jonatasgrosman commited on
Commit
8d717e5
1 Parent(s): bd6036f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice_11_0
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: whisper-large-es-cv11-2
11
+ results:
12
+ - task:
13
+ name: Automatic Speech Recognition
14
+ type: automatic-speech-recognition
15
+ dataset:
16
+ name: common_voice_11_0
17
+ type: common_voice_11_0
18
+ config: es
19
+ split: validation[:1000]
20
+ args: es
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 3.7010962486171173
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # whisper-large-es-cv11-2
31
+
32
+ This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_11_0 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.1320
35
+ - Wer: 3.7011
36
+ - Cer: 1.0555
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 1e-06
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 32
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_steps: 2000
64
+ - training_steps: 20000
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
70
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
71
+ | 0.1837 | 0.32 | 1000 | 0.1669 | 4.2442 | 1.2488 |
72
+ | 0.1343 | 0.64 | 2000 | 0.1444 | 4.0833 | 1.2084 |
73
+ | 0.1312 | 0.96 | 3000 | 0.1362 | 3.9324 | 1.1933 |
74
+ | 0.1206 | 1.28 | 4000 | 0.1333 | 3.8520 | 1.1748 |
75
+ | 0.1143 | 1.6 | 5000 | 0.1321 | 3.6508 | 1.0572 |
76
+ | 0.1202 | 1.92 | 6000 | 0.1291 | 3.8017 | 1.1311 |
77
+ | 0.0856 | 2.24 | 7000 | 0.1325 | 3.7011 | 1.0841 |
78
+ | 0.1005 | 2.56 | 8000 | 0.1320 | 3.7011 | 1.0555 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.26.0.dev0
84
+ - Pytorch 1.13.1+cu117
85
+ - Datasets 2.7.1.dev0
86
+ - Tokenizers 0.13.2