joeljoseph1599 commited on
Commit
6df8425
·
1 Parent(s): 42baa7e

End of training

Browse files
README.md CHANGED
@@ -16,14 +16,14 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.6680
20
- - Answer: {'precision': 0.6523109243697479, 'recall': 0.7676143386897404, 'f1': 0.7052810902896083, 'number': 809}
21
- - Header: {'precision': 0.23300970873786409, 'recall': 0.20168067226890757, 'f1': 0.21621621621621623, 'number': 119}
22
- - Question: {'precision': 0.7324786324786324, 'recall': 0.8046948356807512, 'f1': 0.766890380313199, 'number': 1065}
23
- - Overall Precision: 0.6751
24
- - Overall Recall: 0.7536
25
- - Overall F1: 0.7122
26
- - Overall Accuracy: 0.7957
27
 
28
  ## Model description
29
 
@@ -52,18 +52,18 @@ The following hyperparameters were used during training:
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
- |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
- | 1.8904 | 1.0 | 10 | 1.6569 | {'precision': 0.0226628895184136, 'recall': 0.029666254635352288, 'f1': 0.025695931477516063, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.13233724653148346, 'recall': 0.11643192488262911, 'f1': 0.12387612387612387, 'number': 1065} | 0.074 | 0.0743 | 0.0741 | 0.3562 |
58
- | 1.5103 | 2.0 | 20 | 1.3215 | {'precision': 0.16376306620209058, 'recall': 0.17428924598269468, 'f1': 0.1688622754491018, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.37047970479704795, 'recall': 0.47136150234741786, 'f1': 0.4148760330578512, 'number': 1065} | 0.2902 | 0.3226 | 0.3055 | 0.5678 |
59
- | 1.1593 | 3.0 | 30 | 0.9985 | {'precision': 0.45689655172413796, 'recall': 0.5241038318912238, 'f1': 0.4881980426021877, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5746268656716418, 'recall': 0.6507042253521127, 'f1': 0.6103038309114928, 'number': 1065} | 0.5176 | 0.5605 | 0.5382 | 0.6952 |
60
- | 0.8944 | 4.0 | 40 | 0.8291 | {'precision': 0.5676982591876208, 'recall': 0.7255871446229913, 'f1': 0.6370048833423766, 'number': 809} | {'precision': 0.125, 'recall': 0.05042016806722689, 'f1': 0.07185628742514971, 'number': 119} | {'precision': 0.648323301805675, 'recall': 0.707981220657277, 'f1': 0.6768402154398564, 'number': 1065} | 0.6 | 0.6759 | 0.6357 | 0.7440 |
61
- | 0.7344 | 5.0 | 50 | 0.7416 | {'precision': 0.6231422505307855, 'recall': 0.7255871446229913, 'f1': 0.670474014848658, 'number': 809} | {'precision': 0.21686746987951808, 'recall': 0.15126050420168066, 'f1': 0.1782178217821782, 'number': 119} | {'precision': 0.6871794871794872, 'recall': 0.7549295774647887, 'f1': 0.7194630872483222, 'number': 1065} | 0.6419 | 0.7070 | 0.6729 | 0.7718 |
62
- | 0.6312 | 6.0 | 60 | 0.7028 | {'precision': 0.616956077630235, 'recall': 0.7466007416563659, 'f1': 0.6756152125279643, 'number': 809} | {'precision': 0.2413793103448276, 'recall': 0.17647058823529413, 'f1': 0.2038834951456311, 'number': 119} | {'precision': 0.7020033388981636, 'recall': 0.7896713615023474, 'f1': 0.7432611577551921, 'number': 1065} | 0.6475 | 0.7356 | 0.6887 | 0.7880 |
63
- | 0.5603 | 7.0 | 70 | 0.6980 | {'precision': 0.6331550802139038, 'recall': 0.7317676143386898, 'f1': 0.6788990825688073, 'number': 809} | {'precision': 0.2604166666666667, 'recall': 0.21008403361344538, 'f1': 0.23255813953488375, 'number': 119} | {'precision': 0.6994219653179191, 'recall': 0.7953051643192488, 'f1': 0.7442882249560634, 'number': 1065} | 0.6530 | 0.7346 | 0.6914 | 0.7861 |
64
- | 0.5272 | 8.0 | 80 | 0.6733 | {'precision': 0.6592827004219409, 'recall': 0.7725587144622992, 'f1': 0.7114399544678428, 'number': 809} | {'precision': 0.25, 'recall': 0.20168067226890757, 'f1': 0.22325581395348837, 'number': 119} | {'precision': 0.7175188600167645, 'recall': 0.8037558685446009, 'f1': 0.758193091231178, 'number': 1065} | 0.6728 | 0.7551 | 0.7116 | 0.7927 |
65
- | 0.4849 | 9.0 | 90 | 0.6716 | {'precision': 0.6549145299145299, 'recall': 0.757725587144623, 'f1': 0.7025787965616046, 'number': 809} | {'precision': 0.23809523809523808, 'recall': 0.21008403361344538, 'f1': 0.22321428571428573, 'number': 119} | {'precision': 0.7216666666666667, 'recall': 0.8131455399061033, 'f1': 0.7646799116997792, 'number': 1065} | 0.6711 | 0.7546 | 0.7104 | 0.7961 |
66
- | 0.4695 | 10.0 | 100 | 0.6680 | {'precision': 0.6523109243697479, 'recall': 0.7676143386897404, 'f1': 0.7052810902896083, 'number': 809} | {'precision': 0.23300970873786409, 'recall': 0.20168067226890757, 'f1': 0.21621621621621623, 'number': 119} | {'precision': 0.7324786324786324, 'recall': 0.8046948356807512, 'f1': 0.766890380313199, 'number': 1065} | 0.6751 | 0.7536 | 0.7122 | 0.7957 |
67
 
