|
from transformers import PreTrainedModel, PretrainedConfig, Wav2Vec2ForCTC |
|
import json |
|
import torch |
|
from torch import nn |
|
from torch.nn.utils.rnn import pad_sequence |
|
import math |
|
from typing import Optional |
|
|
|
|
|
|
|
|
|
def get_lengths(x, mask=None): |
|
if mask is not None: |
|
return (~mask).long().sum(dim=1) |
|
else: |
|
return torch.LongTensor([x.size(0)] * x.size(1)).to(x.device) |
|
|
|
|
|
|
|
def lengths_to_padding_mask(lens): |
|
bsz, max_lens = lens.size(0), torch.max(lens).item() |
|
mask = torch.arange(max_lens).to(lens.device).view(1, max_lens) |
|
mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens) |
|
return mask |
|
|
|
|
|
def get_output_lengths(input_lengths): |
|
conv_feature_layers = "[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512,2,2)] + [(512,2,2)]" |
|
conv_cfg_list = eval(conv_feature_layers) |
|
|
|
def _conv_out_length(input_length, kernel_size, stride): |
|
return torch.floor((input_length - kernel_size) / stride + 1) |
|
|
|
for i in range(len(conv_cfg_list)): |
|
input_lengths = _conv_out_length( |
|
input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2] |
|
) |
|
|
|
return input_lengths.to(torch.long) |
|
|
|
class ZeroSwotEncoderConfig(PretrainedConfig): |
|
model_type = "zero_swot_encoder" |
|
def __init__( |
|
self, |
|
wav2vec2_model_name_or_path="", |
|
compression_adapter=None, |
|
embed_dim=1024, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.wav2vec2_model_name_or_path = wav2vec2_model_name_or_path |
|
self.compression_adapter = compression_adapter |
|
self.embed_dim = embed_dim |
|
|
|
@classmethod |
|
def from_json_file(cls, json_file): |
|
with open(json_file, "r") as reader: |
|
text = reader.read() |
|
config_dict = json.loads(text) |
|
return cls(**config_dict) |
|
|
|
class ZeroSwotEncoderModel(PreTrainedModel): |
|
config_class = ZeroSwotEncoderConfig |
|
model_type = "zero_swot_encoder" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.wav2vec2 = Wav2Vec2ForCTC.from_pretrained(config.wav2vec2_model_name_or_path) |
|
self.compression_adapter = CompressionAdapter(config.compression_adapter) |
|
self.speech_embedder = SpeechEmbedder(config.embed_dim) |
|
|
|
def forward(self, input_values, attention_mask=None): |
|
input_lens = get_lengths(input_values, ~attention_mask) |
|
|
|
|
|
x = self.wav2vec2.wav2vec2(input_values, attention_mask)[0] |
|
|
|
preds = self.wav2vec2.lm_head(x).argmax(-1) |
|
|
|
output_lens = get_output_lengths(input_lens) |
|
|
|
|
|
x, mask, _ = self.compression_adapter(x, preds, output_lens) |
|
|
|
|
|
x, mask = self.speech_embedder(x, mask) |
|
|
|
return x, mask |
|
|
|
|
|
class SpeechEmbedder(nn.Module): |
|
def __init__(self, embed_dim): |
|
super().__init__() |
|
|
|
self.embed_dim = embed_dim |
|
self.bos_emb = nn.Parameter(torch.empty(embed_dim)) |
|
self.eos_emb = nn.Parameter(torch.empty(embed_dim)) |
|
|
|
self.scale = self.embed_dim ** 0.5 |
|
|
|
def forward(self, x, padding_mask=None): |
|
"""Add special embedding and positional embedding. |
|
Args: |
|
x (FloatTensor): (B, T, C) |
|
padding_mask (ByteTensor): (B, T) |
|
Outputs: |
|
x (FloatTensor): (B, T+2, C) |
|
padding_mask (ByteTensor): (B, T+2) |
|
""" |
|
B = x.size(0) |
|
lengths = get_lengths(x.transpose(0, 1), padding_mask) |
|
assert B == len(lengths) |
|
|
|
if padding_mask is not None: |
|
x = x * (1 - padding_mask.unsqueeze(-1).type_as(x)) |
|
|
|
|
|
x = torch.cat([self.bos_emb.view(1, 1, -1).expand(B, 1, -1), x], dim=1) |
|
lengths += 1 |
|
|
|
|
|
