Upload folder using huggingface_hub
Browse files- README.md +2702 -0
- config.json +7 -0
- model.bin +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocabulary.json +0 -0
README.md
ADDED
@@ -0,0 +1,2702 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: sentence-transformers
|
5 |
+
license: mit
|
6 |
+
pipeline_tag: sentence-similarity
|
7 |
+
tags:
|
8 |
+
- feature-extraction
|
9 |
+
- mteb
|
10 |
+
- sentence-similarity
|
11 |
+
- sentence-transformers
|
12 |
+
|
13 |
+
model-index:
|
14 |
+
- name: GIST-small-Embedding-v0
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: Classification
|
18 |
+
dataset:
|
19 |
+
type: mteb/amazon_counterfactual
|
20 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
21 |
+
config: en
|
22 |
+
split: test
|
23 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
24 |
+
metrics:
|
25 |
+
- type: accuracy
|
26 |
+
value: 75.26865671641791
|
27 |
+
- type: ap
|
28 |
+
value: 38.25623793370476
|
29 |
+
- type: f1
|
30 |
+
value: 69.26434651320257
|
31 |
+
- task:
|
32 |
+
type: Classification
|
33 |
+
dataset:
|
34 |
+
type: mteb/amazon_polarity
|
35 |
+
name: MTEB AmazonPolarityClassification
|
36 |
+
config: default
|
37 |
+
split: test
|
38 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
39 |
+
metrics:
|
40 |
+
- type: accuracy
|
41 |
+
value: 93.232225
|
42 |
+
- type: ap
|
43 |
+
value: 89.97936072879344
|
44 |
+
- type: f1
|
45 |
+
value: 93.22122653806187
|
46 |
+
- task:
|
47 |
+
type: Classification
|
48 |
+
dataset:
|
49 |
+
type: mteb/amazon_reviews_multi
|
50 |
+
name: MTEB AmazonReviewsClassification (en)
|
51 |
+
config: en
|
52 |
+
split: test
|
53 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
54 |
+
metrics:
|
55 |
+
- type: accuracy
|
56 |
+
value: 49.715999999999994
|
57 |
+
- type: f1
|
58 |
+
value: 49.169789920136076
|
59 |
+
- task:
|
60 |
+
type: Retrieval
|
61 |
+
dataset:
|
62 |
+
type: arguana
|
63 |
+
name: MTEB ArguAna
|
64 |
+
config: default
|
65 |
+
split: test
|
66 |
+
revision: None
|
67 |
+
metrics:
|
68 |
+
- type: map_at_1
|
69 |
+
value: 34.922
|
70 |
+
- type: map_at_10
|
71 |
+
value: 50.524
|
72 |
+
- type: map_at_100
|
73 |
+
value: 51.247
|
74 |
+
- type: map_at_1000
|
75 |
+
value: 51.249
|
76 |
+
- type: map_at_3
|
77 |
+
value: 45.887
|
78 |
+
- type: map_at_5
|
79 |
+
value: 48.592999999999996
|
80 |
+
- type: mrr_at_1
|
81 |
+
value: 34.922
|
82 |
+
- type: mrr_at_10
|
83 |
+
value: 50.382000000000005
|
84 |
+
- type: mrr_at_100
|
85 |
+
value: 51.104000000000006
|
86 |
+
- type: mrr_at_1000
|
87 |
+
value: 51.105999999999995
|
88 |
+
- type: mrr_at_3
|
89 |
+
value: 45.733000000000004
|
90 |
+
- type: mrr_at_5
|
91 |
+
value: 48.428
|
92 |
+
- type: ndcg_at_1
|
93 |
+
value: 34.922
|
94 |
+
- type: ndcg_at_10
|
95 |
+
value: 59.12
|
96 |
+
- type: ndcg_at_100
|
97 |
+
value: 62.083999999999996
|
98 |
+
- type: ndcg_at_1000
|
99 |
+
value: 62.137
|
100 |
+
- type: ndcg_at_3
|
101 |
+
value: 49.616
|
102 |
+
- type: ndcg_at_5
|
103 |
+
value: 54.501
|
104 |
+
- type: precision_at_1
|
105 |
+
value: 34.922
|
106 |
+
- type: precision_at_10
|
107 |
+
value: 8.649
|
108 |
+
- type: precision_at_100
|
109 |
+
value: 0.991
|
110 |
+
- type: precision_at_1000
|
111 |
+
value: 0.1
|
112 |
+
- type: precision_at_3
|
113 |
+
value: 20.152
|
114 |
+
- type: precision_at_5
|
115 |
+
value: 14.466999999999999
|
116 |
+
- type: recall_at_1
|
117 |
+
value: 34.922
|
118 |
+
- type: recall_at_10
|
119 |
+
value: 86.48599999999999
|
120 |
+
- type: recall_at_100
|
121 |
+
value: 99.14699999999999
|
122 |
+
- type: recall_at_1000
|
123 |
+
value: 99.57300000000001
|
124 |
+
- type: recall_at_3
|
125 |
+
value: 60.455000000000005
|
126 |
+
- type: recall_at_5
|
127 |
+
value: 72.333
|
128 |
+
- task:
|
129 |
+
type: Clustering
|
130 |
+
dataset:
|
131 |
+
type: mteb/arxiv-clustering-p2p
|
132 |
+
name: MTEB ArxivClusteringP2P
|
133 |
+
config: default
|
134 |
+
split: test
|
135 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
136 |
+
metrics:
|
137 |
+
- type: v_measure
|
138 |
+
value: 47.623282347623714
|
139 |
+
- task:
|
140 |
+
type: Clustering
|
141 |
+
dataset:
|
142 |
+
type: mteb/arxiv-clustering-s2s
|
143 |
+
name: MTEB ArxivClusteringS2S
|
144 |
+
config: default
|
145 |
+
split: test
|
146 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
147 |
+
metrics:
|
148 |
+
- type: v_measure
|
149 |
+
value: 39.86487843524932
|
150 |
+
- task:
|
151 |
+
type: Reranking
|
152 |
+
dataset:
|
153 |
+
type: mteb/askubuntudupquestions-reranking
|
154 |
+
name: MTEB AskUbuntuDupQuestions
|
155 |
+
config: default
|
156 |
+
split: test
|
157 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
158 |
+
metrics:
|
159 |
+
- type: map
|
160 |
+
value: 62.3290291318171
|
161 |
+
- type: mrr
|
162 |
+
value: 75.2379853141626
|
163 |
+
- task:
|
164 |
+
type: STS
|
165 |
+
dataset:
|
166 |
+
type: mteb/biosses-sts
|
167 |
+
name: MTEB BIOSSES
|
168 |
+
config: default
|
169 |
+
split: test
|
170 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
171 |
+
metrics:
|
172 |
+
- type: cos_sim_pearson
|
173 |
+
value: 88.52002953574285
|
174 |
+
- type: cos_sim_spearman
|
175 |
+
value: 86.98752423842483
|
176 |
+
- type: euclidean_pearson
|
177 |
+
value: 86.89442688314197
|
178 |
+
- type: euclidean_spearman
|
179 |
+
value: 86.88631711307471
|
180 |
+
- type: manhattan_pearson
|
181 |
+
value: 87.03723618507175
|
182 |
+
- type: manhattan_spearman
|
183 |
+
value: 86.76041062975224
|
184 |
+
- task:
|
185 |
+
type: Classification
|
186 |
+
dataset:
|
187 |
+
type: mteb/banking77
|
188 |
+
name: MTEB Banking77Classification
|
189 |
+
config: default
|
190 |
+
split: test
|
191 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
192 |
+
metrics:
|
193 |
+
- type: accuracy
|
194 |
+
value: 86.64935064935065
|
195 |
+
- type: f1
|
196 |
+
value: 86.61903824934998
|
197 |
+
- task:
|
198 |
+
type: Clustering
|
199 |
+
dataset:
|
200 |
+
type: mteb/biorxiv-clustering-p2p
|
201 |
+
name: MTEB BiorxivClusteringP2P
|
202 |
+
config: default
|
203 |
+
split: test
|
204 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
205 |
+
metrics:
|
206 |
+
- type: v_measure
|
207 |
+
value: 39.21904455377494
|
208 |
+
- task:
|
209 |
+
type: Clustering
|
210 |
+
dataset:
|
211 |
+
type: mteb/biorxiv-clustering-s2s
|
212 |
+
name: MTEB BiorxivClusteringS2S
|
213 |
+
config: default
|
214 |
+
split: test
|
215 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
216 |
+
metrics:
|
217 |
+
- type: v_measure
|
218 |
+
value: 35.43342755570654
|
219 |
+
- task:
|
220 |
+
type: Retrieval
|
221 |
+
dataset:
|
222 |
+
type: BeIR/cqadupstack
|
223 |
+
name: MTEB CQADupstackAndroidRetrieval
|
224 |
+
config: default
|
225 |
+
split: test
|
226 |
+
revision: None
|
227 |
+
metrics:
|
228 |
+
- type: map_at_1
|
229 |
+
value: 31.843
|
230 |
+
- type: map_at_10
|
231 |
+
value: 43.379
|
232 |
+
- type: map_at_100
|
233 |
+
value: 44.946999999999996
|
234 |
+
- type: map_at_1000
|
235 |
+
value: 45.078
|
236 |
+
- type: map_at_3
|
237 |
+
value: 39.598
|
238 |
+
- type: map_at_5
|
239 |
+
value: 41.746
|
240 |
+
- type: mrr_at_1
|
241 |
+
value: 39.199
|
242 |
+
- type: mrr_at_10
|
243 |
+
value: 49.672
|
244 |
+
- type: mrr_at_100
|
245 |
+
value: 50.321000000000005
|
246 |
+
- type: mrr_at_1000
|
247 |
+
value: 50.365
|
248 |
+
- type: mrr_at_3
|
249 |
+
value: 46.805
|
250 |
+
- type: mrr_at_5
|
251 |
+
value: 48.579
|
252 |
+
- type: ndcg_at_1
|
253 |
+
value: 39.199
|
254 |
+
- type: ndcg_at_10
|
255 |
+
value: 50.163999999999994
|
256 |
+
- type: ndcg_at_100
|
257 |
+
value: 55.418
|
258 |
+
- type: ndcg_at_1000
|
259 |
+
value: 57.353
|
260 |
+
- type: ndcg_at_3
|
261 |
+
value: 44.716
|
262 |
+
- type: ndcg_at_5
|
263 |
+
value: 47.268
|
264 |
+
- type: precision_at_1
|
265 |
+
value: 39.199
|
266 |
+
- type: precision_at_10
|
267 |
+
value: 9.757
|
268 |
+
- type: precision_at_100
|
269 |
+
value: 1.552
|
270 |
+
- type: precision_at_1000
|
271 |
+
value: 0.20500000000000002
|
272 |
+
- type: precision_at_3
|
273 |
+
value: 21.602
|
274 |
+
- type: precision_at_5
|
275 |
+
value: 15.479000000000001
|
276 |
+
- type: recall_at_1
|
277 |
+
value: 31.843
|
278 |
+
- type: recall_at_10
|
279 |
+
value: 62.743
|
280 |
+
- type: recall_at_100
|
281 |
+
value: 84.78099999999999
|
282 |
+
- type: recall_at_1000
|
283 |
+
value: 96.86099999999999