68
 
69
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.6510
20
+ - Answer: {'precision': 0.7025527192008879, 'recall': 0.7824474660074165, 'f1': 0.7403508771929823, 'number': 809}
21
+ - Header: {'precision': 0.28421052631578947, 'recall': 0.226890756302521, 'f1': 0.25233644859813087, 'number': 119}
22
+ - Question: {'precision': 0.7480916030534351, 'recall': 0.828169014084507, 'f1': 0.7860962566844921, 'number': 1065}
23
+ - Overall Precision: 0.7090
24
+ - Overall Recall: 0.7737
25
+ - Overall F1: 0.7399
26
+ - Overall Accuracy: 0.8032
27
 
28
  ## Model description
29
 
 
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.7428 | 1.0 | 10 | 1.5458 | {'precision': 0.030690537084398978, 'recall': 0.04449938195302843, 'f1': 0.036326942482341064, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.18740157480314962, 'recall': 0.22347417840375586, 'f1': 0.2038543897216274, 'number': 1065} | 0.1122 | 0.1375 | 0.1235 | 0.4326 |
58
+ | 1.3991 | 2.0 | 20 | 1.2229 | {'precision': 0.1326676176890157, 'recall': 0.11495673671199011, 'f1': 0.12317880794701987, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5, 'recall': 0.5352112676056338, 'f1': 0.5170068027210885, 'number': 1065} | 0.3597 | 0.3327 | 0.3457 | 0.5731 |
59
+ | 1.0911 | 3.0 | 30 | 0.9391 | {'precision': 0.47231638418079097, 'recall': 0.5166872682323856, 'f1': 0.4935064935064935, 'number': 809} | {'precision': 0.058823529411764705, 'recall': 0.01680672268907563, 'f1': 0.026143790849673203, 'number': 119} | {'precision': 0.6528268551236749, 'recall': 0.6938967136150235, 'f1': 0.6727355484751935, 'number': 1065} | 0.5651 | 0.5815 | 0.5732 | 0.7183 |
60
+ | 0.8461 | 4.0 | 40 | 0.7784 | {'precision': 0.6047717842323651, 'recall': 0.7206427688504327, 'f1': 0.6576424139875917, 'number': 809} | {'precision': 0.15384615384615385, 'recall': 0.06722689075630252, 'f1': 0.0935672514619883, 'number': 119} | {'precision': 0.6666666666666666, 'recall': 0.7455399061032864, 'f1': 0.7039007092198581, 'number': 1065} | 0.6275 | 0.6949 | 0.6595 | 0.7638 |
61
+ | 0.6966 | 5.0 | 50 | 0.7307 | {'precision': 0.6315228966986155, 'recall': 0.7330037082818294, 'f1': 0.6784897025171623, 'number': 809} | {'precision': 0.21052631578947367, 'recall': 0.13445378151260504, 'f1': 0.1641025641025641, 'number': 119} | {'precision': 0.6925064599483204, 'recall': 0.7549295774647887, 'f1': 0.7223719676549865, 'number': 1065} | 0.6494 | 0.7090 | 0.6779 | 0.7703 |
62
+ | 0.6037 | 6.0 | 60 | 0.6834 | {'precision': 0.657922350472193, 'recall': 0.7750309023485785, 'f1': 0.7116912599318955, 'number': 809} | {'precision': 0.3150684931506849, 'recall': 0.19327731092436976, 'f1': 0.23958333333333334, 'number': 119} | {'precision': 0.7021103896103896, 'recall': 0.812206572769953, 'f1': 0.7531562908141053, 'number': 1065} | 0.6709 | 0.7602 | 0.7128 | 0.7915 |
63
+ | 0.5421 | 7.0 | 70 | 0.6692 | {'precision': 0.671306209850107, 'recall': 0.7750309023485785, 'f1': 0.7194492254733217, 'number': 809} | {'precision': 0.2823529411764706, 'recall': 0.20168067226890757, 'f1': 0.23529411764705882, 'number': 119} | {'precision': 0.7227467811158799, 'recall': 0.7906103286384977, 'f1': 0.7551569506726458, 'number': 1065} | 0.6836 | 0.7491 | 0.7149 | 0.7931 |
64
+ | 0.5085 | 8.0 | 80 | 0.6549 | {'precision': 0.6901874310915105, 'recall': 0.7737948084054388, 'f1': 0.7296037296037297, 'number': 809} | {'precision': 0.3023255813953488, 'recall': 0.2184873949579832, 'f1': 0.25365853658536586, 'number': 119} | {'precision': 0.7408637873754153, 'recall': 0.8375586854460094, 'f1': 0.7862494490965183, 'number': 1065} | 0.7028 | 0.7747 | 0.7370 | 0.7982 |
65
+ | 0.4692 | 9.0 | 90 | 0.6517 | {'precision': 0.6973684210526315, 'recall': 0.7861557478368356, 'f1': 0.7391051714119697, 'number': 809} | {'precision': 0.2903225806451613, 'recall': 0.226890756302521, 'f1': 0.25471698113207547, 'number': 119} | {'precision': 0.7534364261168385, 'recall': 0.8234741784037559, 'f1': 0.7868999551368328, 'number': 1065} | 0.7100 | 0.7727 | 0.7400 | 0.8025 |
66
+ | 0.4538 | 10.0 | 100 | 0.6510 | {'precision': 0.7025527192008879, 'recall': 0.7824474660074165, 'f1': 0.7403508771929823, 'number': 809} | {'precision': 0.28421052631578947, 'recall': 0.226890756302521, 'f1': 0.25233644859813087, 'number': 119} | {'precision': 0.7480916030534351, 'recall': 0.828169014084507, 'f1': 0.7860962566844921, 'number': 1065} | 0.7090 | 0.7737 | 0.7399 | 0.8032 |
67
 
68
 
69
  ### Framework versions
logs/events.out.tfevents.1690948081.210128a59701.2240.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:10e0fcbef8c2bfa98ad3f7cbd0be1dd8394b63d71eaab790423ca5d94eb94ccd
3
- size 10789
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a410809469e7fcaf42daa65b807de0e625666c4d3e699c0828d28c0eee6d969
3
+ size 11137
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ae53f158497b03ff1bc79edeba1b652a746c036b22333f52a61d9ce798438be6
3
  size 450603969
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9d38aca6dcea087bf407cdfcf6921ed581cd6f7fc069db5cf4d18d82c7f0d1f
3
  size 450603969
tokenizer.json CHANGED
@@ -1,7 +1,21 @@
1
  {
2
  "version": "1.0",
3
- "truncation": null,
4
- "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": {
4
+ "direction": "Right",
5
+ "max_length": 512,
6
+ "strategy": "LongestFirst",
7
+ "stride": 0
8
+ },
9
+ "padding": {
10
+ "strategy": {
11
+ "Fixed": 512
12
+ },
13
+ "direction": "Right",
14
+ "pad_to_multiple_of": null,
15
+ "pad_id": 0,
16
+ "pad_type_id": 0,
17
+ "pad_token": "[PAD]"
18
+ },
19
  "added_tokens": [
20
  {
21
  "id": 0,