x = torch.cat([x, torch.zeros(B, 1, x.size(-1), device=x.device, dtype=x.dtype)], dim=1) |
|
for i in range(B): |
|
x[i, lengths[i], :] = self.eos_emb |
|
lengths += 1 |
|
|
|
padding_mask = lengths_to_padding_mask(lengths) |
|
|
|
x = x * self.scale |
|
|
|
return x, padding_mask |
|
|
|
|
|
class PositionalEmbedding(nn.Module): |
|
def __init__(self, num_embeddings, embedding_dim, padding_idx): |
|
super().__init__() |
|
self.embedding_dim = embedding_dim |
|
self.padding_idx = padding_idx if padding_idx is not None else 0 |
|
num_embeddings += padding_idx + 1 |
|
self.weights = PositionalEmbedding.get_embedding( |
|
num_embeddings, embedding_dim, padding_idx |
|
) |
|
self.register_buffer("_float_tensor", torch.FloatTensor(1)) |
|
self.max_positions = int(1e5) |
|
|
|
@staticmethod |
|
def get_embedding( |
|
num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None |
|
): |
|
half_dim = embedding_dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) |
|
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) |
|
if embedding_dim % 2 == 1: |
|
|
|
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) |
|
if padding_idx is not None: |
|
emb[padding_idx, :] = 0 |
|
return emb |
|
|
|
def make_positions(self, x, padding_idx: int): |
|
mask = x.ne(padding_idx).int() |
|
return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx |
|
|
|
def forward(self, input): |
|
"""Input is expected to be of size [bsz x seqlen].""" |
|
bsz, seq_len = input.size() |
|
max_pos = self.padding_idx + 1 + seq_len |
|
if self.weights is None or max_pos > self.weights.size(0): |
|
|
|
self.weights = PositionalEmbedding.get_embedding( |
|
max_pos, self.embedding_dim, self.padding_idx |
|
) |
|
self.weights = self.weights.to(self._float_tensor) |
|
positions = self.make_positions(input, self.padding_idx) |
|
return ( |
|
self.weights.index_select(0, positions.view(-1)) |
|
.view(bsz, seq_len, -1) |
|
.detach() |
|
) |
|
|
|
|
|
class CLSPooling(nn.Module): |
|
def __init__(self, embed_dim, num_transformer_layers, dropout_rate): |
|
super().__init__() |
|
|
|
self.cls_token = nn.Parameter(torch.empty(1, 1, embed_dim)) |
|
nn.init.normal_(self.cls_token, mean=0.0, std=0.25) |
|
|
|
self.transformer = nn.TransformerEncoder( |
|
nn.TransformerEncoderLayer( |
|
embed_dim, |
|
nhead=16 if embed_dim == 1024 else 8, |
|
dim_feedforward=4*embed_dim, |
|
dropout=dropout_rate, |
|
activation="relu", |
|
batch_first=True, |
|
norm_first=True |
|
), |
|
num_layers=num_transformer_layers, |
|
) |
|
|
|
self.pos_emb = PositionalEmbedding(512, embed_dim, 1) |
|
self.scale = math.sqrt(embed_dim) |
|
|
|
def forward(self, x, lens): |
|
|
|
|
|
|
|
|
|
x = torch.cat( |
|
[ |
|
self.cls_token.to(dtype=x.dtype, device=x.device).repeat(x.size(0), 1, 1), |
|
x |
|
], |
|
dim=1) |
|
|
|
mask = lengths_to_padding_mask(lens+1) |
|
|
|
x = x + self.pos_emb(mask.long()) / self.scale |
|
|
|
x = self.transformer(x, src_key_padding_mask=mask) |
|
x = x[:, 0] |
|
return x |
|
|
|
|
|
class CompressionAdapter(nn.Module): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
self.embed_dim = cfg["embed_dim"] |
|
self.transformer_layers = cfg["transformer_layers"] |
|
self.dropout = cfg["dropout"] |
|
self.blank_idx = cfg["blank_idx"] |
|
self.sep_idx = cfg["sep_idx"] |
|
|
|
self.token_pooling_module = CLSPooling( |
|
self.embed_dim, self.transformer_layers, self.dropout |
|
) |
|
|
|
def char_compression(self, x, preds, lens): |
|
|
|
|
|
|
|
|
|
B, T, D = x.size() |
|
device = x.device |
|
dtype = x.dtype |
|
|
|
|
|
