jonny9f commited on
Commit
8a1d790
·
verified ·
1 Parent(s): 9fb3664

Upload food embeddings model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:49233
8
+ - loss:ContrastiveLoss
9
+ base_model: sentence-transformers/all-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: Beef, top sirloin cap steak, grilled
12
+ sentences:
13
+ - Salisbury steak with gravy, frozen
14
+ - Fruit Punch Drink, powder with water
15
+ - Soup, black bean
16
+ - source_sentence: Beef, outside skirt steak cooked broiled
17
+ sentences:
18
+ - Turnip Greens, raw
19
+ - Turkey gravy, canned
20
+ - Shortening, household soybean-cottonseed partially hydrogenated
21
+ - source_sentence: Cheese, cottage with fruit
22
+ sentences:
23
+ - Milk, low sodium
24
+ - Nance, frozen unsweetened
25
+ - Lamb leg chop, lean cooked fast fried
26
+ - source_sentence: Baking Mix
27
+ sentences:
28
+ - Muffins, English raisin-cinnamon
29
+ - Fish, salmon, coho raw (Alaska Native)
30
+ - Enjoy Life Soft Chocolate Chip Cookies
31
+ - source_sentence: Ginkgo Nuts, canned
32
+ sentences:
33
+ - Corn Oil, all-purpose salad or cooking
34
+ - monosodium glutamate
35
+ - Peanuts, raw
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - pearson_cosine
40
+ - spearman_cosine
41
+ model-index:
42
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
43
+ results:
44
+ - task:
45
+ type: semantic-similarity
46
+ name: Semantic Similarity
47
+ dataset:
48
+ name: validation
49
+ type: validation
50
+ metrics:
51
+ - type: pearson_cosine
52
+ value: 0.8821595689851447
53
+ name: Pearson Cosine
54
+ - type: spearman_cosine
55
+ value: 0.8566441484517632
56
+ name: Spearman Cosine
57
+ ---
58
+
59
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
60
+
61
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
62
+
63
+ ## Model Details
64
+
65
+ ### Model Description
66
+ - **Model Type:** Sentence Transformer
67
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
68
+ - **Maximum Sequence Length:** 384 tokens
69
+ - **Output Dimensionality:** 768 dimensions
70
+ - **Similarity Function:** Cosine Similarity
71
+ <!-- - **Training Dataset:** Unknown -->
72
+ <!-- - **Language:** Unknown -->
73
+ <!-- - **License:** Unknown -->
74
+
75
+ ### Model Sources
76
+
77
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
78
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
79
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
80
+
81
+ ### Full Model Architecture
82
+
83
+ ```
84
+ SentenceTransformer(
85
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
86
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
87
+ (2): Normalize()
88
+ )
89
+ ```
90
+
91
+ ## Usage
92
+
93
+ ### Direct Usage (Sentence Transformers)
94
+
95
+ First install the Sentence Transformers library:
96
+
97
+ ```bash
98
+ pip install -U sentence-transformers
99
+ ```
100
+
101
+ Then you can load this model and run inference.
102
+ ```python
103
+ from sentence_transformers import SentenceTransformer
104
+
105
+ # Download from the 🤗 Hub
106
+ model = SentenceTransformer("jonny9f/food_embeddings5")
107
+ # Run inference
108
+ sentences = [
109
+ 'Ginkgo Nuts, canned',
110
+ 'Peanuts, raw',
111
+ 'Corn Oil, all-purpose salad or cooking',
112
+ ]
113
+ embeddings = model.encode(sentences)
114
+ print(embeddings.shape)
115
+ # [3, 768]
116
+
117
+ # Get the similarity scores for the embeddings
118
+ similarities = model.similarity(embeddings, embeddings)
119
+ print(similarities.shape)
120
+ # [3, 3]
121
+ ```
122
+
123
+ <!--
124
+ ### Direct Usage (Transformers)
125
+
126
+ <details><summary>Click to see the direct usage in Transformers</summary>
127
+
128
+ </details>
129
+ -->
130
+
131
+ <!--
132
+ ### Downstream Usage (Sentence Transformers)
133
+
134
+ You can finetune this model on your own dataset.
