{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7af78664acb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7af78664ad40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7af78664add0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7af78664ae60>", "_build": "<function ActorCriticPolicy._build at 0x7af78664aef0>", "forward": "<function ActorCriticPolicy.forward at 0x7af78664af80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7af78664b010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7af78664b0a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7af78664b130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7af78664b1c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7af78664b250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7af78664b2e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7af7866583c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718857047491765808, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPMm4b0jnqA/bo0fvwOJ8b5QFVG95jA/vgAAAAAAAAAAWg6nPbY+ZD1vTJi+jnn5vTCIzr2oCfA6AAAAAAAAAAAm7eK9vTGEPzx7gr6/V6W+n9cOvpz7C70AAAAAAAAAAAD4VruTx7c/Z66bvZsucj5L8ze69aXcvAAAAAAAAAAAAFmqvcXU9DzPC7E9VJcqvomoR71fiYU9AAAAAAAAAACzK9S9YH/0PhpJCT6brU6+4tczPSL6CT0AAAAAAAAAAM2OD7wpGGu6gTyUNDz9Zi/CdWA45QtyswAAgD8AAIA/TdHlvUgd4zv8Cgg+X32Kvkh/yT1dz0+8AAAAAAAAgD8N3Lm91EbLPaRthr0ASY++NcZIvWFpIDsAAAAAAAAAADNFTb3SkpS7ExYgPBP7jTzKk828tl9yPQAAgD8AAIA/GrpWPSlcXboWj1qzfQIyL6zEDTvakcwzAACAPwAAgD8NBxg+Ier6PduXmb4NmVG+bEKcvCqgyDwAAAAAAAAAAGZaf71SYK25mF/uuo5vF7bUTzE6Y8cLOgAAgD8AAIA/M1+Bu9fjYzwkASy+6jhBvuxfPr1A28I9AAAAAAAAAAAze2i8Ab+NvEner7xkQKQ8VMz+PfaXgr0AAIA/AACAP42oBD7SiDc+RXVPvl6udL4sg2684AAAPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHByOFQEZCMAWyUTU0BjAF0lEdAozICD28IzHV9lChoBkdAcRmzYmLLp2gHTR4BaAhHQKMyOkYXO4Z1fZQoaAZHQC8ojB2wFC9oB0vjaAhHQKMyYdwNsnB1fZQoaAZHQHGi2WyC4BpoB00vAWgIR0CjMqSwnpjddX2UKGgGR0Bxap0eU6geaAdNKgFoCEdAozMNWsA/93V9lChoBkdAa/DG3nZCfGgHTTABaAhHQKMzIhEBsAN1fZQoaAZHQHLGLMs6JZZoB00AAWgIR0CjPM2Op84QdX2UKGgGR0BylkjJMg2ZaAdNUwFoCEdAoz1LVH4GlnV9lChoBkdAcacFIuoP1GgHTb4BaAhHQKM9UcBEKE51fZQoaAZHQHGwVOO801toB01CAWgIR0CjPgAIyCWedX2UKGgGR0BucIsEq2BraAdNZgJoCEdAoz5WtnwocHV9lChoBkdAb/bNBWxQi2gHTVQBaAhHQKM+arXDm8x1fZQoaAZHQHC1pVbRne1oB03jAWgIR0CjPnCNS619dX2UKGgGR0Bx0gq5LAYYaAdNHgFoCEdAo0FbZUT+N3V9lChoBkdAbFElnh86WGgHTScBaAhHQKNBZt1IRRN1fZQoaAZHQHHxvqPfbbloB00fAWgIR0CjQcScslLOdX2UKGgGR0ByZ6cnVoYfaAdNJwFoCEdAo0I4Bkqc3HV9lChoBkdAcl8CTEBKc2gHTcYBaAhHQKNCxDb8FZB1fZQoaAZHQHGA3XmNiphoB00fAWgIR0CjQwM54nnddX2UKGgGR0BvoqDCgsbvaAdNMwFoCEdAo0MNsk6cRXV9lChoBkdAcg7ww0wai2gHTX0BaAhHQKNDiOOsDGN1fZQoaAZHQHJWc0P6KtRoB00rAWgIR0CjRGXIEKVqdX2UKGgGR0BxQHArQPZqaAdNvgFoCEdAo0SfztkWh3V9lChoBkdAcNvxDLKV6mgHTV0BaAhHQKNEuKhL5AR1fZQoaAZHQGzoL/KhcqxoB000AWgIR0CjRPNKqXF+dX2UKGgGR0Bx95sXSBsiaAdNmwFoCEdAo0UE3wTdtXV9lChoBkdAbiDUtqYZ22gHTT8BaAhHQKNFEMir1dx1fZQoaAZHQHCq8t03fhxoB01AAWgIR0CjRSdtuUD/dX2UKGgGR0Bwe18VpKzzaAdNJgFoCEdAo0bUtVaOgnV9lChoBkdAQSivPkaMrGgHS9NoCEdAo0dK1TisGXV9lChoBkdAbn+0svqTr2gHTQYBaAhHQKNHiwY+B6N1fZQoaAZHQG3Rjl5nlGRoB005AWgIR0CjR59ECvHMdX2UKGgGR0A8c0EHMUypaAdNAAFoCEdAo0exZ+x4ZHV9lChoBkdAcWXY6nzg/GgHTWwBaAhHQKNIOrjHXEt1fZQoaAZHQG55XuVopQVoB01QAWgIR0CjSG/RVp9JdX2UKGgGR0BulkEvCdjHaAdNMwFoCEdAo0iQz544ZXV9lChoBkdAb1SpXp4bCWgHTUcCaAhHQKNIyCWeHzp1fZQoaAZHQHJRPfj0cwRoB00/AWgIR0CjSeF0xM37dX2UKGgGR0BvHuVu76HkaAdNPQFoCEdAo0oH+MqBmXV9lChoBkdAbzcQUYbbUWgHTSoBaAhHQKNKOtyxRl91fZQoaAZHQHL0oNVinYRoB006AWgIR0CjSlgFotcwdX2UKGgGR0BusikCV8kVaAdNRAFoCEdAo0pt/QSi/XV9lChoBkdAbWctxMnJDGgHTVwBaAhHQKNKlLt/nW91fZQoaAZHQHAZ9aEBbOhoB00BAWgIR0CjS4KCQLeAdX2UKGgGR0BxMqM2m52AaAdNmwFoCEdAo0vdd7fHgnV9lChoBkdAcRqb1RLsbGgHTSsBaAhHQKNMbU6xPft1fZQoaAZHQG79XUYsNDtoB00ZAWgIR0CjTR55zHS4dX2UKGgGR0BwpBjG1hLHaAdNUAFoCEdAo00o2qDK5nV9lChoBkdAc24PNFBppWgHTToBaAhHQKNNVspG4I91fZQoaAZHQHOkiPIXCTFoB003AWgIR0CjTX08/2TQdX2UKGgGR0BKv5c9nscAaAdL7WgIR0CjTePpIMBqdX2UKGgGR0BJdUt7KJVKaAdLzGgIR0CjTfabnX/YdX2UKGgGR0BvuEH6dlNDaAdNPgFoCEdAo038it7rs3V9lChoBkdAcniFAVwgkmgHTRcBaAhHQKNOcquKXOZ1fZQoaAZHQHCvhvBJqZdoB00yAWgIR0CjWcuFQEZBdX2UKGgGR0Bw5/zK9wm3aAdNVgFoCEdAo1o9o+Ofd3V9lChoBkdAcYYdOqNp/WgHTWABaAhHQKNaj0vGp/B1fZQoaAZHQHFlCRGMGX5oB00PAWgIR0CjW3cjJMg2dX2UKGgGR0BuZ1PBSDRMaAdNVQFoCEdAo1vHlZHNHHV9lChoBkdAcG/y08eS0WgHTRoBaAhHQKNce9X9zfd1fZQoaAZHQHF1vdqL0jFoB00JAWgIR0CjXIsmv4dqdX2UKGgGR0BO8r4N7SiNaAdNDAFoCEdAo10LoIOYpnV9lChoBkdAcIxMaS9ug2gHTQ0BaAhHQKNdJGjKxLV1fZQoaAZHQHI1/vWpZOloB02oAWgIR0CjXcZJCjUNdX2UKGgGR0BvEdNvfj0daAdNTQFoCEdAo15YQarFO3V9lChoBkdAbo0KKHfuTmgHTVwBaAhHQKNfPZvkzXV1fZQoaAZHQG7urEUCaJBoB02zAWgIR0CjX2TfzjFRdX2UKGgGR0BxkHXmNipeaAdNvAFoCEdAo1/NZRsMzHV9lChoBkdAbeG61b7j1mgHTRkBaAhHQKNhViNKh+R1fZQoaAZHQHHzxiTdLxtoB02JAWgIR0CjYW4VymygdX2UKGgGR0BsdyR6nivQaAdNjAFoCEdAo2IEj9n9N3V9lChoBkdAbMTYnOSntWgHTScBaAhHQKNiiJTl1bJ1fZQoaAZHQGx/lyzXz19oB02fAWgIR0CjYtF1SwW4dX2UKGgGR0BtS6hQFcIJaAdNMQFoCEdAo2NOjh1klXV9lChoBkdAbSbk7OmixmgHTTEBaAhHQKNjapcX3xp1fZQoaAZHQHB65vHcUM5oB00TAWgIR0CjY3wGOdXldX2UKGgGR0BgGoiJO32FaAdN6ANoCEdAo2N8PFvQ4XV9lChoBkdAbpsQwK0D2mgHTZYBaAhHQKNjrdCVryl1fZQoaAZHQHA9ZYDDCP9oB02AAWgIR0CjZCOcUdq+dX2UKGgGR0BY/24Vh1DCaAdN6ANoCEdAo2QqDGtITXV9lChoBkdAcFcQvHtF8WgHTUQBaAhHQKNkqDRMN+d1fZQoaAZHQHH3VirksBhoB01TAWgIR0CjZYeZXuE3dX2UKGgGR0Byb8c2itaIaAdNTQFoCEdAo2WOieumrXV9lChoBkdAcqpNN8E3bWgHTVMBaAhHQKNmAAuIyj51fZQoaAZHQGypVAAyVOdoB00kAWgIR0CjZmqfe1rqdX2UKGgGR0BwF8KQaJhwaAdNHgFoCEdAo2beK64DtHV9lChoBkdAcei/etSydGgHTVwBaAhHQKNnizIFNcp1fZQoaAZHQHC4KFuejEhoB00GAWgIR0CjZ6TeoDPodX2UKGgGR0Bw2GXmeUY9aAdNGgFoCEdAo2gR1JUYK3V9lChoBkdAcKPXCTEBKmgHTVEBaAhHQKNoQfHPu5V1fZQoaAZHQETps2vStvJoB0viaAhHQKNodpiZv1l1fZQoaAZHQG74yU9pyp9oB01UAWgIR0CjaIWCEpRXdX2UKGgGR0BvS07wKBuoaAdNMAFoCEdAo2iduJk5InV9lChoBkdAcYLK/mDDj2gHTUgBaAhHQKNoz1h9b5d1fZQoaAZHQHHir0OEug9oB00tAWgIR0CjaQei8FpxdX2UKGgGR0Bup+qaPS2IaAdNeQFoCEdAo2ljuMMqjXV9lChoBkdAcgmc94eLemgHTWABaAhHQKNpwm5UcXF1fZQoaAZHQHGcQjdHlOpoB00NAWgIR0Cja4JItlI3dX2UKGgGR0BxAKqgh8pkaAdNdgFoCEdAo2wZMDfWMHV9lChoBkdAcL6vkzXSSmgHTWQBaAhHQKNsWAKfFrF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |