joelearn22 commited on
Commit
5df005f
1 Parent(s): 2b7202a

test commit

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: MLP
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 262.49 +/- 31.60
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **MLP** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **MLP** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe89853b320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe89853b3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe89853b440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe89853b4d0>", "_build": "<function ActorCriticPolicy._build at 0x7fe89853b560>", "forward": "<function ActorCriticPolicy.forward at 0x7fe89853b5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe89853b680>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe89853b710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe89853b7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe89853b830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe89853b8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe898585930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1664973205369743556, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbrur0pYFa6wrrGt2EOL7N0lnm6yNrmNgAAgD8AAIA/JuHgvTv70D2eQsU+I4yDvpnhQT4GTWg+AAAAAAAAAABNKWA9e4iZum9eibsuKK22NvjwOlJAnToAAIA/AACAPwAK0jyPXj+6IsyKuTJbxLRKuZU6Ks+dOAAAgD8AAIA/ZkecPVwrEbox9MS5x7qptVjyV7p9reM4AACAPwAAgD8KnZo+RMQcP1Ozvzvn6wS/sqPhPlocBr4AAAAAAAAAAHMh0T1IQ4y6Tl66uDNnhbJRRtW6AyrXNwAAgD8AAIA/JgC+PWHIoD/1v2I+PJEbv1jW+D2uipc9AAAAAAAAAADawd69XKM+utqrITmSWWk4Ga3jueYwUbgAAIA/AACAP7OhaT1cKzu6sMfhNy4SKzMF2cG6d40CtwAAgD8AAIA/TSLUPVyjGro1Djo4UzmEM2uJhrpbHFW3AACAPwAAgD+TLyW+9kBNvFDzJb3e3Jm7x9K7PT0uezwAAIA/AACAP5qM+LwvsyQ+C/RjPROCor6ldTQ96W3LvQAAAAAAAAAAmtKAPXsmnrrht7a8ySosvdlGtDpKp4s8AAAAAAAAAACGvkg+z+VxvDbDWLvQ03w5R7zZvXWxgzoAAIA/AACAP4BKwr1ci1+6LWasNzQgfzOLJG46cpXEtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPj4hO28LLkCUhpRSlIwBbJRLxowBdJRHQI2Yn3ai9Ix1fZQoaAZoCWgPQwi9iowOSGhjQJSGlFKUaBVN6ANoFkdAjZvfReC04XV9lChoBmgJaA9DCCIXnMHfdGBAlIaUUpRoFU3oA2gWR0CNn6TsY2sJdX2UKGgGaAloD0MIJF6ezpV/aECUhpRSlGgVTegDaBZHQI2pYMx46fd1fZQoaAZoCWgPQwiVfsLZrZhgQJSGlFKUaBVN6ANoFkdAja8KPwNLDnV9lChoBmgJaA9DCH0FacaiC0NAlIaUUpRoFUuuaBZHQI2ycan75211fZQoaAZoCWgPQwjr4GBvYqpiQJSGlFKUaBVN6ANoFkdAjbe69sabWnV9lChoBmgJaA9DCENyMnGrQmNAlIaUUpRoFU3oA2gWR0CNvJIXj2i+dX2UKGgGaAloD0MIyOwseid2YkCUhpRSlGgVTegDaBZHQI3lPK2a2F51fZQoaAZoCWgPQwgZdELooKBhQJSGlFKUaBVN6ANoFkdAjeoO01IiDHV9lChoBmgJaA9DCFryeFp+gDdAlIaUUpRoFUu1aBZHQI3rFHc1wYN1fZQoaAZoCWgPQwiRCfg1EhdhQJSGlFKUaBVN6ANoFkdAjfhQkPczqXV9lChoBmgJaA9DCAVrnE1HlGPAlIaUUpRoFUvkaBZHQI37HzOHFgl1fZQoaAZoCWgPQwhEUaBP5E5TQJSGlFKUaBVLsWgWR0CN/atr9EThdX2UKGgGaAloD0MIROBIoEFMZECUhpRSlGgVTegDaBZHQI4DVGoaUA11fZQoaAZoCWgPQwgrbXGNT+RiQJSGlFKUaBVN6ANoFkdAjguYecQRPHV9lChoBmgJaA9DCFG/C1uz+WFAlIaUUpRoFU3oA2gWR0COGRVwPy08dX2UKGgGaAloD0MI2pHqO7+jYUCUhpRSlGgVTegDaBZHQI4Z+fbsWwh1fZQoaAZoCWgPQwjYgAhxZcdnQJSGlFKUaBVN6ANoFkdAjhuH27FsHnV9lChoBmgJaA9DCNVamIX2KGFAlIaUUpRoFU3oA2gWR0COHZ8zhxYJdX2UKGgGaAloD0MIe0/ltKdaYkCUhpRSlGgVTegDaBZHQI4pFSOzY291fZQoaAZoCWgPQwiCjla1JO9kQJSGlFKUaBVN6ANoFkdAjiwxBE8aGnV9lChoBmgJaA9DCDNRhNTtE2BAlIaUUpRoFU3oA2gWR0COOObOu7pWdX2UKGgGaAloD0MIRuwTQDH4YUCUhpRSlGgVTegDaBZHQI4+ZFVktmN1fZQoaAZoCWgPQwg3VffI5iRiQJSGlFKUaBVN6ANoFkdAjkdzakAPu3V9lChoBmgJaA9DCIv7j0yH02JAlIaUUpRoFU3oA2gWR0COUA+yJKradX2UKGgGaAloD0MIfLWjOEeNXUCUhpRSlGgVTegDaBZHQI58eKEWZZ11fZQoaAZoCWgPQwiInL6ery9DQJSGlFKUaBVLnGgWR0COfyq5sj3VdX2UKGgGaAloD0MI+Z6RCA1AZUCUhpRSlGgVTegDaBZHQI6JujIq9Xd1fZQoaAZoCWgPQwi139qJkp9lQJSGlFKUaBVN6ANoFkdAjoyJcxCY1HV9lChoBmgJaA9DCHPVPEfkqmNAlIaUUpRoFU3oA2gWR0COj2ogmqo7dX2UKGgGaAloD0MIs82N6QlGXkCUhpRSlGgVTegDaBZHQI6VKFj/dZd1fZQoaAZoCWgPQwjL1Y9NcglkQJSGlFKUaBVN6ANoFkdAjp1W+GoJiXV9lChoBmgJaA9DCAXFjzF3iUBAlIaUUpRoFUuuaBZHQI6fpyU9pyp1fZQoaAZoCWgPQwg+k/3zNFdkQJSGlFKUaBVN6ANoFkdAjqrNQ0oBrHV9lChoBmgJaA9DCEpdMo4RQmdAlIaUUpRoFU3oA2gWR0COq7A4XGfgdX2UKGgGaAloD0MIQfUPIpkYZUCUhpRSlGgVTegDaBZHQI6tMzdk8Rt1fZQoaAZoCWgPQwjtZkY/ms5kQJSGlFKUaBVN6ANoFkdAjq9BybQTmHV9lChoBmgJaA9DCAouVtRgq2FAlIaUUpRoFU3oA2gWR0COuufAbhm5dX2UKGgGaAloD0MIzJiCNU4FaECUhpRSlGgVTegDaBZHQI6+CGL1mJ51fZQoaAZoCWgPQwiT4uMTsnNdQJSGlFKUaBVN6ANoFkdAjswMHbAUL3V9lChoBmgJaA9DCPxSP28q7GNAlIaUUpRoFU3oA2gWR0CO0WSmqHXVdX2UKGgGaAloD0MIggNauoIyYUCUhpRSlGgVTegDaBZHQI7h7kMkQf91fZQoaAZoCWgPQwhzucFQh9NgQJSGlFKUaBVN6ANoFkdAjw4O7YkE93V9lChoBmgJaA9DCEIHXcKhtmNAlIaUUpRoFU3oA2gWR0CPELM1TBIndX2UKGgGaAloD0MIy/Pg7iy1YkCUhpRSlGgVTegDaBZHQI8aknJDE3t1fZQoaAZoCWgPQwiKITmZOHBjwJSGlFKUaBVNeQFoFkdAjx9xzRx95XV9lChoBmgJaA9DCEZ55uUwjGZAlIaUUpRoFU3oA2gWR0CPH8PlMh5gdX2UKGgGaAloD0MIpyIVxhYQYECUhpRSlGgVTegDaBZHQI8k5U1hsqJ1fZQoaAZoCWgPQwiwAny3eclhQJSGlFKUaBVN6ANoFkdAjyy3Sa3I/HV9lChoBmgJaA9DCH+8V63M62VAlIaUUpRoFU3oA2gWR0CPLt6WPcSHdX2UKGgGaAloD0MIRfXWwFY2WECUhpRSlGgVS65oFkdAjzYJnpSrHXV9lChoBmgJaA9DCBxhUREngmhAlIaUUpRoFU3oA2gWR0CPOEZNO/L1dX2UKGgGaAloD0MIspyE0pduZECUhpRSlGgVTegDaBZHQI85B+F10T11fZQoaAZoCWgPQwiCjla1JGZkQJSGlFKUaBVN6ANoFkdAjzp6z3RG+nV9lChoBmgJaA9DCDwTmiQWJWRAlIaUUpRoFU3oA2gWR0CPPD0yP+4tdX2UKGgGaAloD0MIKCmwACZqZECUhpRSlGgVTegDaBZHQI9GyP0Zm7J1fZQoaAZoCWgPQwgsnKT5Y5JYQJSGlFKUaBVN6ANoFkdAj0nEB8x9HHV9lChoBmgJaA9DCG7dzVMdxElAlIaUUpRoFUuiaBZHQI9K7pTuOS51fZQoaAZoCWgPQwj7ko0H20xgQJSGlFKUaBVN6ANoFkdAj1Y8UuctoXV9lChoBmgJaA9DCD+MEB5tF2RAlIaUUpRoFU3oA2gWR0CPa32alUIcdX2UKGgGaAloD0MI8fJ0rqjHYUCUhpRSlGgVTegDaBZHQI9xY3o9s8B1fZQoaAZoCWgPQwhUkJ+N3LplQJSGlFKUaBVN6ANoFkdAj5pwUHpr13V9lChoBmgJaA9DCF70FaQZHF9AlIaUUpRoFU3oA2gWR0CPo24ffXPJdX2UKGgGaAloD0MI3J4gsd2UXkCUhpRSlGgVTegDaBZHQI+nhW1c+q11fZQoaAZoCWgPQwh9s82N6cNlQJSGlFKUaBVN6ANoFkdAj6fHdO6/ZnV9lChoBmgJaA9DCP+uz5z1VGNAlIaUUpRoFU3oA2gWR0CPsnKifxtpdX2UKGgGaAloD0MIuoPYmUJYZ0CUhpRSlGgVTegDaBZHQI+0OfTTfBN1fZQoaAZoCWgPQwh/MPDce+dlQJSGlFKUaBVN6ANoFkdAj7qSOJcgQ3V9lChoBmgJaA9DCNBGrptS6WNAlIaUUpRoFU3oA2gWR0CPvH2B8QZodX2UKGgGaAloD0MIs9MP6qLkZECUhpRSlGgVTegDaBZHQI+9KFbmlqJ1fZQoaAZoCWgPQwic/BadLPhlQJSGlFKUaBVN6ANoFkdAj75Wo3rD63V9lChoBmgJaA9DCBJpG3+icWVAlIaUUpRoFU3