135
+
136
+ <details><summary>Click to expand</summary>
137
+
138
+ </details>
139
+ -->
140
+
141
+ <!--
142
+ ### Out-of-Scope Use
143
+
144
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
145
+ -->
146
+
147
+ ## Evaluation
148
+
149
+ ### Metrics
150
+
151
+ #### Semantic Similarity
152
+
153
+ * Dataset: `validation`
154
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
155
+
156
+ | Metric | Value |
157
+ |:--------------------|:-----------|
158
+ | pearson_cosine | 0.8822 |
159
+ | **spearman_cosine** | **0.8566** |
160
+
161
+ <!--
162
+ ## Bias, Risks and Limitations
163
+
164
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
165
+ -->
166
+
167
+ <!--
168
+ ### Recommendations
169
+
170
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
171
+ -->
172
+
173
+ ## Training Details
174
+
175
+ ### Training Dataset
176
+
177
+ #### Unnamed Dataset
178
+
179
+
180
+ * Size: 49,233 training samples
181
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
182
+ * Approximate statistics based on the first 1000 samples:
183
+ | | sentence_0 | sentence_1 | label |
184
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------|
185
+ | type | string | string | float |
186
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.73 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.58 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 0.08</li><li>mean: 0.55</li><li>max: 0.73</li></ul> |
187
+ * Samples:
188
+ | sentence_0 | sentence_1 | label |
189
+ |:--------------------------------------------------------|:------------------------------------------------------------------------------------------|:--------------------------------|
190
+ | <code>Red Peppers, canned</code> | <code>Butternut squash, raw</code> | <code>0.6885228353738785</code> |
191
+ | <code>Tofu, extra firm with nigari</code> | <code>Pastry, fruit Danish (apple, cinnamon, raisin, lemon, raspberry, strawberry)</code> | <code>0.42</code> |
192
+ | <code>Beef Rib Eye, bone-in, lip-on, choice, raw</code> | <code>Sausage, chicken beef pork smoked skinless</code> | <code>0.6045083022117614</code> |
193
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
194
+ ```json
195
+ {
196
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
197
+ "margin": 0.5,
198
+ "size_average": true
199
+ }
200
+ ```
201
+
202
+ ### Training Hyperparameters
203
+ #### Non-Default Hyperparameters
204
+
205
+ - `per_device_train_batch_size`: 256
206
+ - `per_device_eval_batch_size`: 256
207
+ - `num_train_epochs`: 1
208
+ - `multi_dataset_batch_sampler`: round_robin
209
+
210
+ #### All Hyperparameters
211
+ <details><summary>Click to expand</summary>
212
+
213
+ - `overwrite_output_dir`: False
214
+ - `do_predict`: False
215
+ - `eval_strategy`: no
216
+ - `prediction_loss_only`: True
217
+ - `per_device_train_batch_size`: 256
218
+ - `per_device_eval_batch_size`: 256
219
+ - `per_gpu_train_batch_size`: None
220
+ - `per_gpu_eval_batch_size`: None
221
+ - `gradient_accumulation_steps`: 1
222
+ - `eval_accumulation_steps`: None
223
+ - `torch_empty_cache_steps`: None
224
+ - `learning_rate`: 5e-05
225
+ - `weight_decay`: 0.0
226
+ - `adam_beta1`: 0.9
227
+ - `adam_beta2`: 0.999
228
+ - `adam_epsilon`: 1e-08
229
+ - `max_grad_norm`: 1
230
+ - `num_train_epochs`: 1
231
+ - `max_steps`: -1
232
+ - `lr_scheduler_type`: linear
233
+ - `lr_scheduler_kwargs`: {}
234
+ - `warmup_ratio`: 0.0
235
+ - `warmup_steps`: 0
236
+ - `log_level`: passive
237
+ - `log_level_replica`: warning
238
+ - `log_on_each_node`: True
239
+ - `logging_nan_inf_filter`: True
240
+ - `save_safetensors`: True
241
+ - `save_on_each_node`: False
242
+ - `save_only_model`: False
243
+ - `restore_callback_states_from_checkpoint`: False
244
+ - `no_cuda`: False
245
+ - `use_cpu`: False
246
+ - `use_mps_device`: False
247
+ - `seed`: 42
248
+ - `data_seed`: None
249
+ - `jit_mode_eval`: False
250
+ - `use_ipex`: False
251
+ - `bf16`: False
252
+ - `fp16`: False
253
+ - `fp16_opt_level`: O1
254
+ - `half_precision_backend`: auto
255
+ - `bf16_full_eval`: False
256
+ - `fp16_full_eval`: False
257
+ - `tf32`: None
258
+ - `local_rank`: 0
259
+ - `ddp_backend`: None
260
+ - `tpu_num_cores`: None
261
+ - `tpu_metrics_debug`: False
262
+ - `debug`: []
263
+ - `dataloader_drop_last`: False
264
+ - `dataloader_num_workers`: 0
