Update README.md
Browse files
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```python
|
2 |
+
import torch
|
3 |
+
from scipy.spatial.distance import cosine
|
4 |
+
|
5 |
+
from transformers import AutoModel, AutoTokenizer
|
6 |
+
|
7 |
+
# Load the model
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-small")
|
9 |
+
model = AutoModel.from_pretrained("johngiorgi/declutr-small")
|
10 |
+
|
11 |
+
# Prepare some text to embed
|
12 |
+
text = [
|
13 |
+
"A smiling costumed woman is holding an umbrella.",
|
14 |
+
"A happy woman in a fairy costume holds an umbrella.",
|
15 |
+
]
|
16 |
+
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
|
17 |
+
|
18 |
+
# Embed the text
|
19 |
+
with torch.no_grad():
|
20 |
+
sequence_output, _ = model(**inputs, output_hidden_states=False)
|
21 |
+
|
22 |
+
# Mean pool the token-level embeddings to get sentence-level embeddings
|
23 |
+
embeddings = torch.sum(
|
24 |
+
sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1
|
25 |
+
) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9)
|
26 |
+
|
27 |
+
# Compute a semantic similarity via the cosine distance
|
28 |
+
semantic_sim = 1 - cosine(embeddings[0], embeddings[1])
|
29 |
+
```
|