mask = lengths_to_padding_mask(lens) |
|
x = x.masked_fill(mask.unsqueeze(-1), 0) |
|
preds = preds.masked_fill(mask, self.blank_idx) |
|
|
|
|
|
preds = torch.cat([-torch.ones(B, 1, device=device, dtype=torch.long), preds], dim=1).view(-1) |
|
x = torch.cat([torch.zeros(B, 1, D, device=device, dtype=dtype), x], dim=1).view(-1, D) |
|
|
|
|
|
preds, counts = preds.unique_consecutive(return_counts=True) |
|
|
|
|
|
x = torch.split(x, counts.tolist()) |
|
|
|
|
|
valid_mask = preds != self.blank_idx |
|
preds = preds[valid_mask] |
|
counts = counts[valid_mask] |
|
x = [x_i for x_i, v_i in zip(x, valid_mask) if v_i] |
|
|
|
|
|
x = pad_sequence(x, batch_first=True, padding_value=0) |
|
|
|
|
|
x = torch.sum(x, dim=1) / counts.to(dtype=x.dtype).unsqueeze(1) |
|
|
|
|
|
split_points = (preds == -1).nonzero(as_tuple=True)[0] |
|
split_points = torch.cat([split_points, torch.tensor([len(preds)], device=device)]) |
|
split_points = (split_points[1:] - split_points[:-1]).tolist() |
|
|
|
|
|
x = torch.split(x, split_points) |
|
preds = torch.split(preds, split_points) |
|
lens = torch.tensor([len(x_i) for x_i in x], device=device) |
|
|
|
|
|
x = pad_sequence(x, batch_first=True, padding_value=0) |
|
preds = pad_sequence(preds, batch_first=True, padding_value=self.blank_idx) |
|
|
|
|
|
x = x[:, 1:] |
|
preds = preds[:, 1:] |
|
lens -= 1 |
|
|
|
mask = lengths_to_padding_mask(lens) |
|
|
|
|
|
empty_examples = lens == 0 |
|
num_empty_examples = empty_examples.sum() |
|
if num_empty_examples > 0: |
|
mask[empty_examples, 0] = True |
|
lens[empty_examples] = 1 |
|
preds[empty_examples, 0] = self.sep_idx |
|
|
|
return x, mask, lens, preds, num_empty_examples |
|
|
|
def token_compression(self, x, preds, lens): |
|
|
|
|
|
|
|
|
|
B, T, D = x.size() |
|
device = x.device |
|
dtype = x.dtype |
|
|
|
|
|
new_lens = preds.eq(self.sep_idx).sum(dim=1) |
|
|
|
|
|
preds = [preds[i, :lens[i]] for i in range(B)] |
|
x = [x[i, :lens[i]] for i in range(B)] |
|
|
|
|
|
num_examples_without_ending_sep = torch.tensor(0, device=device, dtype=torch.long) |
|
for i in range(B): |
|
if preds[i][-1] != self.sep_idx: |
|
preds[i] = torch.cat([preds[i], torch.tensor([self.sep_idx], device=device, dtype=torch.long)]) |
|
x[i] = torch.cat([x[i], torch.zeros(1, D, device=device, dtype=dtype)]) |
|
new_lens[i] += 1 |
|
num_examples_without_ending_sep += 1 |
|
|
|
|
|
preds = torch.cat(preds) |
|
x = torch.cat(x) |
|
|
|
|
|
split_points = preds.eq(self.sep_idx).nonzero(as_tuple=True)[0] + 1 |
|
split_points = torch.cat([torch.tensor([0], device=device, dtype=torch.long), split_points]) |
|
split_points = (split_points[1:] - split_points[:-1]).tolist() |
|
|
|
|
|
x = torch.split(x, split_points) |
|
|
|
counts = torch.tensor([len(x_i) for x_i in x], device=device, dtype=torch.long) |
|
x = pad_sequence(x, batch_first=True, padding_value=0) |
|
|
|
|
|
x = self.token_pooling_module(x, counts) |
|
|
|
|
|
split_points = new_lens.cumsum(dim=0) |
|
split_points = torch.cat([torch.tensor([0], device=device, dtype=torch.long), split_points]) |
|
split_points = (split_points[1:] - split_points[:-1]).tolist() |
|
x = torch.split(x, split_points) |
|
x = pad_sequence(x, batch_first=True, padding_value=0) |
|
|
|
mask = lengths_to_padding_mask(new_lens) |
|
|
|
return x, mask, new_lens, num_examples_without_ending_sep |
|
|
|
def forward(self, x, preds, lens): |
|
x, mask, lens, preds, _ = self.char_compression(x, preds, lens) |
|
x, mask, lens, _ = self.token_compression(x, preds, lens) |
|
return x, mask, lens |