jonatasgrosman
commited on
Commit
•
8d717e5
1
Parent(s):
bd6036f
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice_11_0
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: whisper-large-es-cv11-2
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: common_voice_11_0
|
17 |
+
type: common_voice_11_0
|
18 |
+
config: es
|
19 |
+
split: validation[:1000]
|
20 |
+
args: es
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 3.7010962486171173
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# whisper-large-es-cv11-2
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_11_0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.1320
|
35 |
+
- Wer: 3.7011
|
36 |
+
- Cer: 1.0555
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 1e-06
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 2
|
60 |
+
- total_train_batch_size: 32
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_steps: 2000
|
64 |
+
- training_steps: 20000
|
65 |
+
- mixed_precision_training: Native AMP
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
71 |
+
| 0.1837 | 0.32 | 1000 | 0.1669 | 4.2442 | 1.2488 |
|
72 |
+
| 0.1343 | 0.64 | 2000 | 0.1444 | 4.0833 | 1.2084 |
|
73 |
+
| 0.1312 | 0.96 | 3000 | 0.1362 | 3.9324 | 1.1933 |
|
74 |
+
| 0.1206 | 1.28 | 4000 | 0.1333 | 3.8520 | 1.1748 |
|
75 |
+
| 0.1143 | 1.6 | 5000 | 0.1321 | 3.6508 | 1.0572 |
|
76 |
+
| 0.1202 | 1.92 | 6000 | 0.1291 | 3.8017 | 1.1311 |
|
77 |
+
| 0.0856 | 2.24 | 7000 | 0.1325 | 3.7011 | 1.0841 |
|
78 |
+
| 0.1005 | 2.56 | 8000 | 0.1320 | 3.7011 | 1.0555 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.26.0.dev0
|
84 |
+
- Pytorch 1.13.1+cu117
|
85 |
+
- Datasets 2.7.1.dev0
|
86 |
+
- Tokenizers 0.13.2
|