|
284 |
+
- type: recall_at_3
|
285 |
+
value: 46.927
|
286 |
+
- type: recall_at_5
|
287 |
+
value: 54.355
|
288 |
+
- task:
|
289 |
+
type: Retrieval
|
290 |
+
dataset:
|
291 |
+
type: BeIR/cqadupstack
|
292 |
+
name: MTEB CQADupstackEnglishRetrieval
|
293 |
+
config: default
|
294 |
+
split: test
|
295 |
+
revision: None
|
296 |
+
metrics:
|
297 |
+
- type: map_at_1
|
298 |
+
value: 29.321
|
299 |
+
- type: map_at_10
|
300 |
+
value: 39.062999999999995
|
301 |
+
- type: map_at_100
|
302 |
+
value: 40.403
|
303 |
+
- type: map_at_1000
|
304 |
+
value: 40.534
|
305 |
+
- type: map_at_3
|
306 |
+
value: 36.367
|
307 |
+
- type: map_at_5
|
308 |
+
value: 37.756
|
309 |
+
- type: mrr_at_1
|
310 |
+
value: 35.987
|
311 |
+
- type: mrr_at_10
|
312 |
+
value: 44.708999999999996
|
313 |
+
- type: mrr_at_100
|
314 |
+
value: 45.394
|
315 |
+
- type: mrr_at_1000
|
316 |
+
value: 45.436
|
317 |
+
- type: mrr_at_3
|
318 |
+
value: 42.463
|
319 |
+
- type: mrr_at_5
|
320 |
+
value: 43.663000000000004
|
321 |
+
- type: ndcg_at_1
|
322 |
+
value: 35.987
|
323 |
+
- type: ndcg_at_10
|
324 |
+
value: 44.585
|
325 |
+
- type: ndcg_at_100
|
326 |
+
value: 49.297999999999995
|
327 |
+
- type: ndcg_at_1000
|
328 |
+
value: 51.315
|
329 |
+
- type: ndcg_at_3
|
330 |
+
value: 40.569
|
331 |
+
- type: ndcg_at_5
|
332 |
+
value: 42.197
|
333 |
+
- type: precision_at_1
|
334 |
+
value: 35.987
|
335 |
+
- type: precision_at_10
|
336 |
+
value: 8.369
|
337 |
+
- type: precision_at_100
|
338 |
+
value: 1.366
|
339 |
+
- type: precision_at_1000
|
340 |
+
value: 0.184
|
341 |
+
- type: precision_at_3
|
342 |
+
value: 19.427
|
343 |
+
- type: precision_at_5
|
344 |
+
value: 13.58
|
345 |
+
- type: recall_at_1
|
346 |
+
value: 29.321
|
347 |
+
- type: recall_at_10
|
348 |
+
value: 54.333
|
349 |
+
- type: recall_at_100
|
350 |
+
value: 74.178
|
351 |
+
- type: recall_at_1000
|
352 |
+
value: 86.732
|
353 |
+
- type: recall_at_3
|
354 |
+
value: 42.46
|
355 |
+
- type: recall_at_5
|
356 |
+
value: 47.089999999999996
|
357 |
+
- task:
|
358 |
+
type: Retrieval
|
359 |
+
dataset:
|
360 |
+
type: BeIR/cqadupstack
|
361 |
+
name: MTEB CQADupstackGamingRetrieval
|
362 |
+
config: default
|
363 |
+
split: test
|
364 |
+
revision: None
|
365 |
+
metrics:
|
366 |
+
- type: map_at_1
|
367 |
+
value: 38.811
|
368 |
+
- type: map_at_10
|
369 |
+
value: 51.114000000000004
|
370 |
+
- type: map_at_100
|
371 |
+
value: 52.22
|
372 |
+
- type: map_at_1000
|
373 |
+
value: 52.275000000000006
|
374 |
+
- type: map_at_3
|
375 |
+
value: 47.644999999999996
|
376 |
+
- type: map_at_5
|
377 |
+
value: 49.675000000000004
|
378 |
+
- type: mrr_at_1
|
379 |
+
value: 44.389
|
380 |
+
- type: mrr_at_10
|
381 |
+
value: 54.459
|
382 |
+
- type: mrr_at_100
|
383 |
+
value: 55.208999999999996
|
384 |
+
- type: mrr_at_1000
|
385 |
+
value: 55.239000000000004
|
386 |
+
- type: mrr_at_3
|
387 |
+
value: 51.954
|
388 |
+
- type: mrr_at_5
|
389 |
+
value: 53.571999999999996
|
390 |
+
- type: ndcg_at_1
|
391 |
+
value: 44.389
|
392 |
+
- type: ndcg_at_10
|
393 |
+
value: 56.979
|
394 |
+
- type: ndcg_at_100
|
395 |
+
value: 61.266
|
396 |
+
- type: ndcg_at_1000
|
397 |
+
value: 62.315
|
398 |
+
- type: ndcg_at_3
|
399 |
+
value: 51.342
|
400 |
+
- type: ndcg_at_5
|
401 |
+
value: 54.33
|
402 |
+
- type: precision_at_1
|
403 |
+
value: 44.389
|
404 |
+
- type: precision_at_10
|
405 |
+
value: 9.26
|
406 |
+
- type: precision_at_100
|
407 |
+
value: 1.226
|
408 |
+
- type: precision_at_1000
|
409 |
+
value: 0.136
|
410 |
+
- type: precision_at_3
|
411 |
+
value: 22.926
|
412 |
+
- type: precision_at_5
|
413 |
+
value: 15.987000000000002
|
414 |
+
- type: recall_at_1
|
415 |
+
value: 38.811
|
416 |
+
- type: recall_at_10
|
417 |
+
value: 70.841
|
418 |
+
- type: recall_at_100
|
419 |
+
value: 89.218
|
420 |
+
- type: recall_at_1000
|
421 |
+
value: 96.482
|
422 |
+
- type: recall_at_3
|
423 |
+
value: 56.123999999999995
|
424 |
+
- type: recall_at_5
|
425 |
+
value: 63.322
|
426 |
+
- task:
|
427 |
+
type: Retrieval
|
428 |
+
dataset:
|
429 |
+
type: BeIR/cqadupstack
|
430 |
+
name: MTEB CQADupstackGisRetrieval
|
431 |
+
config: default
|
432 |
+
split: test
|
433 |
+
revision: None
|
434 |
+
metrics:
|
435 |
+
- type: map_at_1
|
436 |
+
value: 25.378
|
437 |
+
- type: map_at_10
|
438 |
+
value: 34.311
|
439 |
+
- type: map_at_100
|
440 |
+
value: 35.399
|
441 |
+
- type: map_at_1000
|
442 |
+
value: 35.482
|
443 |
+
- type: map_at_3
|
444 |
+
value: 31.917
|
445 |
+
- type: map_at_5
|
446 |
+
value: 33.275
|
447 |
+
- type: mrr_at_1
|
448 |
+
value: 27.683999999999997
|
449 |
+
- type: mrr_at_10
|
450 |
+
value: 36.575
|
451 |
+
- type: mrr_at_100
|
452 |
+
value: 37.492
|
453 |
+
- type: mrr_at_1000
|
454 |
+
value: 37.556
|
455 |
+
- type: mrr_at_3
|
456 |
+
value: 34.35
|
457 |
+
- type: mrr_at_5
|
458 |
+
value: 35.525
|
459 |
+
- type: ndcg_at_1
|
460 |
+
value: 27.683999999999997
|
461 |
+
- type: ndcg_at_10
|
462 |
+
value: 39.247
|
463 |
+
- type: ndcg_at_100
|
464 |
+
value: 44.424
|
465 |
+
- type: ndcg_at_1000
|
466 |
+
value: 46.478
|
467 |
+
- type: ndcg_at_3
|
468 |
+
value: 34.684
|
469 |
+
- type: ndcg_at_5
|
470 |
+
value: 36.886
|
471 |
+
- type: precision_at_1
|
472 |
+
value: 27.683999999999997
|
473 |
+
- type: precision_at_10
|
474 |
+
value: 5.989
|
475 |
+
- type: precision_at_100
|
476 |
+
value: 0.899
|
477 |
+
- type: precision_at_1000
|
478 |
+
value: 0.11199999999999999
|
479 |
+
- type: precision_at_3
|
480 |
+
value: 14.84
|
481 |
+
- type: precision_at_5
|
482 |
+
value: 10.215
|
483 |
+
- type: recall_at_1
|
484 |
+
value: 25.378
|
485 |
+
- type: recall_at_10
|
486 |
+
value: 52.195
|
487 |
+
- type: recall_at_100
|
488 |
+
value: 75.764
|
489 |
+
- type: recall_at_1000
|
490 |
+
value: 91.012
|
491 |
+
- type: recall_at_3
|
492 |
+
value: 39.885999999999996
|
493 |
+
- type: recall_at_5
|
494 |
+
value: 45.279
|
495 |
+
- task:
|
496 |
+
type: Retrieval
|
497 |
+
dataset:
|
498 |
+
type: BeIR/cqadupstack
|
499 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
500 |
+
config: default
|
501 |
+
split: test
|
502 |
+
revision: None
|
503 |
+
metrics:
|
504 |
+
- type: map_at_1
|
505 |
+
value: 17.326
|
506 |
+
- type: map_at_10
|
507 |
+
value: 25.247000000000003
|
508 |
+
- type: map_at_100
|
509 |
+
value: 26.473000000000003
|
510 |
+
- type: map_at_1000
|
511 |
+
value: 26.579000000000004
|
512 |
+
- type: map_at_3
|
513 |
+
value: 22.466
|
514 |
+
- type: map_at_5
|
515 |
+
value: 24.113
|
516 |
+
- type: mrr_at_1
|
517 |
+
value: 21.393
|
518 |
+
- type: mrr_at_10
|
519 |
+
value: 30.187
|
520 |
+
- type: mrr_at_100
|
521 |
+
value: 31.089
|
522 |
+
- type: mrr_at_1000
|
523 |
+
value: 31.15
|
524 |
+
- type: mrr_at_3
|
525 |
+
value: 27.279999999999998
|
526 |
+
- type: mrr_at_5
|
527 |
+
value: 29.127
|
528 |
+
- type: ndcg_at_1
|
529 |
+
value: 21.393
|
530 |
+
- type: ndcg_at_10
|
531 |
+
value: 30.668
|
532 |
+
- type: ndcg_at_100
|
533 |
+
value: 36.543
|
534 |
+
- type: ndcg_at_1000
|
535 |
+
value: 39.181
|
536 |
+
- type: ndcg_at_3
|
537 |
+
value: 25.552000000000003
|
538 |
+
- type: ndcg_at_5
|
539 |
+
value: 28.176000000000002
|
540 |
+
- type: precision_at_1
|
541 |
+
value: 21.393
|
542 |
+
- type: precision_at_10
|
543 |
+
value: 5.784000000000001
|
544 |
+
- type: precision_at_100
|
545 |
+
value: 1.001
|
546 |
+
- type: precision_at_1000
|
547 |
+
value: 0.136
|
548 |
+
- type: precision_at_3
|
549 |
+
value: 12.231
|
550 |
+
- type: precision_at_5
|
551 |
+
value: 9.179
|
552 |
+
- type: recall_at_1
|
553 |
+
value: 17.326
|
554 |
+
- type: recall_at_10
|
555 |
+
value: 42.415000000000006
|
556 |
+
- type: recall_at_100
|
557 |
+
value: 68.605
|
558 |
+
- type: recall_at_1000
|
559 |
+
value: 87.694
|
560 |
+
- type: recall_at_3
|
561 |
+
value: 28.343
|
562 |
+
- type: recall_at_5
|
563 |
+
value: 35.086
|
564 |
+
- task:
|
565 |
+
type: Retrieval
|
566 |
+
dataset:
|
567 |
+
type: BeIR/cqadupstack
|
568 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
569 |
+
config: default
|
570 |
+
split: test
|
571 |
+
revision: None
|
572 |
+
metrics:
|
573 |
+
- type: map_at_1
|
574 |
+
value: 29.069
|
575 |
+
- type: map_at_10
|
576 |
+
value: 40.027
|
577 |
+
- type: map_at_100
|
578 |
+
value: 41.308
|
579 |
+
- type: map_at_1000
|
580 |
+
value: 41.412
|
581 |
+
- type: map_at_3
|
582 |
+
value: 36.864000000000004
|
583 |
+
- type: map_at_5
|
584 |
+
value: 38.641999999999996
|
585 |
+
- type: mrr_at_1
|
586 |
+
value: 35.707
|
587 |
+
- type: mrr_at_10
|
588 |
+
value: 45.527
|
589 |
+
- type: mrr_at_100
|
590 |
+
value: 46.348
|
591 |
+
- type: mrr_at_1000
|
592 |
+
value: 46.392
|
593 |
+
- type: mrr_at_3
|
594 |
+
value: 43.086
|
595 |
+
- type: mrr_at_5
|
596 |
+
value: 44.645
|
597 |
+
- type: ndcg_at_1
|
598 |
+
value: 35.707
|
599 |
+
- type: ndcg_at_10
|
600 |
+
value: 46.117000000000004
|
601 |
+
- type: ndcg_at_100
|
602 |
+
value: 51.468
|
603 |
+
- type: ndcg_at_1000
|
604 |
+
value: 53.412000000000006
|
605 |
+
- type: ndcg_at_3
|
606 |
+
value: 41.224
|
607 |
+
- type: ndcg_at_5
|
608 |
+
value: 43.637
|
609 |
+
- type: precision_at_1
|
610 |
+
value: 35.707
|
611 |
+
- type: precision_at_10
|
612 |
+
value: 8.459999999999999
|
613 |
+
- type: precision_at_100
|
614 |
+
value: 1.2970000000000002
|
615 |
+
- type: precision_at_1000
|
616 |
+
value: 0.165
|
617 |
+
- type: precision_at_3
|
618 |
+
value: 19.731
|
619 |
+
- type: precision_at_5
|
620 |
+
value: 14.013
|
621 |
+
- type: recall_at_1
|
622 |
+
value: 29.069
|
623 |
+
- type: recall_at_10
|
624 |
+
value: 58.343999999999994
|
625 |
+
- type: recall_at_100
|
626 |
+
value: 81.296
|
627 |
+
- type: recall_at_1000
|
628 |
+
value: 93.974
|
629 |
+
- type: recall_at_3
|
630 |
+
value: 44.7
|
631 |
+
- type: recall_at_5
|
632 |
+
value: 50.88700000000001
|
633 |
+
- task:
|
634 |
+
type: Retrieval
|
635 |
+
dataset:
|
636 |
+
type: BeIR/cqadupstack
|
637 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
638 |
+
config: default
|
639 |
+
split: test
|
640 |
+
revision: None
|
641 |
+
metrics:
|
642 |
+
- type: map_at_1
|
643 |
+
value: 23.905
|
644 |
+
- type: map_at_10
|
645 |
+
value: 33.983000000000004
|
646 |
+
- type: map_at_100
|
647 |
+
value: 35.372
|
648 |
+
- type: map_at_1000
|
649 |
+
value: 35.487
|
650 |
+
- type: map_at_3
|
651 |
+
value: 30.902
|
652 |
+
- type: map_at_5
|
653 |
+
value: 32.505
|
654 |
+
- type: mrr_at_1
|
655 |
+
value: 29.794999999999998
|
656 |
+
- type: mrr_at_10
|
657 |
+
value: 39.28
|
658 |
+
- type: mrr_at_100
|
659 |
+
value: 40.215
|
660 |
+
- type: mrr_at_1000
|
661 |
+
value: 40.276
|
662 |
+
- type: mrr_at_3
|
663 |
+
value: 36.701
|
664 |
+
- type: mrr_at_5
|
665 |
+
value: 38.105
|
666 |
+
- type: ndcg_at_1
|
667 |
+
value: 29.794999999999998
|
668 |
+
- type: ndcg_at_10
|
669 |
+
value: 40.041
|
670 |
+
- type: ndcg_at_100
|
671 |
+
value: 45.884
|
672 |
+
- type: ndcg_at_1000
|
673 |
+
value: 48.271
|
674 |
+
- type: ndcg_at_3
|
675 |
+
value: 34.931
|
676 |
+
- type: ndcg_at_5
|
677 |
+
value: 37.044
|
678 |
+
- type: precision_at_1
|
679 |
+
value: 29.794999999999998
|
680 |
+
- type: precision_at_10
|
681 |
+
value: 7.546
|
682 |
+
- type: precision_at_100
|
683 |
+
value: 1.216
|
684 |
+
- type: precision_at_1000
|
685 |
+
value: 0.158
|
686 |
+
- type: precision_at_3
|
687 |
+
value: 16.933
|
688 |
+
- type: precision_at_5
|
689 |
+
value: 12.1
|
690 |
+
- type: recall_at_1
|
691 |
+
value: 23.905
|
692 |
+
- type: recall_at_10
|
693 |
+
value: 52.945
|
694 |
+
- type: recall_at_100
|
695 |
+
value: 77.551
|
696 |
+
- type: recall_at_1000
|
697 |
+
value: 93.793
|
698 |
+
- type: recall_at_3
|
699 |
+
value: 38.364
|
700 |
+
- type: recall_at_5
|
701 |
+
value: 44.044
|
702 |
+
- task:
|
703 |
+
type: Retrieval
|
704 |
+
dataset:
|
705 |
+
type: BeIR/cqadupstack
|
706 |
+
name: MTEB CQADupstackRetrieval
|
707 |
+
config: default
|
708 |
+
split: test
|
709 |
+
revision: None
|
710 |
+
metrics:
|
711 |
+
- type: map_at_1
|
712 |
+
value: 25.24441666666667
|
713 |
+
- type: map_at_10
|
714 |
+
value: 34.4595
|
715 |
+
- type: map_at_100
|
716 |
+
value: 35.699999999999996
|
717 |
+
- type: map_at_1000
|
718 |
+
value: 35.8155
|
719 |
+
- type: map_at_3
|
720 |
+
value: 31.608333333333338
|
721 |
+
- type: map_at_5
|
722 |
+
value: 33.189416666666666
|
723 |
+
- type: mrr_at_1
|
724 |
+
value: 29.825250000000004
|
725 |
+
- type: mrr_at_10
|
726 |
+
value: 38.60875
|
727 |
+
- type: mrr_at_100
|
728 |
+
value: 39.46575
|
729 |
+
- type: mrr_at_1000
|
730 |
+
value: 39.52458333333333
|
731 |
+
- type: mrr_at_3
|
732 |
+
value: 36.145166666666675
|
733 |
+
- type: mrr_at_5
|
734 |
+
value: 37.57625
|
735 |
+
- type: ndcg_at_1
|
736 |
+
value: 29.825250000000004
|
737 |
+
- type: ndcg_at_10
|
738 |
+
value: 39.88741666666667
|
739 |
+
- type: ndcg_at_100
|
740 |
+
value: 45.17966666666667
|
741 |
+
- type: ndcg_at_1000
|
742 |
+
value: 47.440583333333336
|
743 |
+
- type: ndcg_at_3
|
744 |
+
value: 35.04591666666666
|
745 |
+
- type: ndcg_at_5
|
746 |
+
value: 37.32025
|
747 |
+
- type: precision_at_1
|
748 |
+
value: 29.825250000000004
|
749 |
+
- type: precision_at_10
|
750 |
+
value: 7.07225
|
751 |
+
- type: precision_at_100
|
752 |
+
value: 1.1462499999999998
|
753 |
+
- type: precision_at_1000
|
754 |
+
value: 0.15325
|
755 |
+
- type: precision_at_3
|
756 |
+
value: 16.18375
|
757 |
+
- type: precision_at_5
|
758 |
+
value: 11.526833333333334
|
759 |
+
- type: recall_at_1
|
760 |
+
value: 25.24441666666667
|
761 |
+
- type: recall_at_10
|
762 |
+
value: 51.744916666666676
|
763 |
+
- type: recall_at_100
|
764 |
+
value: 75.04574999999998
|
765 |
+
- type: recall_at_1000
|
766 |
+
value: 90.65558333333334
|
767 |
+
- type: recall_at_3
|
768 |
+
value: 38.28349999999999
|
769 |
+
- type: recall_at_5
|
770 |
+
value: 44.16591666666667
|
771 |
+
- task:
|
772 |
+
type: Retrieval
|
773 |
+
dataset:
|
774 |
+
type: BeIR/cqadupstack
|
775 |
+
name: MTEB CQADupstackStatsRetrieval
|
776 |
+
config: default
|
777 |
+
split: test
|
778 |
+
revision: None
|
779 |
+
metrics:
|
780 |
+
- type: map_at_1
|
781 |
+
value: 24.237000000000002
|
782 |
+
- type: map_at_10
|
783 |
+
value: 30.667
|
784 |
+
- type: map_at_100
|
785 |
+
value: 31.592
|
786 |
+
- type: map_at_1000
|
787 |
+
value: 31.688
|
788 |
+
- type: map_at_3
|
789 |
+
value: 28.810999999999996
|
790 |
+
- type: map_at_5
|
791 |
+
value: 29.788999999999998
|
792 |
+
- type: mrr_at_1
|
793 |
+
value: 26.840000000000003
|
794 |
+
- type: mrr_at_10
|
795 |
+
value: 33.305
|
796 |
+
- type: mrr_at_100
|
797 |
+
value: 34.089000000000006
|
798 |
+
- type: mrr_at_1000
|
799 |
+
value: 34.159
|
800 |
+
- type: mrr_at_3
|
801 |
+
value: 31.518
|
802 |
+
- type: mrr_at_5
|
803 |
+
value: 32.469
|
804 |
+
- type: ndcg_at_1
|
805 |
+
value: 26.840000000000003
|
806 |
+
- type: ndcg_at_10
|
807 |
+
value: 34.541
|
808 |
+
- type: ndcg_at_100
|
809 |
+
value: 39.206
|
810 |
+
- type: ndcg_at_1000
|
811 |
+
value: 41.592
|
812 |
+
- type: ndcg_at_3
|
813 |
+
value: 31.005
|
814 |
+
- type: ndcg_at_5
|
815 |
+
value: 32.554
|
816 |
+
- type: precision_at_1
|
817 |
+
value: 26.840000000000003
|
818 |
+
- type: precision_at_10
|
819 |
+
value: 5.3069999999999995
|
820 |
+
- type: precision_at_100
|
821 |
+
value: 0.8340000000000001
|
822 |
+
- type: precision_at_1000
|
823 |
+
value: 0.11199999999999999
|
824 |
+
- type: precision_at_3
|
825 |
+
value: 13.292000000000002
|
826 |
+
- type: precision_at_5
|
827 |
+
value: 9.049
|
828 |
+
- type: recall_at_1
|
829 |
+
value: 24.237000000000002
|
830 |
+
- type: recall_at_10
|
831 |
+
value: 43.862
|
832 |
+
- type: recall_at_100
|
833 |
+
value: 65.352
|
834 |
+
- type: recall_at_1000
|
835 |
+
value: 82.704
|
836 |
+
- type: recall_at_3
|
837 |
+
value: 34.009
|
838 |
+
- type: recall_at_5
|
839 |
+
value: 37.878
|
840 |
+
- task:
|
841 |
+
type: Retrieval
|
842 |
+
dataset:
|
843 |
+
type: BeIR/cqadupstack
|
844 |
+
name: MTEB CQADupstackTexRetrieval
|
845 |
+
config: default
|
846 |
+
split: test
|
847 |
+
revision: None
|
848 |
+
metrics:
|
849 |
+
- type: map_at_1
|
850 |
+
value: 16.482
|
851 |
+
- type: map_at_10
|
852 |
+
value: 23.249
|
853 |
+
- type: map_at_100
|
854 |
+
value: 24.388
|
855 |
+
- type: map_at_1000
|
856 |
+
value: 24.519
|
857 |
+
- type: map_at_3
|
858 |
+
value: 20.971
|
859 |
+
- type: map_at_5
|
860 |
+
value: 22.192
|
861 |
+
- type: mrr_at_1
|
862 |
+
value: 19.993
|
863 |
+
- type: mrr_at_10
|
864 |
+
value: 26.985
|
865 |
+
- type: mrr_at_100
|
866 |
+
value: 27.975
|
867 |
+
- type: mrr_at_1000
|
868 |
+
value: 28.052
|
869 |
+
- type: mrr_at_3
|
870 |
+
value: 24.954
|
871 |
+
- type: mrr_at_5
|
872 |
+
value: 26.070999999999998
|
873 |
+
- type: ndcg_at_1
|
874 |
+