265
+ - `dataloader_prefetch_factor`: None
266
+ - `past_index`: -1
267
+ - `disable_tqdm`: False
268
+ - `remove_unused_columns`: True
269
+ - `label_names`: None
270
+ - `load_best_model_at_end`: False
271
+ - `ignore_data_skip`: False
272
+ - `fsdp`: []
273
+ - `fsdp_min_num_params`: 0
274
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
275
+ - `fsdp_transformer_layer_cls_to_wrap`: None
276
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
277
+ - `deepspeed`: None
278
+ - `label_smoothing_factor`: 0.0
279
+ - `optim`: adamw_torch
280
+ - `optim_args`: None
281
+ - `adafactor`: False
282
+ - `group_by_length`: False
283
+ - `length_column_name`: length
284
+ - `ddp_find_unused_parameters`: None
285
+ - `ddp_bucket_cap_mb`: None
286
+ - `ddp_broadcast_buffers`: False
287
+ - `dataloader_pin_memory`: True
288
+ - `dataloader_persistent_workers`: False
289
+ - `skip_memory_metrics`: True
290
+ - `use_legacy_prediction_loop`: False
291
+ - `push_to_hub`: False
292
+ - `resume_from_checkpoint`: None
293
+ - `hub_model_id`: None
294
+ - `hub_strategy`: every_save
295
+ - `hub_private_repo`: None
296
+ - `hub_always_push`: False
297
+ - `gradient_checkpointing`: False
298
+ - `gradient_checkpointing_kwargs`: None
299
+ - `include_inputs_for_metrics`: False
300
+ - `include_for_metrics`: []
301
+ - `eval_do_concat_batches`: True
302
+ - `fp16_backend`: auto
303
+ - `push_to_hub_model_id`: None
304
+ - `push_to_hub_organization`: None
305
+ - `mp_parameters`:
306
+ - `auto_find_batch_size`: False
307
+ - `full_determinism`: False
308
+ - `torchdynamo`: None
309
+ - `ray_scope`: last
310
+ - `ddp_timeout`: 1800
311
+ - `torch_compile`: False
312
+ - `torch_compile_backend`: None
313
+ - `torch_compile_mode`: None
314
+ - `dispatch_batches`: None
315
+ - `split_batches`: None
316
+ - `include_tokens_per_second`: False
317
+ - `include_num_input_tokens_seen`: False
318
+ - `neftune_noise_alpha`: None
319
+ - `optim_target_modules`: None
320
+ - `batch_eval_metrics`: False
321
+ - `eval_on_start`: False
322
+ - `use_liger_kernel`: False
323
+ - `eval_use_gather_object`: False
324
+ - `average_tokens_across_devices`: False
325
+ - `prompts`: None
326
+ - `batch_sampler`: batch_sampler
327
+ - `multi_dataset_batch_sampler`: round_robin
328
+
329
+ </details>
330
+
331
+ ### Training Logs
332
+ | Epoch | Step | validation_spearman_cosine |
333
+ |:-----:|:----:|:--------------------------:|
334
+ | 1.0 | 193 | 0.8566 |
335
+
336
+
337
+ ### Framework Versions
338
+ - Python: 3.11.3
339
+ - Sentence Transformers: 3.3.1
340
+ - Transformers: 4.48.0
341
+ - PyTorch: 2.5.1+cu124
342
+ - Accelerate: 1.2.1
343
+ - Datasets: 3.2.0
344
+ - Tokenizers: 0.21.0
345
+
346
+ ## Citation
347
+
348
+ ### BibTeX
349
+
350
+ #### Sentence Transformers
351
+ ```bibtex
352
+ @inproceedings{reimers-2019-sentence-bert,
353
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
354
+ author = "Reimers, Nils and Gurevych, Iryna",
355
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
356
+ month = "11",
357
+ year = "2019",
358
+ publisher = "Association for Computational Linguistics",
359
+ url = "https://arxiv.org/abs/1908.10084",
360
+ }
361
+ ```
362
+
363
+ #### ContrastiveLoss
364
+ ```bibtex
365
+ @inproceedings{hadsell2006dimensionality,
366
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
367
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
368
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
369
+ year={2006},
370
+ volume={2},
371
+ number={},
372
+ pages={1735-1742},
373
+ doi={10.1109/CVPR.2006.100}
374
+ }
375
+ ```
376
+
377
+ <!--
378
+ ## Glossary
379
+
380
+ *Clearly define terms in order to be accessible across audiences.*
381
+ -->
382
+
383
+ <!--
384
+ ## Model Card Authors
385
+
386
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
387
+ -->
388
+
389
+ <!--
390
+ ## Model Card Contact
391
+
392
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
393
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "fine_tuned_mpnet_food_embeddings",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:128c957ed1fc454a545b7af7cca751652141539a5f29d2ce92a1f758ab4eec1f
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 128,
60
+ "model_max_length": 384,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff