joe-xhedi commited on
Commit
e6d4312
1 Parent(s): 095021f

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -45.00 +/- 15.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8871b82aff8aa925e80c054a63e651bc42d633dbf956dcda28a179cde6da5821
3
+ size 122846
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x788833c701f0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x788833c65d40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 100000,
23
+ "_total_timesteps": 100000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694289236578926399,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANP2+PnckR79Hw/U9dkiOvkXmm750xfU94/21PgrIHT/kvPU9vXHPPTydTr+FxvU9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2epsvxFutj9JXUM/aULGv1GW/b5Z8T0/i2DHvjx/z74NWYe/uNiJv0Auvz93pK8/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABvHyI/HTWGv0ZMFb9lY0A/6/PCvlSykD9Wo5M/NP2+PnckR79Hw/U9vvAmvGDxrrwouq+8Lw10vArZazyAvVU9nFwfvNzf0bzuMzE7E5aGPjs8jb8jFQq//yWWP7pCRL+ucXM/JdGTP3ZIjr5F5pu+dMX1PSCWKbx5Ma+8PFDEvCwjebzjY3c8Ib1VPW1gH7wt3dG84sYeO9Z84j7lDhY/IG1ZP9Qj9b0koOw+rr7XPilwN7/j/bU+CsgdP+S89T2iMyS8JmyvvFTeyry3cYK8egByPIC9VT26XB+8zt/RvBSk8ToMpQY/mWfZO0H3ej/zXeY9yxyBvcJt3j7mIJQ/vXHPPTydTr+FxvU9bvsovNTzsLwzZcu8ctByvIPjbDwx31Q9wtQEvF/1vrwI0O86lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 0.37302554 -0.77790016 0.12000137]\n [-0.27789658 -0.3044912 0.12000552]\n [ 0.35545263 0.6163336 0.11998919]\n [ 0.10129116 -0.8070867 0.12000755]]",
34
+ "desired_goal": "[[-0.9254585 1.425234 0.76314217]\n [-1.5489017 -0.49528745 0.7419639 ]\n [-0.38940844 -0.4052676 -1.0574051 ]\n [-1.0769262 1.4935989 1.3722066 ]]",
35
+ "observation": "[[ 0.63329214 -1.0484959 -0.5831951 0.75151664 -0.3807672 1.1304421\n 1.1534221 0.37302554 -0.77790016 0.12000137 -0.01018923 -0.02135533\n -0.02145107 -0.01489572 0.01439501 0.05218267 -0.00972667 -0.02561944\n 0.0027039 ]\n [ 0.26286373 -1.1034006 -0.539385 1.1730345 -0.76664317 0.95095336\n 1.1548201 -0.27789658 -0.3044912 0.12000552 -0.01035073 -0.0213859\n -0.02396404 -0.01520614 0.0150995 0.05218232 -0.00972758 -0.02561816\n 0.00242274]\n [ 0.44235867 0.5861648 0.84932137 -0.11969724 0.46215928 0.42137665\n -0.7165552 0.35545263 0.6163336 0.11998919 -0.01002208 -0.02141387\n -0.02476422 -0.01592336 0.01477062 0.05218267 -0.0097267 -0.02561941\n 0.00184357]\n [ 0.5259559 0.00663466 0.9803353 0.11248388 -0.0630432 0.43443114\n 1.157254 0.10129116 -0.8070867 0.12000755 -0.01031385 -0.02160064\n -0.02482853 -0.01482021 0.01445854 0.05197066 -0.00810737 -0.02331036\n 0.00182963]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANGI9veeQFj4K16M8u3rIvdwVyDwK16M8XYUKPgw1Gj0K16M8d7oOPaEvm70K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr/TVvGfCDb54xL09x8/kOzQ1Fbxr7TM9jIWSPNPCCj4XgQo+IJIiPZP8ML0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAANGI9veeQFj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAALt6yL3cFcg8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABdhQo+DDUaPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAd7oOPaEvm70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[-0.04623623 0.14703713 0.02 ]\n [-0.09789034 0.02442449 0.02 ]\n [ 0.13527437 0.03764825 0.02 ]\n [ 0.0348458 -0.07577444 0.02 ]]",
45
+ "desired_goal": "[[-0.02611765 -0.1384369 0.09265989]\n [ 0.00698278 -0.00910692 0.04392759]\n [ 0.01788595 0.13550882 0.13525806]\n [ 0.03969014 -0.04320962 0.02 ]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.6236232e-02\n 1.4703713e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.7890340e-02\n 2.4424486e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3527437e-01\n 3.7648246e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.4845795e-02\n -7.5774439e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0B1K1xo7FKkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1MwsWfseGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1LftY0VJudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1LXdGiHqNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1NSoJiRW+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1PO4oZydXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1N7DtPYWddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1N4dfb9IgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1P7lV94NadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1R1DjR2KVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1QhzQu27WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1QYZKnNxEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1STNyHVPOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1UNPhybQUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1S46nzg/DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1SzJhfBvadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1Uu5Gz8gqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1Wm9bor4GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1VWi35N48dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1VM9ZA6dUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1XIvAXVLBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1ZF9KEnLJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1Xx7IDHOsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1XqoP07KadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1Zmtp22XtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1bdqXWvr4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1aKVD8cdYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1aDKr7wazdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1cA29+PRzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1d/nKW9lFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1cuLDQ7cPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1cpEa2nbZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1enKs+3YudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1gmasp5NXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1fYsVclgMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1fdmyxA0LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1hsoTfzjFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1kLUMG5c1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1jBJoTPB0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1jN2V3Ux3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1lbuAqd6LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1n4Gkep4sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1muTNdJJ5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1m7RhMJyAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1pJMh5gPVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1rs1qFh5PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1qkow22ofdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1q0l0HQhPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1tFSydFvydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1u6tW+49YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1to6Oo5xSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1tevdM0xedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1vZ4D9wWFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1xRR8+iaidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1v+JdjXnRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1v2M72cridX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1xvtdAxBWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1znqlgtvodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1yUiu+yqudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1yM8W9DhMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B10GfvnbItdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B11/lMh5gPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B10wAhje9BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B10rfoA4n4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B12qSV4X41dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B14nl/6O5sdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B14qyKNyYHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B13Vvze40/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B13PEdeY2LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B15Mood+5OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B17LFYMfA9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B152Y3Ns3ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B15uzTnaFmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B17ptygf2cdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B17uEdvKlpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B19kOjIq9XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B18OHDaXa8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B18GRyOq//dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1+Dy7PIGRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1//pt78ekdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B2ACkKu0TldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1+qj+JgstdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1+kx46fapdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2AlxffGdadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2CjE87p3YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2BK39aUzLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2BB7OVxCIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2DASCe2/jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2E8DGLk0adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2DkdELH+7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2DhFSbYsedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2FmOktVaPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2HfMzMzMzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2GHHcUM5PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2F/CXQdCFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2H910T101dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2J4sg+yJLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2IgFvAGjcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2IZxn3+MqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2KZLi++M7dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 5000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05372c1da03df01b946ed01a7120ec72439ca35cacb6219d995fd123ba4387ea
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cfaf71577aa53c20ab7805a740952e761acb771046b1df418642a726f1fea35
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x788833c701f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x788833c65d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694289236578926399, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANP2+PnckR79Hw/U9dkiOvkXmm750xfU94/21PgrIHT/kvPU9vXHPPTydTr+FxvU9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2epsvxFutj9JXUM/aULGv1GW/b5Z8T0/i2DHvjx/z74NWYe/uNiJv0Auvz93pK8/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABvHyI/HTWGv0ZMFb9lY0A/6/PCvlSykD9Wo5M/NP2+PnckR79Hw/U9vvAmvGDxrrwouq+8Lw10vArZazyAvVU9nFwfvNzf0bzuMzE7E5aGPjs8jb8jFQq//yWWP7pCRL+ucXM/JdGTP3ZIjr5F5pu+dMX1PSCWKbx5Ma+8PFDEvCwjebzjY3c8Ib1VPW1gH7wt3dG84sYeO9Z84j7lDhY/IG1ZP9Qj9b0koOw+rr7XPilwN7/j/bU+CsgdP+S89T2iMyS8JmyvvFTeyry3cYK8egByPIC9VT26XB+8zt/RvBSk8ToMpQY/mWfZO0H3ej/zXeY9yxyBvcJt3j7mIJQ/vXHPPTydTr+FxvU9bvsovNTzsLwzZcu8ctByvIPjbDwx31Q9wtQEvF/1vrwI0O86lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.37302554 -0.77790016 0.12000137]\n [-0.27789658 -0.3044912 0.12000552]\n [ 0.35545263 0.6163336 0.11998919]\n [ 0.10129116 -0.8070867 0.12000755]]", "desired_goal": "[[-0.9254585 1.425234 0.76314217]\n [-1.5489017 -0.49528745 0.7419639 ]\n [-0.38940844 -0.4052676 -1.0574051 ]\n [-1.0769262 1.4935989 1.3722066 ]]", "observation": "[[ 0.63329214 -1.0484959 -0.5831951 0.75151664 -0.3807672 1.1304421\n 1.1534221 0.37302554 -0.77790016 0.12000137 -0.01018923 -0.02135533\n -0.02145107 -0.01489572 0.01439501 0.05218267 -0.00972667 -0.02561944\n 0.0027039 ]\n [ 0.26286373 -1.1034006 -0.539385 1.1730345 -0.76664317 0.95095336\n 1.1548201 -0.27789658 -0.3044912 0.12000552 -0.01035073 -0.0213859\n -0.02396404 -0.01520614 0.0150995 0.05218232 -0.00972758 -0.02561816\n 0.00242274]\n [ 0.44235867 0.5861648 0.84932137 -0.11969724 0.46215928 0.42137665\n -0.7165552 0.35545263 0.6163336 0.11998919 -0.01002208 -0.02141387\n -0.02476422 -0.01592336 0.01477062 0.05218267 -0.0097267 -0.02561941\n 0.00184357]\n [ 0.5259559 0.00663466 0.9803353 0.11248388 -0.0630432 0.43443114\n 1.157254 0.10129116 -0.8070867 0.12000755 -0.01031385 -0.02160064\n -0.02482853 -0.01482021 0.01445854 0.05197066 -0.00810737 -0.02331036\n 0.00182963]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANGI9veeQFj4K16M8u3rIvdwVyDwK16M8XYUKPgw1Gj0K16M8d7oOPaEvm70K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr/TVvGfCDb54xL09x8/kOzQ1Fbxr7TM9jIWSPNPCCj4XgQo+IJIiPZP8ML0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAANGI9veeQFj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAALt6yL3cFcg8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABdhQo+DDUaPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAd7oOPaEvm70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.04623623 0.14703713 0.02 ]\n [-0.09789034 0.02442449 0.02 ]\n [ 0.13527437 0.03764825 0.02 ]\n [ 0.0348458 -0.07577444 0.02 ]]", "desired_goal": "[[-0.02611765 -0.1384369 0.09265989]\n [ 0.00698278 -0.00910692 0.04392759]\n [ 0.01788595 0.13550882 0.13525806]\n [ 0.03969014 -0.04320962 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.6236232e-02\n 1.4703713e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.7890340e-02\n 2.4424486e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3527437e-01\n 