value: 19.993
|
875 |
+
- type: ndcg_at_10
|
876 |
+
value: 27.656
|
877 |
+
- type: ndcg_at_100
|
878 |
+
value: 33.256
|
879 |
+
- type: ndcg_at_1000
|
880 |
+
value: 36.275
|
881 |
+
- type: ndcg_at_3
|
882 |
+
value: 23.644000000000002
|
883 |
+
- type: ndcg_at_5
|
884 |
+
value: 25.466
|
885 |
+
- type: precision_at_1
|
886 |
+
value: 19.993
|
887 |
+
- type: precision_at_10
|
888 |
+
value: 5.093
|
889 |
+
- type: precision_at_100
|
890 |
+
value: 0.932
|
891 |
+
- type: precision_at_1000
|
892 |
+
value: 0.13699999999999998
|
893 |
+
- type: precision_at_3
|
894 |
+
value: 11.149000000000001
|
895 |
+
- type: precision_at_5
|
896 |
+
value: 8.149000000000001
|
897 |
+
- type: recall_at_1
|
898 |
+
value: 16.482
|
899 |
+
- type: recall_at_10
|
900 |
+
value: 37.141999999999996
|
901 |
+
- type: recall_at_100
|
902 |
+
value: 62.696
|
903 |
+
- type: recall_at_1000
|
904 |
+
value: 84.333
|
905 |
+
- type: recall_at_3
|
906 |
+
value: 26.031
|
907 |
+
- type: recall_at_5
|
908 |
+
value: 30.660999999999998
|
909 |
+
- task:
|
910 |
+
type: Retrieval
|
911 |
+
dataset:
|
912 |
+
type: BeIR/cqadupstack
|
913 |
+
name: MTEB CQADupstackUnixRetrieval
|
914 |
+
config: default
|
915 |
+
split: test
|
916 |
+
revision: None
|
917 |
+
metrics:
|
918 |
+
- type: map_at_1
|
919 |
+
value: 24.887999999999998
|
920 |
+
- type: map_at_10
|
921 |
+
value: 34.101
|
922 |
+
- type: map_at_100
|
923 |
+
value: 35.27
|
924 |
+
- type: map_at_1000
|
925 |
+
value: 35.370000000000005
|
926 |
+
- type: map_at_3
|
927 |
+
value: 31.283
|
928 |
+
- type: map_at_5
|
929 |
+
value: 32.72
|
930 |
+
- type: mrr_at_1
|
931 |
+
value: 29.011
|
932 |
+
- type: mrr_at_10
|
933 |
+
value: 38.004
|
934 |
+
- type: mrr_at_100
|
935 |
+
value: 38.879000000000005
|
936 |
+
- type: mrr_at_1000
|
937 |
+
value: 38.938
|
938 |
+
- type: mrr_at_3
|
939 |
+
value: 35.571999999999996
|
940 |
+
- type: mrr_at_5
|
941 |
+
value: 36.789
|
942 |
+
- type: ndcg_at_1
|
943 |
+
value: 29.011
|
944 |
+
- type: ndcg_at_10
|
945 |
+
value: 39.586
|
946 |
+
- type: ndcg_at_100
|
947 |
+
value: 44.939
|
948 |
+
- type: ndcg_at_1000
|
949 |
+
value: 47.236
|
950 |
+
- type: ndcg_at_3
|
951 |
+
value: 34.4
|
952 |
+
- type: ndcg_at_5
|
953 |
+
value: 36.519
|
954 |
+
- type: precision_at_1
|
955 |
+
value: 29.011
|
956 |
+
- type: precision_at_10
|
957 |
+
value: 6.763
|
958 |
+
- type: precision_at_100
|
959 |
+
value: 1.059
|
960 |
+
- type: precision_at_1000
|
961 |
+
value: 0.13699999999999998
|
962 |
+
- type: precision_at_3
|
963 |
+
value: 15.609
|
964 |
+
- type: precision_at_5
|
965 |
+
value: 10.896
|
966 |
+
- type: recall_at_1
|
967 |
+
value: 24.887999999999998
|
968 |
+
- type: recall_at_10
|
969 |
+
value: 52.42
|
970 |
+
- type: recall_at_100
|
971 |
+
value: 75.803
|
972 |
+
- type: recall_at_1000
|
973 |
+
value: 91.725
|
974 |
+
- type: recall_at_3
|
975 |
+
value: 38.080999999999996
|
976 |
+
- type: recall_at_5
|
977 |
+
value: 43.47
|
978 |
+
- task:
|
979 |
+
type: Retrieval
|
980 |
+
dataset:
|
981 |
+
type: BeIR/cqadupstack
|
982 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
983 |
+
config: default
|
984 |
+
split: test
|
985 |
+
revision: None
|
986 |
+
metrics:
|
987 |
+
- type: map_at_1
|
988 |
+
value: 23.953
|
989 |
+
- type: map_at_10
|
990 |
+
value: 32.649
|
991 |
+
- type: map_at_100
|
992 |
+
value: 34.181
|
993 |
+
- type: map_at_1000
|
994 |
+
value: 34.398
|
995 |
+
- type: map_at_3
|
996 |
+
value: 29.567
|
997 |
+
- type: map_at_5
|
998 |
+
value: 31.263
|
999 |
+
- type: mrr_at_1
|
1000 |
+
value: 29.051
|
1001 |
+
- type: mrr_at_10
|
1002 |
+
value: 37.419999999999995
|
1003 |
+
- type: mrr_at_100
|
1004 |
+
value: 38.396
|
1005 |
+
- type: mrr_at_1000
|
1006 |
+
value: 38.458
|
1007 |
+
- type: mrr_at_3
|
1008 |
+
value: 34.782999999999994
|
1009 |
+
- type: mrr_at_5
|
1010 |
+
value: 36.254999999999995
|
1011 |
+
- type: ndcg_at_1
|
1012 |
+
value: 29.051
|
1013 |
+
- type: ndcg_at_10
|
1014 |
+
value: 38.595
|
1015 |
+
- type: ndcg_at_100
|
1016 |
+
value: 44.6
|
1017 |
+
- type: ndcg_at_1000
|
1018 |
+
value: 47.158
|
1019 |
+
- type: ndcg_at_3
|
1020 |
+
value: 33.56
|
1021 |
+
- type: ndcg_at_5
|
1022 |
+
value: 35.870000000000005
|
1023 |
+
- type: precision_at_1
|
1024 |
+
value: 29.051
|
1025 |
+
- type: precision_at_10
|
1026 |
+
value: 7.53
|
1027 |
+
- type: precision_at_100
|
1028 |
+
value: 1.538
|
1029 |
+
- type: precision_at_1000
|
1030 |
+
value: 0.24
|
1031 |
+
- type: precision_at_3
|
1032 |
+
value: 15.744
|
1033 |
+
- type: precision_at_5
|
1034 |
+
value: 11.542
|
1035 |
+
- type: recall_at_1
|
1036 |
+
value: 23.953
|
1037 |
+
- type: recall_at_10
|
1038 |
+
value: 50.08200000000001
|
1039 |
+
- type: recall_at_100
|
1040 |
+
value: 77.364
|
1041 |
+
- type: recall_at_1000
|
1042 |
+
value: 93.57799999999999
|
1043 |
+
- type: recall_at_3
|
1044 |
+
value: 35.432
|
1045 |
+
- type: recall_at_5
|
1046 |
+
value: 41.875
|
1047 |
+
- task:
|
1048 |
+
type: Retrieval
|
1049 |
+
dataset:
|
1050 |
+
type: BeIR/cqadupstack
|
1051 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1052 |
+
config: default
|
1053 |
+
split: test
|
1054 |
+
revision: None
|
1055 |
+
metrics:
|
1056 |
+
- type: map_at_1
|
1057 |
+
value: 17.72
|
1058 |
+
- type: map_at_10
|
1059 |
+
value: 25.724000000000004
|
1060 |
+
- type: map_at_100
|
1061 |
+
value: 26.846999999999998
|
1062 |
+
- type: map_at_1000
|
1063 |
+
value: 26.964
|
1064 |
+
- type: map_at_3
|
1065 |
+
value: 22.909
|
1066 |
+
- type: map_at_5
|
1067 |
+
value: 24.596999999999998
|
1068 |
+
- type: mrr_at_1
|
1069 |
+
value: 18.854000000000003
|
1070 |
+
- type: mrr_at_10
|
1071 |
+
value: 27.182000000000002
|
1072 |
+
- type: mrr_at_100
|
1073 |
+
value: 28.182000000000002
|
1074 |
+
- type: mrr_at_1000
|
1075 |
+
value: 28.274
|
1076 |
+
- type: mrr_at_3
|
1077 |
+
value: 24.276
|
1078 |
+
- type: mrr_at_5
|
1079 |
+
value: 26.115
|
1080 |
+
- type: ndcg_at_1
|
1081 |
+
value: 18.854000000000003
|
1082 |
+
- type: ndcg_at_10
|
1083 |
+
value: 30.470000000000002
|
1084 |
+
- type: ndcg_at_100
|
1085 |
+
value: 35.854
|
1086 |
+
- type: ndcg_at_1000
|
1087 |
+
value: 38.701
|
1088 |
+
- type: ndcg_at_3
|
1089 |
+
value: 24.924
|
1090 |
+
- type: ndcg_at_5
|
1091 |
+
value: 27.895999999999997
|
1092 |
+
- type: precision_at_1
|
1093 |
+
value: 18.854000000000003
|
1094 |
+
- type: precision_at_10
|
1095 |
+
value: 5.009
|
1096 |
+
- type: precision_at_100
|
1097 |
+
value: 0.835
|
1098 |
+
- type: precision_at_1000
|
1099 |
+
value: 0.117
|
1100 |
+
- type: precision_at_3
|
1101 |
+
value: 10.721
|
1102 |
+
- type: precision_at_5
|
1103 |
+
value: 8.133
|
1104 |
+
- type: recall_at_1
|
1105 |
+
value: 17.72
|
1106 |
+
- type: recall_at_10
|
1107 |
+
value: 43.617
|
1108 |
+
- type: recall_at_100
|
1109 |
+
value: 67.941
|
1110 |
+
- type: recall_at_1000
|
1111 |
+
value: 88.979
|
1112 |
+
- type: recall_at_3
|
1113 |
+
value: 29.044999999999998
|
1114 |
+
- type: recall_at_5
|
1115 |
+
value: 36.044
|
1116 |
+
- task:
|
1117 |
+
type: Retrieval
|
1118 |
+
dataset:
|
1119 |
+
type: climate-fever
|
1120 |
+
name: MTEB ClimateFEVER
|
1121 |
+
config: default
|
1122 |
+
split: test
|
1123 |
+
revision: None
|
1124 |
+
metrics:
|
1125 |
+
- type: map_at_1
|
1126 |
+
value: 13.427
|
1127 |
+
- type: map_at_10
|
1128 |
+
value: 22.935
|
1129 |
+
- type: map_at_100
|
1130 |
+
value: 24.808
|
1131 |
+
- type: map_at_1000
|
1132 |
+
value: 24.994
|
1133 |
+
- type: map_at_3
|
1134 |
+
value: 19.533
|
1135 |
+
- type: map_at_5
|
1136 |
+
value: 21.261
|
1137 |
+
- type: mrr_at_1
|
1138 |
+
value: 30.945
|
1139 |
+
- type: mrr_at_10
|
1140 |
+
value: 43.242000000000004
|
1141 |
+
- type: mrr_at_100
|
1142 |
+
value: 44.013999999999996
|
1143 |
+
- type: mrr_at_1000
|
1144 |
+
value: 44.048
|
1145 |
+
- type: mrr_at_3
|
1146 |
+
value: 40.109
|
1147 |
+
- type: mrr_at_5
|
1148 |
+
value: 42.059999999999995
|
1149 |
+
- type: ndcg_at_1
|
1150 |
+
value: 30.945
|
1151 |
+
- type: ndcg_at_10
|
1152 |
+
value: 31.828
|
1153 |
+
- type: ndcg_at_100
|
1154 |
+
value: 38.801
|
1155 |
+
- type: ndcg_at_1000
|
1156 |
+
value: 42.126999999999995
|
1157 |
+
- type: ndcg_at_3
|
1158 |
+
value: 26.922
|
1159 |
+
- type: ndcg_at_5
|
1160 |
+
value: 28.483999999999998
|
1161 |
+
- type: precision_at_1
|
1162 |
+
value: 30.945
|
1163 |
+
- type: precision_at_10
|
1164 |
+
value: 9.844
|
1165 |
+
- type: precision_at_100
|
1166 |
+
value: 1.7309999999999999
|
1167 |
+
- type: precision_at_1000
|
1168 |
+
value: 0.23500000000000001
|
1169 |
+
- type: precision_at_3
|
1170 |
+
value: 20.477999999999998
|
1171 |
+
- type: precision_at_5
|
1172 |
+
value: 15.27
|
1173 |
+
- type: recall_at_1
|
1174 |
+
value: 13.427
|
1175 |
+
- type: recall_at_10
|
1176 |
+
value: 37.141000000000005
|
1177 |
+
- type: recall_at_100
|
1178 |
+
value: 61.007
|
1179 |
+
- type: recall_at_1000
|
1180 |
+
value: 79.742
|
1181 |
+
- type: recall_at_3
|
1182 |
+
value: 24.431
|
1183 |
+
- type: recall_at_5
|
1184 |
+
value: 29.725
|
1185 |
+
- task:
|
1186 |
+
type: Retrieval
|
1187 |
+
dataset:
|
1188 |
+
type: dbpedia-entity
|
1189 |
+
name: MTEB DBPedia
|
1190 |
+
config: default
|
1191 |
+
split: test
|
1192 |
+
revision: None
|
1193 |
+
metrics:
|
1194 |
+
- type: map_at_1
|
1195 |
+
value: 9.122
|
1196 |
+
- type: map_at_10
|
1197 |
+
value: 18.799
|
1198 |
+
- type: map_at_100
|
1199 |
+
value: 25.724999999999998
|
1200 |
+
- type: map_at_1000
|
1201 |
+
value: 27.205000000000002
|
1202 |
+
- type: map_at_3
|
1203 |
+
value: 14.194999999999999
|
1204 |
+
- type: map_at_5
|
1205 |
+
value: 16.225
|
1206 |
+
- type: mrr_at_1
|
1207 |
+
value: 68.0
|
1208 |
+
- type: mrr_at_10
|
1209 |
+
value: 76.035
|
1210 |
+
- type: mrr_at_100
|
1211 |
+
value: 76.292
|
1212 |
+
- type: mrr_at_1000
|
1213 |
+
value: 76.297
|
1214 |
+
- type: mrr_at_3
|
1215 |
+
value: 74.458
|
1216 |
+
- type: mrr_at_5
|
1217 |
+
value: 75.558
|
1218 |
+
- type: ndcg_at_1
|
1219 |
+
value: 56.00000000000001
|
1220 |
+
- type: ndcg_at_10
|
1221 |
+
value: 39.761
|
1222 |
+
- type: ndcg_at_100
|
1223 |
+
value: 43.736999999999995
|
1224 |
+
- type: ndcg_at_1000
|
1225 |
+
value: 51.146
|
1226 |
+
- type: ndcg_at_3
|
1227 |
+
value: 45.921
|
1228 |
+
- type: ndcg_at_5
|
1229 |
+
value: 42.756
|
1230 |
+
- type: precision_at_1
|
1231 |
+
value: 68.0
|
1232 |
+
- type: precision_at_10
|
1233 |
+
value: 30.275000000000002
|
1234 |
+
- type: precision_at_100
|
1235 |
+
value: 9.343
|
1236 |
+
- type: precision_at_1000
|
1237 |
+
value: 1.8270000000000002
|
1238 |
+
- type: precision_at_3
|
1239 |
+
value: 49.167
|
1240 |
+
- type: precision_at_5
|
1241 |
+
value: 40.699999999999996
|
1242 |
+
- type: recall_at_1
|
1243 |
+
value: 9.122
|
1244 |
+
- type: recall_at_10
|
1245 |
+
value: 23.669999999999998
|
1246 |
+
- type: recall_at_100
|
1247 |
+
value: 48.719
|
1248 |
+
- type: recall_at_1000
|
1249 |
+
value: 72.033
|
1250 |
+
- type: recall_at_3
|
1251 |
+
value: 15.498999999999999
|
1252 |
+
- type: recall_at_5
|
1253 |
+
value: 18.657
|
1254 |
+
- task:
|
1255 |
+
type: Classification
|
1256 |
+
dataset:
|
1257 |
+
type: mteb/emotion
|
1258 |
+
name: MTEB EmotionClassification
|
1259 |
+
config: default
|
1260 |
+
split: test
|
1261 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1262 |
+
metrics:
|
1263 |
+
- type: accuracy
|
1264 |
+
value: 55.885000000000005
|
1265 |
+
- type: f1
|
1266 |
+
value: 50.70726446938571
|
1267 |
+
- task:
|
1268 |
+
type: Retrieval
|
1269 |
+
dataset:
|
1270 |
+
type: fever
|
1271 |
+
name: MTEB FEVER
|
1272 |
+
config: default
|
1273 |
+
split: test
|
1274 |
+
revision: None
|
1275 |
+
metrics:
|
1276 |
+
- type: map_at_1
|
1277 |
+
value: 75.709
|
1278 |
+
- type: map_at_10
|
1279 |
+
value: 83.345
|
1280 |
+
- type: map_at_100
|
1281 |
+
value: 83.557
|
1282 |
+
- type: map_at_1000
|
1283 |
+
value: 83.572
|
1284 |
+
- type: map_at_3
|
1285 |
+
value: 82.425
|
1286 |
+
- type: map_at_5
|
1287 |
+
value: 83.013
|
1288 |
+
- type: mrr_at_1
|
1289 |
+
value: 81.593
|
1290 |
+
- type: mrr_at_10
|
1291 |
+
value: 88.331
|
1292 |
+
- type: mrr_at_100
|
1293 |
+
value: 88.408
|
1294 |
+
- type: mrr_at_1000
|
1295 |
+
value: 88.41
|
1296 |
+
- type: mrr_at_3
|
1297 |
+
value: 87.714
|
1298 |
+
- type: mrr_at_5
|
1299 |
+
value: 88.122
|
1300 |
+
- type: ndcg_at_1
|
1301 |
+
value: 81.593
|
1302 |
+
- type: ndcg_at_10
|
1303 |
+
value: 86.925
|
1304 |
+
- type: ndcg_at_100
|
1305 |
+
value: 87.67
|
1306 |
+
- type: ndcg_at_1000
|
1307 |
+
value: 87.924
|
1308 |
+
- type: ndcg_at_3
|
1309 |
+
value: 85.5
|
1310 |
+
- type: ndcg_at_5
|
1311 |
+
value: 86.283
|
1312 |
+
- type: precision_at_1
|
1313 |
+
value: 81.593
|
1314 |
+
- type: precision_at_10
|
1315 |
+
value: 10.264
|
1316 |
+
- type: precision_at_100
|
1317 |
+
value: 1.084
|
1318 |
+
- type: precision_at_1000
|
1319 |
+
value: 0.11199999999999999
|
1320 |
+
- type: precision_at_3
|
1321 |
+
value: 32.388
|
1322 |
+
- type: precision_at_5
|
1323 |
+
value: 19.991
|
1324 |
+
- type: recall_at_1
|
1325 |
+
value: 75.709
|
1326 |
+
- type: recall_at_10
|
1327 |
+
value: 93.107
|
1328 |
+
- type: recall_at_100
|
1329 |
+
value: 96.024
|
1330 |
+
- type: recall_at_1000
|
1331 |
+
value: 97.603
|
1332 |
+
- type: recall_at_3
|
1333 |
+
value: 89.08500000000001
|
1334 |
+
- type: recall_at_5
|
1335 |
+
value: 91.15299999999999
|
1336 |
+
- task:
|
1337 |
+
type: Retrieval
|
1338 |
+
dataset:
|
1339 |
+
type: fiqa
|
1340 |
+
name: MTEB FiQA2018
|
1341 |
+
config: default
|
1342 |
+
split: test
|
1343 |
+
revision: None
|
1344 |
+
metrics:
|
1345 |
+
- type: map_at_1
|
1346 |
+
value: 19.121
|
1347 |
+
- type: map_at_10
|
1348 |
+
value: 31.78
|
1349 |
+
- type: map_at_100
|
1350 |
+
value: 33.497
|
1351 |
+
- type: map_at_1000
|
1352 |
+
value: 33.696
|
1353 |
+
- type: map_at_3
|
1354 |
+
value: 27.893
|
1355 |
+
- type: map_at_5
|
1356 |
+
value: 30.087000000000003
|
1357 |
+
- type: mrr_at_1
|
1358 |
+
value: 38.272
|
1359 |
+
- type: mrr_at_10
|
1360 |
+
value: 47.176
|
1361 |
+
- type: mrr_at_100
|
1362 |
+
value: 48.002
|
1363 |
+
- type: mrr_at_1000
|
1364 |
+
value: 48.044
|
1365 |
+
- type: mrr_at_3
|
1366 |
+
value: 45.086999999999996
|
1367 |
+
- type: mrr_at_5
|
1368 |
+
value: 46.337
|
1369 |
+
- type: ndcg_at_1
|
1370 |
+
value: 38.272
|
1371 |
+
- type: ndcg_at_10
|
1372 |
+
value: 39.145
|
1373 |
+
- type: ndcg_at_100
|
1374 |
+
value: 45.696999999999996
|
1375 |
+
- type: ndcg_at_1000
|
1376 |
+
value: 49.0
|
1377 |
+
- type: ndcg_at_3
|
1378 |
+
value: 36.148
|
1379 |
+
- type: ndcg_at_5
|
1380 |
+
value: 37.023
|
1381 |
+
- type: precision_at_1
|
1382 |
+
value: 38.272
|
1383 |
+
- type: precision_at_10
|
1384 |
+
value: 11.065
|
1385 |
+
- type: precision_at_100
|
1386 |
+
value: 1.7840000000000003
|
1387 |
+
- type: precision_at_1000
|
1388 |
+
value: 0.23600000000000002
|
1389 |
+
- type: precision_at_3
|
1390 |
+
value: 24.587999999999997
|
1391 |
+
- type: precision_at_5
|
1392 |
+
value: 18.056
|
1393 |
+
- type: recall_at_1
|
1394 |
+
value: 19.121
|
1395 |
+
- type: recall_at_10
|
1396 |
+
value: 44.857
|
1397 |
+
- type: recall_at_100
|
1398 |
+
value: 69.774
|
1399 |
+
- type: recall_at_1000
|
1400 |
+
value: 89.645
|
1401 |
+
- type: recall_at_3
|
1402 |
+
value: 32.588
|
1403 |
+
- type: recall_at_5
|
1404 |
+
value: 37.939
|
1405 |
+
- task:
|
1406 |
+
type: Retrieval
|
1407 |
+
dataset:
|
1408 |
+
type: hotpotqa
|
1409 |
+
name: MTEB HotpotQA
|
1410 |
+
config: default
|
1411 |
+
split: test
|
1412 |
+
revision: None
|
1413 |
+
metrics:
|
1414 |
+
- type: map_at_1
|
1415 |
+
value: 36.428
|
1416 |
+
- type: map_at_10
|
1417 |
+
value: 56.891999999999996
|
1418 |
+
- type: map_at_100
|
1419 |
+
value: 57.82899999999999
|
1420 |
+
- type: map_at_1000
|
1421 |
+
value: 57.896
|
1422 |
+
- type: map_at_3
|
1423 |
+
value: 53.762
|
1424 |
+
- type: map_at_5
|
1425 |
+
value: 55.718
|
1426 |
+
- type: mrr_at_1
|
1427 |
+
value: 72.856
|
1428 |
+
- type: mrr_at_10
|
1429 |
+
value: 79.245
|
1430 |
+
- type: mrr_at_100
|
1431 |
+
value: 79.515
|
1432 |
+
- type: mrr_at_1000
|
1433 |
+
value: 79.525
|
1434 |
+
- type: mrr_at_3
|
1435 |
+
value: 78.143
|
1436 |
+
- type: mrr_at_5
|
1437 |
+
value: 78.822
|
1438 |
+
- type: ndcg_at_1
|
1439 |
+
value: 72.856
|
1440 |
+
- type: ndcg_at_10
|
1441 |
+
value: 65.204
|
1442 |
+
- type: ndcg_at_100
|
1443 |
+
value: 68.552
|
1444 |
+
- type: ndcg_at_1000
|
1445 |
+
value: 69.902
|
1446 |
+
- type: ndcg_at_3
|
1447 |
+
value: 60.632
|
1448 |
+
- type: ndcg_at_5
|
1449 |
+
value: 63.161
|
1450 |
+
- type: precision_at_1
|
1451 |
+
value: 72.856
|
1452 |
+
- type: precision_at_10
|
1453 |
+
value: 13.65
|
1454 |
+
- type: precision_at_100
|
1455 |
+
value: 1.6260000000000001
|
1456 |
+
- type: precision_at_1000
|
1457 |
+
value: 0.181
|
1458 |
+
- type: precision_at_3
|
1459 |
+
value: 38.753
|
1460 |
+
- type: precision_at_5
|
1461 |
+
value: 25.251
|
1462 |
+
- type: recall_at_1
|
1463 |
+
value: 36.428
|
1464 |
+
- type: recall_at_10
|
1465 |
+
value: 68.25099999999999
|
1466 |
+
- type: recall_at_100
|
1467 |
+
value: 81.317
|
1468 |
+
- type: recall_at_1000
|
1469 |
+
value: 90.27
|
1470 |
+
- type: recall_at_3
|
1471 |
+
value: 58.13
|
1472 |
+
- type: recall_at_5
|
1473 |
+
value: 63.126000000000005
|
1474 |
+
- task:
|
1475 |
+
type: Classification
|
1476 |
+
dataset:
|
1477 |
+
type: mteb/imdb
|
1478 |
+
name: MTEB ImdbClassification
|
1479 |
+
config: default
|
1480 |
+
split: test
|
1481 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1482 |
+
metrics:
|
1483 |
+
- type: accuracy
|
1484 |
+
value: 89.4868
|
1485 |
+
- type: ap
|
1486 |
+
value: 84.88319192880247
|
1487 |
+
- type: f1
|
1488 |
+
value: 89.46144458052846
|
1489 |
+
- task:
|
1490 |
+
type: Retrieval
|
1491 |
+
dataset:
|
1492 |
+
type: msmarco
|
1493 |
+
name: MTEB MSMARCO
|
1494 |
+
config: default
|
1495 |
+
split: dev
|
1496 |
+
revision: None
|
1497 |
+
metrics:
|
1498 |
+
- type: map_at_1
|
1499 |
+
value: 21.282999999999998
|
1500 |
+
- type: map_at_10
|
1501 |
+
value: 33.045
|
1502 |
+
- type: map_at_100
|
1503 |
+
value: 34.238
|
1504 |
+
- type: map_at_1000
|
1505 |
+
value: 34.29
|
1506 |
+
- type: map_at_3
|
1507 |
+
value: 29.305999999999997
|
1508 |
+
- type: map_at_5
|
1509 |
+
value: 31.391000000000002
|
1510 |
+
- type: mrr_at_1
|
1511 |
+
value: 21.92
|
1512 |
+
- type: mrr_at_10
|
1513 |
+
value: 33.649
|
1514 |
+
- type: mrr_at_100
|
1515 |
+
value: 34.791
|
1516 |
+
- type: mrr_at_1000
|
1517 |
+
value: 34.837
|
1518 |
+
- type: mrr_at_3
|
1519 |
+
value: 30.0
|
1520 |
+
- type: mrr_at_5
|
1521 |
+
value: 32.039
|
1522 |
+
- type: ndcg_at_1
|
1523 |
+
value: 21.92
|
1524 |
+
- type: ndcg_at_10
|
1525 |
+
value: 39.729
|
1526 |
+
- type: ndcg_at_100
|
1527 |
+
value: 45.484
|
1528 |
+
- type: ndcg_at_1000
|
1529 |
+
value: 46.817
|
1530 |
+
- type: ndcg_at_3
|
1531 |
+
value: 32.084
|
1532 |
+
- type: ndcg_at_5
|
1533 |
+
value: 35.789
|
1534 |
+
- type: precision_at_1
|
1535 |
+
value: 21.92
|
1536 |
+
- type: precision_at_10
|
1537 |
+
value: 6.297
|
1538 |
+
- type: precision_at_100
|
1539 |
+
value: 0.918
|
1540 |
+
- type: precision_at_1000
|
1541 |
+
value: 0.10300000000000001
|
1542 |
+
- type: precision_at_3
|
1543 |
+
value: 13.639000000000001
|
1544 |
+
- type: precision_at_5
|
1545 |
+
value: 10.054
|
1546 |
+
- type: recall_at_1
|
1547 |
+
value: 21.282999999999998
|
1548 |
+
- type: recall_at_10
|
1549 |
+
value: 60.343999999999994
|
1550 |
+
- type: recall_at_100
|
1551 |
+
value: 86.981
|
1552 |
+
- type: recall_at_1000
|
1553 |
+
value: 97.205
|
1554 |
+
- type: recall_at_3
|
1555 |
+
value: 39.452999999999996
|
1556 |
+
- type: recall_at_5
|
1557 |
+
value: 48.333
|
1558 |
+
- task:
|
1559 |
+
type: Classification
|
1560 |
+
dataset:
|
1561 |
+
type: mteb/mtop_domain
|
1562 |
+
name: MTEB MTOPDomainClassification (en)
|
1563 |
+
config: en
|
1564 |
+
split: test
|
1565 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1566 |
+
metrics:
|
1567 |
+
- type: accuracy
|
1568 |
+
value: 95.47879616963064
|
1569 |
+
- type: f1
|
1570 |
+
value: 95.21800589958251
|
1571 |
+
- task:
|
1572 |
+
type: Classification
|
1573 |
+
dataset:
|
1574 |
+
type: mteb/mtop_intent
|
1575 |
+
name: MTEB MTOPIntentClassification (en)
|
1576 |
+
config: en
|
1577 |
+
split: test
|
1578 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1579 |
+
metrics:
|
1580 |
+
- type: accuracy
|
1581 |
+
value: 79.09256725946192
|
1582 |
+
- type: f1
|
1583 |
+
value: 60.554043889452515
|
1584 |
+
- task:
|
1585 |
+
type: Classification
|
1586 |
+
dataset:
|
1587 |
+
type: mteb/amazon_massive_intent
|
1588 |
+
name: MTEB MassiveIntentClassification (en)
|
1589 |
+
config: en
|
1590 |
+
split: test
|
1591 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1592 |
+
metrics:
|
1593 |
+
- type: accuracy
|
1594 |
+
value: 75.53463349024882
|
1595 |
+
- type: f1
|
1596 |
+
value: 73.14418495756476
|
1597 |
+
- task:
|
1598 |
+
type: Classification
|
1599 |
+
dataset:
|
1600 |
+
type: mteb/amazon_massive_scenario
|
1601 |
+
name: MTEB MassiveScenarioClassification (en)
|
1602 |
+
config: en
|
1603 |
+
split: test
|
1604 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1605 |
+
metrics:
|
1606 |
+
- type: accuracy
|
1607 |
+
value: 79.22663080026899
|
1608 |
+
- type: f1
|
1609 |
+
value: 79.331456217501
|
1610 |
+
- task:
|
1611 |
+
type: Clustering
|
1612 |
+
dataset:
|
1613 |
+
type: mteb/medrxiv-clustering-p2p
|
1614 |
+
name: MTEB MedrxivClusteringP2P
|
1615 |
+
config: default
|
1616 |
+
split: test
|
1617 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1618 |
+
metrics:
|
1619 |
+
- type: v_measure
|
1620 |
+
value: 34.50316010430136
|
1621 |
+
- task:
|
1622 |
+
type: Clustering
|
1623 |
+
dataset:
|
1624 |
+
type: mteb/medrxiv-clustering-s2s
|
1625 |
+
name: MTEB MedrxivClusteringS2S
|
1626 |
+
config: default
|
1627 |
+
split: test
|
1628 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1629 |
+
metrics:
|
1630 |
+
- type: v_measure
|
1631 |
+
value: 32.15612040042282
|
1632 |
+
- task:
|
1633 |
+
type: Reranking
|
1634 |
+
dataset:
|
1635 |
+
type: mteb/mind_small
|
1636 |
+
name: MTEB MindSmallReranking
|
1637 |
+
config: default
|
1638 |
+
split: test
|
1639 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1640 |
+
metrics:
|
1641 |
+
- type: map
|
1642 |
+
value: 32.36227552557184
|
1643 |
+
- type: mrr
|
1644 |
+
value: 33.57901344209811
|
1645 |
+
- task:
|
1646 |
+
type: Retrieval
|
1647 |
+
dataset:
|
1648 |
+
type: nfcorpus
|
1649 |
+
name: MTEB NFCorpus
|
1650 |
+
config: default
|
1651 |
+
split: test
|
1652 |
+
revision: None
|
1653 |
+
metrics:
|
1654 |
+
- type: map_at_1
|
1655 |
+
value: 5.6610000000000005
|
1656 |
+
- type: map_at_10
|
1657 |
+
value: 12.992
|
1658 |
+
- type: map_at_100
|
1659 |
+
value: 16.756999999999998
|
1660 |
+
- type: map_at_1000
|
1661 |
+
value: 18.25
|
1662 |
+
- type: map_at_3
|
1663 |
+
value: 9.471
|
1664 |
+
- type: map_at_5
|
1665 |
+
value: 11.116
|
1666 |
+
- type: mrr_at_1
|
1667 |
+
value: 43.653
|
1668 |
+
- type: mrr_at_10
|
1669 |
+
value: 53.388999999999996
|
1670 |
+
- type: mrr_at_100
|
1671 |
+
value: 53.982
|
1672 |
+
- type: mrr_at_1000
|
1673 |
+
value: 54.033
|
1674 |
+
- type: mrr_at_3
|
1675 |
+
value: 51.858000000000004
|
1676 |
+
- type: mrr_at_5
|
1677 |
+
value: 53.019000000000005
|
1678 |
+
- type: ndcg_at_1
|
1679 |
+
value: 41.641
|
1680 |
+
- type: ndcg_at_10
|
1681 |
+
value: 34.691
|
1682 |
+
- type: ndcg_at_100
|
1683 |
+
value: 32.305
|
1684 |
+
- type: ndcg_at_1000
|
1685 |
+
value: 41.132999999999996
|
1686 |
+
- type: ndcg_at_3
|
1687 |
+
value: 40.614
|
1688 |
+
- type: ndcg_at_5
|
1689 |
+
value: 38.456
|
1690 |
+
- type: precision_at_1
|
1691 |
+
value: 43.344
|
1692 |
+
- type: precision_at_10
|
1693 |
+
value: 25.881999999999998
|
1694 |
+
- type: precision_at_100
|
1695 |
+
value: 8.483
|
1696 |
+
- type: precision_at_1000
|
1697 |
+
value: 2.131
|
1698 |
+
- type: precision_at_3
|
1699 |
+
value: 38.803
|
1700 |
+
- type: precision_at_5
|
1701 |
+
value: 33.87
|
1702 |
+
- type: recall_at_1
|
1703 |
+
value: 5.6610000000000005
|
1704 |
+
- type: recall_at_10
|
1705 |
+
value: 16.826
|
1706 |
+
- type: recall_at_100
|
1707 |
+
value: 32.939
|
1708 |
+
- type: recall_at_1000
|
1709 |
+
value: 65.161
|
1710 |
+
- type: recall_at_3
|
1711 |
+
value: 10.756
|
1712 |
+
- type: recall_at_5
|
1713 |
+
value: 13.331000000000001
|
1714 |
+
- task:
|
1715 |
+
type: Retrieval
|
1716 |
+
dataset:
|
1717 |
+
type: nq
|
1718 |
+
name: MTEB NQ
|
1719 |
+
config: default
|
1720 |
+
split: test
|
1721 |
+
revision: None
|
1722 |
+
metrics:
|
1723 |
+
- type: map_at_1
|
1724 |
+
value: 26.692
|
1725 |
+
- type: map_at_10
|
1726 |
+
value: 41.065000000000005
|
1727 |
+
- type: map_at_100
|
1728 |
+
value: 42.235
|
1729 |
+
- type: map_at_1000
|
1730 |
+
value: 42.27
|
1731 |
+
- type: map_at_3
|
1732 |
+
value: 36.635
|
1733 |
+
- type: map_at_5
|
1734 |
+
value: 39.219
|
1735 |
+
- type: mrr_at_1
|
1736 |
+
value: 30.214000000000002
|
1737 |
+
- type: mrr_at_10
|
1738 |
+
value: 43.443
|
1739 |
+
- type: mrr_at_100
|
