
1498
+ "learning_rate": 1.5582558970693353e-06,
1499
+ "loss": 0.0002,
1500
+ "step": 1790
1501
+ },
1502
+ {
1503
+ "epoch": 2.841357537490134,
1504
+ "grad_norm": 0.005972001701593399,
1505
+ "learning_rate": 1.4152966404574697e-06,
1506
+ "loss": 0.0002,
1507
+ "step": 1800
1508
+ },
1509
+ {
1510
+ "epoch": 2.841357537490134,
1511
+ "eval_accuracy": 0.972397476340694,
1512
+ "eval_accuracy_label_test": 0.9863289103337354,
1513
+ "eval_accuracy_label_train": 0.9589941972920696,
1514
+ "eval_f1": 0.9723994850059051,
1515
+ "eval_loss": 0.1599443554878235,
1516
+ "eval_precision": 0.9727934306989875,
1517
+ "eval_recall": 0.972397476340694,
1518
+ "eval_runtime": 14.9428,
1519
+ "eval_samples_per_second": 339.427,
1520
+ "eval_steps_per_second": 21.214,
1521
+ "step": 1800
1522
+ },
1523
+ {
1524
+ "epoch": 2.857142857142857,
1525
+ "grad_norm": 0.005644650664180517,
1526
+ "learning_rate": 1.272337383845604e-06,
1527
+ "loss": 0.0002,
1528
+ "step": 1810
1529
+ },
1530
+ {
1531
+ "epoch": 2.87292817679558,
1532
+ "grad_norm": 0.010099658742547035,
1533
+ "learning_rate": 1.1293781272337384e-06,
1534
+ "loss": 0.0003,
1535
+ "step": 1820
1536
+ },
1537
+ {
1538
+ "epoch": 2.888713496448303,
1539
+ "grad_norm": 0.0057546221651136875,
1540
+ "learning_rate": 9.864188706218728e-07,
1541
+ "loss": 0.0002,
1542
+ "step": 1830
1543
+ },
1544
+ {
1545
+ "epoch": 2.904498816101026,
1546
+ "grad_norm": 0.010815597139298916,
1547
+ "learning_rate": 8.434596140100073e-07,
1548
+ "loss": 0.0104,
1549
+ "step": 1840
1550
+ },
1551
+ {
1552
+ "epoch": 2.9202841357537492,
1553
+ "grad_norm": 0.0059271338395774364,
1554
+ "learning_rate": 7.005003573981415e-07,
1555
+ "loss": 0.0002,
1556
+ "step": 1850
1557
+ },
1558
+ {
1559
+ "epoch": 2.936069455406472,
1560
+ "grad_norm": 0.004583253525197506,
1561
+ "learning_rate": 5.57541100786276e-07,
1562
+ "loss": 0.0033,
1563
+ "step": 1860
1564
+ },
1565
+ {
1566
+ "epoch": 2.951854775059195,
1567
+ "grad_norm": 0.003865251550450921,
1568
+ "learning_rate": 4.145818441744103e-07,
1569
+ "loss": 0.0102,
1570
+ "step": 1870
1571
+ },
1572
+ {
1573
+ "epoch": 2.9676400947119177,
1574
+ "grad_norm": 0.006317495368421078,
1575
+ "learning_rate": 2.716225875625447e-07,
1576
+ "loss": 0.0002,
1577
+ "step": 1880
1578
+ },
1579
+ {
1580
+ "epoch": 2.983425414364641,
1581
+ "grad_norm": 0.004333311691880226,
1582
+ "learning_rate": 1.2866333095067907e-07,
1583
+ "loss": 0.0003,
1584
+ "step": 1890
1585
+ },
1586
+ {
1587
+ "epoch": 2.997632202052092,
1588
+ "step": 1899,
1589
+ "total_flos": 7993457212661760.0,
1590
+ "train_loss": 0.08041724508642717,
1591
+ "train_runtime": 817.1898,
1592
+ "train_samples_per_second": 74.406,
1593
+ "train_steps_per_second": 2.324
1594
+ },
1595
+ {
1596
+ "epoch": 2.997632202052092,
1597
+ "eval_accuracy": 0.9704258675078864,
1598
+ "eval_accuracy_label_test": 0.9879372738238842,
1599
+ "eval_accuracy_label_train": 0.9535783365570599,
1600
+ "eval_f1": 0.9704266952348471,
1601
+ "eval_loss": 0.1764293909072876,
1602
+ "eval_precision": 0.9710387924576857,
1603
+ "eval_recall": 0.9704258675078864,
1604
+ "eval_runtime": 14.6294,
1605
+ "eval_samples_per_second": 346.699,
1606
+ "eval_steps_per_second": 21.669,
1607
+ "step": 1899
1608
+ }
1609
+ ],
1610
+ "logging_steps": 10,
1611
+ "max_steps": 1899,
1612
+ "num_input_tokens_seen": 0,
1613
+ "num_train_epochs": 3,
1614
+ "save_steps": 1000,
1615
+ "stateful_callbacks": {
1616
+ "TrainerControl": {
1617
+ "args": {
1618
+ "should_epoch_stop": false,
1619
+ "should_evaluate": false,
1620
+ "should_log": false,
1621
+ "should_save": true,
1622
+ "should_training_stop": true
1623
+ },
1624
+ "attributes": {}
1625
+ }
1626
+ },
1627
+ "total_flos": 7993457212661760.0,
1628
+ "train_batch_size": 16,
1629
+ "trial_name": null,
1630
+ "trial_params": null
1631
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a62c0b399c9420e2c1a5853d6322b3eedc840f6d90b2a461be47dd43f9e674b
3
+ size 5112