jonatasgrosman commited on
Commit
209410b
1 Parent(s): 2134bb3

first commit

Browse files
README.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: nl
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ - cer
8
+ tags:
9
+ - audio
10
+ - automatic-speech-recognition
11
+ - speech
12
+ - xlsr-fine-tuning-week
13
+ license: apache-2.0
14
+ model-index:
15
+ - name: XLSR Wav2Vec2 Dutch by Jonatas Grosman
16
+ results:
17
+ - task:
18
+ name: Speech Recognition
19
+ type: automatic-speech-recognition
20
+ dataset:
21
+ name: Common Voice nl
22
+ type: common_voice
23
+ args: nl
24
+ metrics:
25
+ - name: Test WER
26
+ type: wer
27
+ value: 13.42
28
+ - name: Test CER
29
+ type: cer
30
+ value: 8.63
31
+ ---
32
+
33
+ # Wav2Vec2-Large-XLSR-53-Dutch
34
+
35
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dutch using the [Common Voice](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10).
36
+ When using this model, make sure that your speech input is sampled at 16kHz.
37
+
38
+ The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
39
+
40
+ ## Usage
41
+
42
+ The model can be used directly (without a language model) as follows:
43
+
44
+ ```python
45
+ import torch
46
+ import librosa
47
+ from datasets import load_dataset
48
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
49
+
50
+ LANG_ID = "nl"
51
+ MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-dutch"
52
+
53
+ test_dataset = load_dataset("common_voice", LANG_ID, split="test[:2%]")
54
+
55
+ processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
56
+ model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
57
+
58
+ # Preprocessing the datasets.
59
+ # We need to read the audio files as arrays
60
+ def speech_file_to_array_fn(batch):
61
+ speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
62
+ batch["speech"] = speech_array
63
+ batch["sentence"] = batch["sentence"].upper()
64
+ return batch
65
+
66
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
67
+ inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
68
+
69
+ with torch.no_grad():
70
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
71
+
72
+ predicted_ids = torch.argmax(logits, dim=-1)
73
+
74
+ print("Prediction:", processor.batch_decode(predicted_ids))
75
+ print("Reference:", test_dataset[:2]["sentence"])
76
+ ```
77
+
78
+ ## Evaluation
79
+
80
+ The model can be evaluated as follows on the Dutch test data of Common Voice.
81
+
82
+ ```python
83
+ import torch
84
+ import re
85
+ import librosa
86
+ from datasets import load_dataset, load_metric
87
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
88
+
89
+ LANG_ID = "nl"
90
+ MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-dutch"
91
+ DEVICE = "cuda"
92
+
93
+ CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
94
+ "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
95
+ "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。"]
96
+
97
+ test_dataset = load_dataset("common_voice", LANG_ID, split="test")
98
+ wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
99
+ cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
100
+
101
+ chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
102
+
103
+ processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
104
+ model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
105
+ model.to(DEVICE)
106
+
107
+ # Preprocessing the datasets.
108
+ # We need to read the audio files as arrays
109
+ def speech_file_to_array_fn(batch):
110
+ batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
111
+ speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
112
+ batch["speech"] = speech_array
113
+ return batch
114
+
115
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
116
+
117
+ # Preprocessing the datasets.
118
+ # We need to read the audio files as arrays
119
+ def evaluate(batch):
120
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
121
+
122
+ with torch.no_grad():
123
+ logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
124
+
125
+ pred_ids = torch.argmax(logits, dim=-1)
126
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
127
+ return batch
128
+
129
+ result = test_dataset.map(evaluate, batched=True, batch_size=32)
130
+
131
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"], chunk_size=8000)))
132
+ print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"], chunk_size=8000)))
133
+ ```
134
+
135
+ **Test Result**:
136
+
137
+ - WER: 13.42%
138
+
139
+ - CER: 8.63%
config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
+ "activation_dropout": 0.05,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2ForCTC"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "conv_bias": true,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "ctc_loss_reduction": "mean",
39
+ "ctc_zero_infinity": true,
40
+ "do_stable_layer_norm": true,
41
+ "eos_token_id": 2,
42
+ "feat_extract_activation": "gelu",
43
+ "feat_extract_dropout": 0.0,
44
+ "feat_extract_norm": "layer",
45
+ "feat_proj_dropout": 0.05,
46
+ "final_dropout": 0.1,
47
+ "gradient_checkpointing": true,
48
+ "hidden_act": "gelu",
49
+ "hidden_dropout": 0.05,
50
+ "hidden_dropout_prob": 0.1,
51
+ "hidden_size": 1024,
52
+ "initializer_range": 0.02,
53
+ "intermediate_size": 4096,
54
+ "layer_norm_eps": 1e-05,
55
+ "layerdrop": 0.05,
56
+ "mask_feature_length": 10,
57
+ "mask_feature_prob": 0.0,
58
+ "mask_time_length": 10,
59
+ "mask_time_prob": 0.05,
60
+ "model_type": "wav2vec2",
61
+ "num_attention_heads": 16,
62
+ "num_conv_pos_embedding_groups": 16,
63
+ "num_conv_pos_embeddings": 128,
64
+ "num_feat_extract_layers": 7,
65
+ "num_hidden_layers": 24,
66
+ "pad_token_id": 0,
67
+ "transformers_version": "4.5.0.dev0",
68
+ "vocab_size": 50
69
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_size": 1,
4
+ "padding_side": "right",
5
+ "padding_value": 0.0,
6
+ "return_attention_mask": true,
7
+ "sampling_rate": 16000
8
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:391fd46405658415cd0f6a93b77443052f5931cf2dca07756f7c109135feeafe
3
+ size 1262138839
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "E": 4, "N": 5, "A": 6, "I": 7, "T": 8, "O": 9, "D": 10, "R": 11, "|": 12, "L": 13, "S": 14, "H": 15, "G": 16, "M": 17, "K": 18, "V": 19, "J": 20, "W": 21, "Z": 22, "U": 23, "B": 24, "C": 25, "P": 26, "F": 27, "Y": 28, "É": 29, "'": 30, "X": 31, "Ë": 32, "Q": 33, "-": 34, "Ê": 35, "À": 36, "Ä": 37, "È": 38, "Ï": 39, "Â": 40, "Û": 41, "Ö": 42, "Ô": 43, "Ü": 44, "Î": 45, "Ç": 46, "Æ": 47, "Ù": 48, "Œ": 49}