1740 |
+
value: 44.326
|
1741 |
+
- type: mrr_at_1000
|
1742 |
+
value: 44.352000000000004
|
1743 |
+
- type: mrr_at_3
|
1744 |
+
value: 39.623999999999995
|
1745 |
+
- type: mrr_at_5
|
1746 |
+
value: 41.898
|
1747 |
+
- type: ndcg_at_1
|
1748 |
+
value: 30.214000000000002
|
1749 |
+
- type: ndcg_at_10
|
1750 |
+
value: 48.692
|
1751 |
+
- type: ndcg_at_100
|
1752 |
+
value: 53.671
|
1753 |
+
- type: ndcg_at_1000
|
1754 |
+
value: 54.522000000000006
|
1755 |
+
- type: ndcg_at_3
|
1756 |
+
value: 40.245
|
1757 |
+
- type: ndcg_at_5
|
1758 |
+
value: 44.580999999999996
|
1759 |
+
- type: precision_at_1
|
1760 |
+
value: 30.214000000000002
|
1761 |
+
- type: precision_at_10
|
1762 |
+
value: 8.3
|
1763 |
+
- type: precision_at_100
|
1764 |
+
value: 1.1079999999999999
|
1765 |
+
- type: precision_at_1000
|
1766 |
+
value: 0.11900000000000001
|
1767 |
+
- type: precision_at_3
|
1768 |
+
value: 18.521
|
1769 |
+
- type: precision_at_5
|
1770 |
+
value: 13.627
|
1771 |
+
- type: recall_at_1
|
1772 |
+
value: 26.692
|
1773 |
+
- type: recall_at_10
|
1774 |
+
value: 69.699
|
1775 |
+
- type: recall_at_100
|
1776 |
+
value: 91.425
|
1777 |
+
- type: recall_at_1000
|
1778 |
+
value: 97.78099999999999
|
1779 |
+
- type: recall_at_3
|
1780 |
+
value: 47.711
|
1781 |
+
- type: recall_at_5
|
1782 |
+
value: 57.643
|
1783 |
+
- task:
|
1784 |
+
type: Retrieval
|
1785 |
+
dataset:
|
1786 |
+
type: quora
|
1787 |
+
name: MTEB QuoraRetrieval
|
1788 |
+
config: default
|
1789 |
+
split: test
|
1790 |
+
revision: None
|
1791 |
+
metrics:
|
1792 |
+
- type: map_at_1
|
1793 |
+
value: 70.962
|
1794 |
+
- type: map_at_10
|
1795 |
+
value: 84.772
|
1796 |
+
- type: map_at_100
|
1797 |
+
value: 85.402
|
1798 |
+
- type: map_at_1000
|
1799 |
+
value: 85.418
|
1800 |
+
- type: map_at_3
|
1801 |
+
value: 81.89
|
1802 |
+
- type: map_at_5
|
1803 |
+
value: 83.685
|
1804 |
+
- type: mrr_at_1
|
1805 |
+
value: 81.67
|
1806 |
+
- type: mrr_at_10
|
1807 |
+
value: 87.681
|
1808 |
+
- type: mrr_at_100
|
1809 |
+
value: 87.792
|
1810 |
+
- type: mrr_at_1000
|
1811 |
+
value: 87.79299999999999
|
1812 |
+
- type: mrr_at_3
|
1813 |
+
value: 86.803
|
1814 |
+
- type: mrr_at_5
|
1815 |
+
value: 87.392
|
1816 |
+
- type: ndcg_at_1
|
1817 |
+
value: 81.69
|
1818 |
+
- type: ndcg_at_10
|
1819 |
+
value: 88.429
|
1820 |
+
- type: ndcg_at_100
|
1821 |
+
value: 89.66
|
1822 |
+
- type: ndcg_at_1000
|
1823 |
+
value: 89.762
|
1824 |
+
- type: ndcg_at_3
|
1825 |
+
value: 85.75
|
1826 |
+
- type: ndcg_at_5
|
1827 |
+
value: 87.20700000000001
|
1828 |
+
- type: precision_at_1
|
1829 |
+
value: 81.69
|
1830 |
+
- type: precision_at_10
|
1831 |
+
value: 13.395000000000001
|
1832 |
+
- type: precision_at_100
|
1833 |
+
value: 1.528
|
1834 |
+
- type: precision_at_1000
|
1835 |
+
value: 0.157
|
1836 |
+
- type: precision_at_3
|
1837 |
+
value: 37.507000000000005
|
1838 |
+
- type: precision_at_5
|
1839 |
+
value: 24.614
|
1840 |
+
- type: recall_at_1
|
1841 |
+
value: 70.962
|
1842 |
+
- type: recall_at_10
|
1843 |
+
value: 95.339
|
1844 |
+
- type: recall_at_100
|
1845 |
+
value: 99.543
|
1846 |
+
- type: recall_at_1000
|
1847 |
+
value: 99.984
|
1848 |
+
- type: recall_at_3
|
1849 |
+
value: 87.54899999999999
|
1850 |
+
- type: recall_at_5
|
1851 |
+
value: 91.726
|
1852 |
+
- task:
|
1853 |
+
type: Clustering
|
1854 |
+
dataset:
|
1855 |
+
type: mteb/reddit-clustering
|
1856 |
+
name: MTEB RedditClustering
|
1857 |
+
config: default
|
1858 |
+
split: test
|
1859 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1860 |
+
metrics:
|
1861 |
+
- type: v_measure
|
1862 |
+
value: 55.506631779239555
|
1863 |
+
- task:
|
1864 |
+
type: Clustering
|
1865 |
+
dataset:
|
1866 |
+
type: mteb/reddit-clustering-p2p
|
1867 |
+
name: MTEB RedditClusteringP2P
|
1868 |
+
config: default
|
1869 |
+
split: test
|
1870 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1871 |
+
metrics:
|
1872 |
+
- type: v_measure
|
1873 |
+
value: 60.63731341848479
|
1874 |
+
- task:
|
1875 |
+
type: Retrieval
|
1876 |
+
dataset:
|
1877 |
+
type: scidocs
|
1878 |
+
name: MTEB SCIDOCS
|
1879 |
+
config: default
|
1880 |
+
split: test
|
1881 |
+
revision: None
|
1882 |
+
metrics:
|
1883 |
+
- type: map_at_1
|
1884 |
+
value: 4.852
|
1885 |
+
- type: map_at_10
|
1886 |
+
value: 13.175
|
1887 |
+
- type: map_at_100
|
1888 |
+
value: 15.623999999999999
|
1889 |
+
- type: map_at_1000
|
1890 |
+
value: 16.002
|
1891 |
+
- type: map_at_3
|
1892 |
+
value: 9.103
|
1893 |
+
- type: map_at_5
|
1894 |
+
value: 11.068999999999999
|
1895 |
+
- type: mrr_at_1
|
1896 |
+
value: 23.9
|
1897 |
+
- type: mrr_at_10
|
1898 |
+
value: 35.847
|
1899 |
+
- type: mrr_at_100
|
1900 |
+
value: 36.968
|
1901 |
+
- type: mrr_at_1000
|
1902 |
+
value: 37.018
|
1903 |
+
- type: mrr_at_3
|
1904 |
+
value: 32.300000000000004
|
1905 |
+
- type: mrr_at_5
|
1906 |
+
value: 34.14
|
1907 |
+
- type: ndcg_at_1
|
1908 |
+
value: 23.9
|
1909 |
+
- type: ndcg_at_10
|
1910 |
+
value: 21.889
|
1911 |
+
- type: ndcg_at_100
|
1912 |
+
value: 30.903000000000002
|
1913 |
+
- type: ndcg_at_1000
|
1914 |
+
value: 36.992000000000004
|
1915 |
+
- type: ndcg_at_3
|
1916 |
+
value: 20.274
|
1917 |
+
- type: ndcg_at_5
|
1918 |
+
value: 17.773
|
1919 |
+
- type: precision_at_1
|
1920 |
+
value: 23.9
|
1921 |
+
- type: precision_at_10
|
1922 |
+
value: 11.61
|
1923 |
+
- type: precision_at_100
|
1924 |
+
value: 2.4539999999999997
|
1925 |
+
- type: precision_at_1000
|
1926 |
+
value: 0.391
|
1927 |
+
- type: precision_at_3
|
1928 |
+
value: 19.133
|
1929 |
+
- type: precision_at_5
|
1930 |
+
value: 15.740000000000002
|
1931 |
+
- type: recall_at_1
|
1932 |
+
value: 4.852
|
1933 |
+
- type: recall_at_10
|
1934 |
+
value: 23.507
|
1935 |
+
- type: recall_at_100
|
1936 |
+
value: 49.775000000000006
|
1937 |
+
- type: recall_at_1000
|
1938 |
+
value: 79.308
|
1939 |
+
- type: recall_at_3
|
1940 |
+
value: 11.637
|
1941 |
+
- type: recall_at_5
|
1942 |
+
value: 15.947
|
1943 |
+
- task:
|
1944 |
+
type: STS
|
1945 |
+
dataset:
|
1946 |
+
type: mteb/sickr-sts
|
1947 |
+
name: MTEB SICK-R
|
1948 |
+
config: default
|
1949 |
+
split: test
|
1950 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1951 |
+
metrics:
|
1952 |
+
- type: cos_sim_pearson
|
1953 |
+
value: 86.03345827446948
|
1954 |
+
- type: cos_sim_spearman
|
1955 |
+
value: 80.53174518259549
|
1956 |
+
- type: euclidean_pearson
|
1957 |
+
value: 83.44538971660883
|
1958 |
+
- type: euclidean_spearman
|
1959 |
+
value: 80.57344324098692
|
1960 |
+
- type: manhattan_pearson
|
1961 |
+
value: 83.36528808195459
|
1962 |
+
- type: manhattan_spearman
|
1963 |
+
value: 80.48931287157902
|
1964 |
+
- task:
|
1965 |
+
type: STS
|
1966 |
+
dataset:
|
1967 |
+
type: mteb/sts12-sts
|
1968 |
+
name: MTEB STS12
|
1969 |
+
config: default
|
1970 |
+
split: test
|
1971 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1972 |
+
metrics:
|
1973 |
+
- type: cos_sim_pearson
|
1974 |
+
value: 85.21363088257881
|
1975 |
+
- type: cos_sim_spearman
|
1976 |
+
value: 75.56589127055523
|
1977 |
+
- type: euclidean_pearson
|
1978 |
+
value: 82.32868324521908
|
1979 |
+
- type: euclidean_spearman
|
1980 |
+
value: 75.31928550664554
|
1981 |
+
- type: manhattan_pearson
|
1982 |
+
value: 82.31332875713211
|
1983 |
+
- type: manhattan_spearman
|
1984 |
+
value: 75.35376322099196
|
1985 |
+
- task:
|
1986 |
+
type: STS
|
1987 |
+
dataset:
|
1988 |
+
type: mteb/sts13-sts
|
1989 |
+
name: MTEB STS13
|
1990 |
+
config: default
|
1991 |
+
split: test
|
1992 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1993 |
+
metrics:
|
1994 |
+
- type: cos_sim_pearson
|
1995 |
+
value: 85.09085593258487
|
1996 |
+
- type: cos_sim_spearman
|
1997 |
+
value: 86.26355088415221
|
1998 |
+
- type: euclidean_pearson
|
1999 |
+
value: 85.49646115361156
|
2000 |
+
- type: euclidean_spearman
|
2001 |
+
value: 86.20652472228703
|
2002 |
+
- type: manhattan_pearson
|
2003 |
+
value: 85.44084081123815
|
2004 |
+
- type: manhattan_spearman
|
2005 |
+
value: 86.1162623448951
|
2006 |
+
- task:
|
2007 |
+
type: STS
|
2008 |
+
dataset:
|
2009 |
+
type: mteb/sts14-sts
|
2010 |
+
name: MTEB STS14
|
2011 |
+
config: default
|
2012 |
+
split: test
|
2013 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2014 |
+
metrics:
|
2015 |
+
- type: cos_sim_pearson
|
2016 |
+
value: 84.68250248349368
|
2017 |
+
- type: cos_sim_spearman
|
2018 |
+