oA2gWR0CPydlqagEmdX2UKGgGaAloD0MIuB/wwADuZkCUhpRSlGgVTegDaBZHQI/Mi4YrJ8x1fZQoaAZoCWgPQwjObcK9smFiQJSGlFKUaBVN6ANoFkdAj82fUnXumnV9lChoBmgJaA9DCME24slud2BAlIaUUpRoFU3oA2gWR0CP1yROk+HKdX2UKGgGaAloD0MI0AziA/t8cUCUhpRSlGgVTQ4DaBZHQI/a4fCAMDx1fZQoaAZoCWgPQwgZOQt72u9QQJSGlFKUaBVLxGgWR0CP50OzY287dX2UKGgGaAloD0MIrYpwk1EQZkCUhpRSlGgVTegDaBZHQI/oT3j+7191fZQoaAZoCWgPQwg4FakwNpRnQJSGlFKUaBVN6ANoFkdAj+9CSA6Mi3V9lChoBmgJaA9DCAPv5NPjbGVAlIaUUpRoFU3oA2gWR0CQDmkIomXxdX2UKGgGaAloD0MIF5rrNFKfZECUhpRSlGgVTegDaBZHQJAQbLns9jh1fZQoaAZoCWgPQwgwZeCAlmNiQJSGlFKUaBVN6ANoFkdAkBCP0/W1+nV9lChoBmgJaA9DCF5nQ/4ZPmJAlIaUUpRoFU3oA2gWR0CQFjHhjvuxdX2UKGgGaAloD0MInuqQm+E7YUCUhpRSlGgVTegDaBZHQJAXJoK2KEZ1fZQoaAZoCWgPQwj6tfXT/9NmQJSGlFKUaBVN6ANoFkdAkBqFEd/8VHV9lChoBmgJaA9DCFLRWPu7x2ZAlIaUUpRoFU3oA2gWR0CQG39gF5fMdX2UKGgGaAloD0MIC3+GN2vwYUCUhpRSlGgVTegDaBZHQJAb1KSPluF1fZQoaAZoCWgPQwhSYWwhSJRgQJSGlFKUaBVN6ANoFkdAkBxujRD1G3V9lChoBmgJaA9DCDsA4q5e5QxAlIaUUpRoFUufaBZHQJAd4XbdrO91fZQoaAZoCWgPQwiDUrRyryZjQJSGlFKUaBVN6ANoFkdAkCIcnmaH9HV9lChoBmgJaA9DCNOE7SdjnGhAlIaUUpRoFU3oA2gWR0CQI3bONYKZdX2UKGgGaAloD0MIrRQCucRFP0CUhpRSlGgVS79oFkdAkCO0nPVurXV9lChoBmgJaA9DCKG+ZU6XJGRAlIaUUpRoFU3oA2gWR0CQI/mSyMUAdX2UKGgGaAloD0MIS5S9pZy9UUCUhpRSlGgVS5doFkdAkCoUk8ifQXV9lChoBmgJaA9DCM7HtaFiIWZAlIaUUpRoFU3oA2gWR0CQKtpNKyv+dX2UKGgGaAloD0MIS8lyEkqxZUCUhpRSlGgVTegDaBZHQJAx7/R3NcJ1fZQoaAZoCWgPQwgw8rImFuVkQJSGlFKUaBVN6ANoFkdAkDJ+0w8GLXV9lChoBmgJaA9DCCV2bW+3wW1AlIaUUpRoFU1tA2gWR0CQNM7u2JBPdX2UKGgGaAloD0MIH2rbMApyN0CUhpRSlGgVTegDaBZHQJA2J6a9bot1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 140, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.1", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-lunarlander-v2-test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c488d0ffc0f286a9a9271f75e2130bb96a829319bd6b1c7d8e1e1ae61f3ee09
3
+ size 147138
ppo-lunarlander-v2-test/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.1