3.7648246e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.4845795e-02\n -7.5774439e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0B1K1xo7FKkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1MwsWfseGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1LftY0VJudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1LXdGiHqNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1NSoJiRW+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1PO4oZydXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1N7DtPYWddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1N4dfb9IgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1P7lV94NadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1R1DjR2KVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1QhzQu27WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1QYZKnNxEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1STNyHVPOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1UNPhybQUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1S46nzg/DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1SzJhfBvadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1Uu5Gz8gqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1Wm9bor4GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1VWi35N48dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1VM9ZA6dUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1XIvAXVLBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1ZF9KEnLJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1Xx7IDHOsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1XqoP07KadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1Zmtp22XtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1bdqXWvr4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1aKVD8cdYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1aDKr7wazdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1cA29+PRzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1d/nKW9lFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1cuLDQ7cPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1cpEa2nbZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1enKs+3YudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1gmasp5NXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1fYsVclgMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1fdmyxA0LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1hsoTfzjFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1kLUMG5c1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1jBJoTPB0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1jN2V3Ux3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1lbuAqd6LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1n4Gkep4sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1muTNdJJ5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1m7RhMJyAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1pJMh5gPVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1rs1qFh5PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1qkow22ofdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1q0l0HQhPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1tFSydFvydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1u6tW+49YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1to6Oo5xSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1tevdM0xedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1vZ4D9wWFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1xRR8+iaidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1v+JdjXnRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1v2M72cridX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1xvtdAxBWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1znqlgtvodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1yUiu+yqudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1yM8W9DhMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B10GfvnbItdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B11/lMh5gPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B10wAhje9BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B10rfoA4n4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B12qSV4X41dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B14nl/6O5sdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B14qyKNyYHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B13Vvze40/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B13PEdeY2LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B15Mood+5OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B17LFYMfA9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B152Y3Ns3ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B15uzTnaFmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B17ptygf2cdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B17uEdvKlpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B19kOjIq9XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B18OHDaXa8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B18GRyOq//dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1+Dy7PIGRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1//pt78ekdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B2ACkKu0TldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1+qj+JgstdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B1+kx46fapdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2AlxffGdadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2CjE87p3YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2BK39aUzLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2BB7OVxCIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2DASCe2/jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2E8DGLk0adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2DkdELH+7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2DhFSbYsedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2FmOktVaPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2HfMzMzMzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2GHHcUM5PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2F/CXQdCFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2H910T101dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2J4sg+yJLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2IgFvAGjcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2IZxn3+MqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B2KZLi++M7dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (952 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -45.0, "std_reward": 15.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-09T20:00:36.397769"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2130a664e4cbeff426d3cf8addbacb7b119f7c98e2f35f545426bbb775340580
3
+ size 3013