ppo-lunarlander-v2-test/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe89853b320>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe89853b3b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe89853b440>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe89853b4d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe89853b560>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe89853b5f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe89853b680>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe89853b710>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe89853b7a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe89853b830>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe89853b8c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe898585930>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1664973205369743556,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbrur0pYFa6wrrGt2EOL7N0lnm6yNrmNgAAgD8AAIA/JuHgvTv70D2eQsU+I4yDvpnhQT4GTWg+AAAAAAAAAABNKWA9e4iZum9eibsuKK22NvjwOlJAnToAAIA/AACAPwAK0jyPXj+6IsyKuTJbxLRKuZU6Ks+dOAAAgD8AAIA/ZkecPVwrEbox9MS5x7qptVjyV7p9reM4AACAPwAAgD8KnZo+RMQcP1Ozvzvn6wS/sqPhPlocBr4AAAAAAAAAAHMh0T1IQ4y6Tl66uDNnhbJRRtW6AyrXNwAAgD8AAIA/JgC+PWHIoD/1v2I+PJEbv1jW+D2uipc9AAAAAAAAAADawd69XKM+utqrITmSWWk4Ga3jueYwUbgAAIA/AACAP7OhaT1cKzu6sMfhNy4SKzMF2cG6d40CtwAAgD8AAIA/TSLUPVyjGro1Djo4UzmEM2uJhrpbHFW3AACAPwAAgD+TLyW+9kBNvFDzJb3e3Jm7x9K7PT0uezwAAIA/AACAP5qM+LwvsyQ+C/RjPROCor6ldTQ96W3LvQAAAAAAAAAAmtKAPXsmnrrht7a8ySosvdlGtDpKp4s8AAAAAAAAAACGvkg+z+VxvDbDWLvQ03w5R7zZvXWxgzoAAIA/AACAP4BKwr1ci1+6LWasNzQgfzOLJG46cpXEtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPj4hO28LLkCUhpRSlIwBbJRLxowBdJRHQI2Yn3ai9Ix1fZQoaAZoCWgPQwi9iowOSGhjQJSGlFKUaBVN6ANoFkdAjZvfReC04XV9lChoBmgJaA9DCCIXnMHfdGBAlIaUUpRoFU3oA2gWR0CNn6TsY2sJdX2UKGgGaAloD0MIJF6ezpV/aECUhpRSlGgVTegDaBZHQI2pYMx46fd1fZQoaAZoCWgPQwiVfsLZrZhgQJSGlFKUaBVN6ANoFkdAja8KPwNLDnV9lChoBmgJaA9DCH0FacaiC0NAlIaUUpRoFUuuaBZHQI2ycan75211fZQoaAZoCWgPQwjr4GBvYqpiQJSGlFKUaBVN6ANoFkdAjbe69sabWnV9lChoBmgJaA9DCENyMnGrQmNAlIaUUpRoFU3oA2gWR0CNvJIXj2i+dX2UKGgGaAloD0MIyOwseid2YkCUhpRSlGgVTegDaBZHQI3lPK2a2F51fZQoaAZoCWgPQwgZdELooKBhQJSGlFKUaBVN6ANoFkdAjeoO01IiDHV9lChoBmgJaA9DCFryeFp+gDdAlIaUUpRoFUu1aBZHQI3rFHc1wYN1fZQoaAZoCWgPQwiRCfg1EhdhQJSGlFKUaBVN6ANoFkdAjfhQkPczqXV9lChoBmgJaA9DCAVrnE1HlGPAlIaUUpRoFUvkaBZHQI37HzOHFgl1fZQoaAZoCWgPQwhEUaBP5E5TQJSGlFKUaBVLsWgWR0CN/atr9EThdX2UKGgGaAloD0MIROBIoEFMZECUhpRSlGgVTegDaBZHQI4DVGoaUA11fZQoaAZoCWgPQwgrbXGNT+RiQJSGlFKUaBVN6ANoFkdAjguYecQRPHV9lChoBmgJaA9DCFG/C1uz+WFAlIaUUpRoFU3oA2gWR0COGRVwPy08dX2UKGgGaAloD0MI2pHqO7+jYUCUhpRSlGgVTegDaBZHQI4Z+fbsWwh1fZQoaAZoCWgPQwjYgAhxZcdnQJSGlFKUaBVN6ANoFkdAjhuH27FsHnV9lChoBmgJaA9DCNVamIX2KGFAlIaUUpRoFU3oA2gWR0COHZ8zhxYJdX2UKGgGaAloD0MIe0/ltKdaYkCUhpRSlGgVTegDaBZHQI4pFSOzY291fZQoaAZoCWgPQwiCjla1JO9kQJSGlFKUaBVN6ANoFkdAjiwxBE8aGnV9lChoBmgJaA9DCDNRhNTtE2BAlIaUUpRoFU3oA2gWR0COOObOu7pWdX2UKGgGaAloD0MIRuwTQDH4YUCUhpRSlGgVTegDaBZHQI4+ZFVktmN1fZQoaAZoCWgPQwg3VffI5iRiQJSGlFKUaBVN6ANoFkdAjkdzakAPu3V9lChoBmgJaA9DCIv7j0yH02JAlIaUUpRoFU3oA2gWR0COUA+yJKradX2UKGgGaAloD0MIfLWjOEeNXUCUhpRSlGgVTegDaBZHQI58eKEWZZ11fZQoaAZoCWgPQwiInL6ery9DQJSGlFKUaBVLnGgWR0COfyq5sj3VdX2UKGgGaAloD0MI+Z6RCA1AZUCUhpRSlGgVTegDaBZHQI6JujIq9Xd1fZQoaAZoCWgPQwi139qJkp9lQJSGlFKUaBVN6ANoFkdAjoyJcxCY1HV9lChoBmgJaA9DCHPVPEfkqmNAlIaUUpRoFU3oA2gWR0COj2ogmqo7dX2UKGgGaAloD0MIs82N6QlGXkCUhpRSlGgVTegDaBZHQI6VKFj/dZd1fZQoaAZoCWgPQwjL1Y9NcglkQJSGlFKUaBVN6ANoFkdAjp1W+GoJiXV9lChoBmgJaA9DCAXFjzF3iUBAlIaUUpRoFUuuaBZHQI6fpyU9pyp1fZQoaAZoCWgPQwg+k/3zNFdkQJSGlFKUaBVN6ANoFkdAjqrNQ0oBrHV9lChoBmgJaA9DCEpdMo4RQmdAlIaUUpRoFU3oA2gWR0COq7A4XGfgdX2UKGgGaAloD0MIQfUPIpkYZUCUhpRSlGgVTegDaBZHQI6tMzdk8Rt1fZQoaAZoCWgPQwjtZkY/ms5kQJSGlFKUaBVN6ANoFkdAjq9BybQTmHV9lChoBmgJaA9DCAouVtRgq2FAlIaUUpRoFU3oA2gWR0COuufAbhm5dX2UKGgGaAloD0MIzJiCNU4FaECUhpRSlGgVTegDaBZHQI6+CGL1mJ51fZQoaAZoCWgPQwiT4uMTsnNdQJSGlFKUaBVN6ANoFkdAjswMHbAUL3V9lChoBmgJaA9DCPxSP28q7GNAlIaUUpRoFU3oA2gWR0CO0WSmqHXVdX2UKGgGaAloD0MIggNauoIyYUCUhpRSlGgVTegDaBZHQI7h7kMkQf91fZQoaAZoCWgPQwhzucFQh9NgQJSGlFKUaBVN6ANoFkdAjw4O7YkE93V9lChoBmgJaA9DCEIHXcKhtmNAlIaUUpRoFU3oA2gWR0CPELM1TBIndX2UKGgGaAloD0MIy/Pg7iy1YkCUhpRSlGgVTegDaBZHQI8aknJDE3t1fZQoaAZoCWgPQwiKITmZOHBjwJSGlFKUaBVNeQFoFkdAjx9xzRx95XV9lChoBmgJaA9DCEZ55uUwjGZAlIaUUpRoFU3oA2gWR0CPH8PlMh5gdX2UKGgGaAloD0MIpyIVxhYQYECUhpRSlGgVTegDaBZHQI8k5U1hsqJ1fZQoaAZoCWgPQwiwAny3eclhQJSGlFKUaBVN6ANoFkdAjyy3Sa3I/HV9lChoBmgJaA9DCH+8V63M62VAlIaUUpRoFU3oA2gWR0CPLt6WPcSHdX2UKGgGaAloD0MIRfXWwFY2WECUhpRSlGgVS65oFkdAjzYJnpSrHXV9lChoBmgJaA9DCBxhUREngmhAlIaUUpRoFU3oA2gWR0CPOEZNO/L1dX2UKGgGaAloD0MIspyE0pduZECUhpRSlGgVTegDaBZHQI85B+F10T11fZQoaAZoCWgPQwiCjla1JGZkQJSGlFKUaBVN6ANoFkdAjzp6z3RG+nV9lChoBmgJaA9DCDwTmiQWJWRAlIaUUpRoFU3oA2gWR0CPPD0yP+4tdX2UKGgGaAloD0MIKCmwACZqZECUhpRSlGgVTegDaBZHQI9GyP0Zm7J1fZQoaAZoCWgPQwgsnKT5Y5JYQJSGlFKUaBVN6ANoFkdAj0nEB8x9HHV9lChoBmgJaA9DCG7dzVMdxElAlIaUUpRoFUuiaBZHQI9K7pTuOS51fZQoaAZoCWgPQwj7ko0H20xgQJSGlFKUaBVN6ANoFkdAj1Y8UuctoXV9lChoBmgJaA9DCD+MEB5tF2RAlIaUUpRoFU3oA2gWR0CPa32alUIcdX2UKGgGaAloD0MI8fJ0rqjHYUCUhpRSlGgVTegDaBZHQI9xY3o9s8B1fZQoaAZoCWgPQwhUkJ+N3LplQJSGlFKUaBVN6ANoFkdAj5pwUHpr13V9lChoBmgJaA9DCF70FaQZHF9AlIaUUpRoFU3oA2gWR0CPo24ffXPJdX2UKGgGaAloD0MI3J4gsd2UXkCUhpRSlGgVTegDaBZHQI+nhW1c+q11fZQoaAZoCWgPQwh9s82N6cNlQJSGlFKUaBVN6ANoFkdAj6fHdO6/ZnV9lChoBmgJaA9DCP+uz5z1VGNAlIaUUpRoFU3oA2gWR0CPsnKifxtpdX2UKGgGaAloD0MIuoPYmUJYZ0CUhpRSlGgVTegDaBZHQI+0OfTTfBN1fZQoaAZoCWgPQwh/MPDce+dlQJSGlFKUaBVN6ANoFkdAj7qSOJcgQ3V9lChoBmgJaA9DCNBGrptS6WNAlIaUUpRoFU3oA2gWR0CPvH2B8QZodX2UKGgGaAloD0MIs9MP6qLkZECUhpRSlGgVTegDaBZHQI+9KFbmlqJ1fZQoaAZoCWgPQwic/BadLPhlQJSGlFKUaBVN6ANoFkdAj75Wo3rD63V9lChoBmgJaA9DCBJpG3+icWVAlIaUUpRoFU3oA2gWR0CPydlqagEmdX2UKGgGaAloD0MIuB/wwADuZkCUhpRSlGgVTegDaBZHQI/Mi4YrJ8x1fZQoaAZoCWgPQwjObcK9smFiQJSGlFKUaBVN6ANoFkdAj82fUnXumnV9lChoBmgJaA9DCME24slud2BAlIaUUpRoFU3oA2gWR0CP1yROk+HKdX2UKGgGaAloD0MI0AziA/t8cUCUhpRSlGgVTQ4DaBZHQI/a4fCAMDx1fZQoaAZoCWgPQwgZOQt72u9QQJSGlFKUaBVLxGgWR0CP50OzY287dX2UKGgGaAloD0MIrYpwk1EQZkCUhpRSlGgVTegDaBZHQI/oT3j+7191fZQoaAZoCWgPQwg4FakwNpRnQJSGlFKUaBVN6ANoFkdAj+9CSA6Mi3V9lChoBmgJaA9DCAPv5NPjbGVAlIaUUpRoFU3oA2gWR0CQDmkIomXxdX2UKGgGaAloD0MIF5rrNFKfZECUhpRSlGgVTegDaBZHQJAQbLns9jh1fZQoaAZoCWgPQwgwZeCAlmNiQJSGlFKUaBVN6ANoFkdAkBCP0/W1+nV9lChoBmgJaA9DCF5nQ/4ZPmJAlIaUUpRoFU3oA2gWR0CQFjHhjvuxdX2UKGgGaAloD0MInuqQm+E7YUCUhpRSlGgVTegDaBZHQJAXJoK2KEZ1fZQoaAZoCWgPQwj6tfXT/9NmQJSGlFKUaBVN6ANoFkdAkBqFEd/8VHV9lChoBmgJaA9DCFLRWPu7x2ZAlIaUUpRoFU3oA2gWR0CQG39gF5fMdX2UKGgGaAloD0MIC3+GN2vwYUCUhpRSlGgVTegDaBZHQJAb1KSPluF1fZQoaAZoCWgPQwhSYWwhSJRgQJSGlFKUaBVN6ANoFkdAkBxujRD1G3V9lChoBmgJaA9DCDsA4q5e5QxAlIaUUpRoFUufaBZHQJAd4XbdrO91fZQoaAZoCWgPQwiDUrRyryZjQJSGlFKUaBVN6ANoFkdAkCIcnmaH9HV9lChoBmgJaA9DCNOE7SdjnGhAlIaUUpRoFU3oA2gWR0CQI3bONYKZdX2UKGgGaAloD0MIrRQCucRFP0CUhpRSlGgVS79oFkdAkCO0nPVurXV9lChoBmgJaA9DCKG+ZU6XJGRAlIaUUpRoFU3oA2gWR0CQI/mSyMUAdX2UKGgGaAloD0MIS5S9pZy9UUCUhpRSlGgVS5doFkdAkCoUk8ifQXV9lChoBmgJaA9DCM7HtaFiIWZAlIaUUpRoFU3oA2gWR0CQKtpNKyv+dX2UKGgGaAloD0MIS8lyEkqxZUCUhpRSlGgVTegDaBZHQJAx7/R3NcJ1fZQoaAZoCWgPQwgw8rImFuVkQJSGlFKUaBVN6ANoFkdAkDJ+0w8GLXV9lChoBmgJaA9DCCV2bW+3wW1AlIaUUpRoFU1tA2gWR0CQNM7u2JBPdX2UKGgGaAloD0MIH2rbMApyN0CUhpRSlGgVTegDaBZHQJA2J6a9bot1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 140,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-lunarlander-v2-test/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:665204ca151dcd844dc57a0b29647ff033ae458b8ff7df410ea531f055ed72d0
3
+ size 87865
ppo-lunarlander-v2-test/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c083b84923a447715abb1ea985ab0a90bb27c16b1d0a5f18692e762d8ccab743
3
+ size 43201
ppo-lunarlander-v2-test/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-lunarlander-v2-test/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.14
3
+ Stable-Baselines3: 1.6.1
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (215 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.49032031993386, "std_reward": 31.599914168286848, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-05T13:13:53.613599"}