value: 82.29883673695083
|
2019 |
+
- type: euclidean_pearson
|
2020 |
+
value: 84.17633035446019
|
2021 |
+
- type: euclidean_spearman
|
2022 |
+
value: 82.19990511264791
|
2023 |
+
- type: manhattan_pearson
|
2024 |
+
value: 84.17408410692279
|
2025 |
+
- type: manhattan_spearman
|
2026 |
+
value: 82.249873895981
|
2027 |
+
- task:
|
2028 |
+
type: STS
|
2029 |
+
dataset:
|
2030 |
+
type: mteb/sts15-sts
|
2031 |
+
name: MTEB STS15
|
2032 |
+
config: default
|
2033 |
+
split: test
|
2034 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2035 |
+
metrics:
|
2036 |
+
- type: cos_sim_pearson
|
2037 |
+
value: 87.31878760045024
|
2038 |
+
- type: cos_sim_spearman
|
2039 |
+
value: 88.7364409031183
|
2040 |
+
- type: euclidean_pearson
|
2041 |
+
value: 88.230537618603
|
2042 |
+
- type: euclidean_spearman
|
2043 |
+
value: 88.76484309646318
|
2044 |
+
- type: manhattan_pearson
|
2045 |
+
value: 88.17689071136469
|
2046 |
+
- type: manhattan_spearman
|
2047 |
+
value: 88.72809249037928
|
2048 |
+
- task:
|
2049 |
+
type: STS
|
2050 |
+
dataset:
|
2051 |
+
type: mteb/sts16-sts
|
2052 |
+
name: MTEB STS16
|
2053 |
+
config: default
|
2054 |
+
split: test
|
2055 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2056 |
+
metrics:
|
2057 |
+
- type: cos_sim_pearson
|
2058 |
+
value: 83.41078559110638
|
2059 |
+
- type: cos_sim_spearman
|
2060 |
+
value: 85.27439135411049
|
2061 |
+
- type: euclidean_pearson
|
2062 |
+
value: 84.5333571592088
|
2063 |
+
- type: euclidean_spearman
|
2064 |
+
value: 85.25645460575957
|
2065 |
+
- type: manhattan_pearson
|
2066 |
+
value: 84.38428921610226
|
2067 |
+
- type: manhattan_spearman
|
2068 |
+
value: 85.07796040798796
|
2069 |
+
- task:
|
2070 |
+
type: STS
|
2071 |
+
dataset:
|
2072 |
+
type: mteb/sts17-crosslingual-sts
|
2073 |
+
name: MTEB STS17 (en-en)
|
2074 |
+
config: en-en
|
2075 |
+
split: test
|
2076 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2077 |
+
metrics:
|
2078 |
+
- type: cos_sim_pearson
|
2079 |
+
value: 88.82374132382576
|
2080 |
+
- type: cos_sim_spearman
|
2081 |
+
value: 89.02101343562433
|
2082 |
+
- type: euclidean_pearson
|
2083 |
+
value: 89.50729765458932
|
2084 |
+
- type: euclidean_spearman
|
2085 |
+
value: 89.04184772869253
|
2086 |
+
- type: manhattan_pearson
|
2087 |
+
value: 89.51737904059856
|
2088 |
+
- type: manhattan_spearman
|
2089 |
+
value: 89.12925950440676
|
2090 |
+
- task:
|
2091 |
+
type: STS
|
2092 |
+
dataset:
|
2093 |
+
type: mteb/sts22-crosslingual-sts
|
2094 |
+
name: MTEB STS22 (en)
|
2095 |
+
config: en
|
2096 |
+
split: test
|
2097 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2098 |
+
metrics:
|
2099 |
+
- type: cos_sim_pearson
|
2100 |
+
value: 67.56051823873482
|
2101 |
+
- type: cos_sim_spearman
|
2102 |
+
value: 68.50988748185463
|
2103 |
+
- type: euclidean_pearson
|
2104 |
+
value: 69.16524346147456
|
2105 |
+
- type: euclidean_spearman
|
2106 |
+
value: 68.61859952449579
|
2107 |
+
- type: manhattan_pearson
|
2108 |
+
value: 69.10618915706995
|
2109 |
+
- type: manhattan_spearman
|
2110 |
+
value: 68.36401769459522
|
2111 |
+
- task:
|
2112 |
+
type: STS
|
2113 |
+
dataset:
|
2114 |
+
type: mteb/stsbenchmark-sts
|
2115 |
+
name: MTEB STSBenchmark
|
2116 |
+
config: default
|
2117 |
+
split: test
|
2118 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2119 |
+
metrics:
|
2120 |
+
- type: cos_sim_pearson
|
2121 |
+
value: 85.4159693872625
|
2122 |
+
- type: cos_sim_spearman
|
2123 |
+
value: 87.07819121764247
|
2124 |
+
- type: euclidean_pearson
|
2125 |
+
value: 87.03013260863153
|
2126 |
+
- type: euclidean_spearman
|
2127 |
+
value: 87.06547293631309
|
2128 |
+
- type: manhattan_pearson
|
2129 |
+
value: 86.8129744446062
|
2130 |
+
- type: manhattan_spearman
|
2131 |
+
value: 86.88494096335627
|
2132 |
+
- task:
|
2133 |
+
type: Reranking
|
2134 |
+
dataset:
|
2135 |
+
type: mteb/scidocs-reranking
|
2136 |
+
name: MTEB SciDocsRR
|
2137 |
+
config: default
|
2138 |
+
split: test
|
2139 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2140 |
+
metrics:
|
2141 |
+
- type: map
|
2142 |
+
value: 86.47758088996575
|
2143 |
+
- type: mrr
|
2144 |
+
value: 96.17891458577733
|
2145 |
+
- task:
|
2146 |
+
type: Retrieval
|
2147 |
+
dataset:
|
2148 |
+
type: scifact
|
2149 |
+
name: MTEB SciFact
|
2150 |
+
config: default
|
2151 |
+
split: test
|
2152 |
+
revision: None
|
2153 |
+
metrics:
|
2154 |
+
- type: map_at_1
|
2155 |
+
value: 57.538999999999994
|
2156 |
+
- type: map_at_10
|
2157 |
+
value: 66.562
|
2158 |
+
- type: map_at_100
|
2159 |
+
value: 67.254
|
2160 |
+
- type: map_at_1000
|
2161 |
+
value: 67.284
|
2162 |
+
- type: map_at_3
|
2163 |
+
value: 63.722
|
2164 |
+
- type: map_at_5
|
2165 |
+
value: 65.422
|
2166 |
+
- type: mrr_at_1
|
2167 |
+
value: 60.0
|
2168 |
+
- type: mrr_at_10
|
2169 |
+
value: 67.354
|
2170 |
+
- type: mrr_at_100
|
2171 |
+
value: 67.908
|
2172 |
+
- type: mrr_at_1000
|
2173 |
+
value: 67.93299999999999
|
2174 |
+
- type: mrr_at_3
|
2175 |
+
value: 65.056
|
2176 |
+
- type: mrr_at_5
|
2177 |
+
value: 66.43900000000001
|
2178 |
+
- type: ndcg_at_1
|
2179 |
+
value: 60.0
|
2180 |
+
- type: ndcg_at_10
|
2181 |
+
value: 70.858
|
2182 |
+
- type: ndcg_at_100
|
2183 |
+
value: 73.67099999999999
|
2184 |
+
- type: ndcg_at_1000
|
2185 |
+
value: 74.26700000000001
|
2186 |
+
- type: ndcg_at_3
|
2187 |
+
value: 65.911
|
2188 |
+
- type: ndcg_at_5
|
2189 |
+
value: 68.42200000000001
|
2190 |
+
- type: precision_at_1
|
2191 |
+
value: 60.0
|
2192 |
+
- type: precision_at_10
|
2193 |
+
value: 9.4
|
2194 |
+
- type: precision_at_100
|
2195 |
+
value: 1.083
|
2196 |
+
- type: precision_at_1000
|
2197 |
+
value: 0.11299999999999999
|
2198 |
+
- type: precision_at_3
|
2199 |
+
value: 25.444
|
2200 |
+
- type: precision_at_5
|
2201 |
+
value: 17.0
|
2202 |
+
- type: recall_at_1
|
2203 |
+
value: 57.538999999999994
|
2204 |
+
- type: recall_at_10
|
2205 |
+
value: 83.233
|
2206 |
+
- type: recall_at_100
|
2207 |
+
value: 95.667
|
2208 |
+
- type: recall_at_1000
|
2209 |
+
value: 100.0
|
2210 |
+
- type: recall_at_3
|
2211 |
+
value: 69.883
|
2212 |
+
- type: recall_at_5
|
2213 |
+
value: 76.19399999999999
|
2214 |
+
- task:
|
2215 |
+
type: PairClassification
|
2216 |
+
dataset:
|
2217 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2218 |
+
name: MTEB SprintDuplicateQuestions
|
2219 |
+
config: default
|
2220 |
+
split: test
|
2221 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2222 |
+
metrics:
|
2223 |
+
- type: cos_sim_accuracy
|
2224 |
+
value: 99.82574257425742
|
2225 |
+
- type: cos_sim_ap
|
2226 |
+
value: 95.78722833053911
|
2227 |
+
- type: cos_sim_f1
|
2228 |
+
value: 90.94650205761316
|
2229 |
+
- type: cos_sim_precision
|
2230 |
+
value: 93.64406779661016
|
2231 |
+
- type: cos_sim_recall
|
2232 |
+
value: 88.4
|
2233 |
+
- type: dot_accuracy
|
2234 |
+
value: 99.83366336633664
|
2235 |
+
- type: dot_ap
|
2236 |
+
value: 95.89733601612964
|
2237 |
+
- type: dot_f1
|
2238 |
+
value: 91.41981613891727
|
2239 |
+
- type: dot_precision
|
2240 |
+
value: 93.42379958246346
|
2241 |
+
- type: dot_recall
|
2242 |
+
value: 89.5
|
2243 |
+
- type: euclidean_accuracy
|
2244 |
+
value: 99.82574257425742
|
2245 |
+
- type: euclidean_ap
|
2246 |
+
value: 95.75227035138846
|
2247 |
+
- type: euclidean_f1
|
2248 |
+
value: 90.96509240246407
|
2249 |
+
- type: euclidean_precision
|
2250 |
+
value: 93.45991561181435
|
2251 |
+
- type: euclidean_recall
|
2252 |
+
value: 88.6
|
2253 |
+
- type: manhattan_accuracy
|
2254 |
+
value: 99.82574257425742
|
2255 |
+
- type: manhattan_ap
|
2256 |
+
value: 95.76278266220176
|
2257 |
+
- type: manhattan_f1
|
2258 |
+
value: 91.08409321175279
|
2259 |
+
- type: manhattan_precision
|
2260 |
+
value: 92.29979466119097
|
2261 |
+
- type: manhattan_recall
|
2262 |
+
value: 89.9
|
2263 |
+
- type: max_accuracy
|
2264 |
+
value: 99.83366336633664
|
2265 |
+
- type: max_ap
|
2266 |
+
value: 95.89733601612964
|
2267 |
+
- type: max_f1
|
2268 |
+
value: 91.41981613891727
|
2269 |
+
- task:
|
2270 |
+
type: Clustering
|
2271 |
+
dataset:
|
2272 |
+
type: mteb/stackexchange-clustering
|
2273 |
+
name: MTEB StackExchangeClustering
|
2274 |
+
config: default
|
2275 |
+
split: test
|
2276 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2277 |
+
metrics:
|
2278 |
+
- type: v_measure
|
2279 |
+
value: 61.905425988638605
|
2280 |
+
- task:
|
2281 |
+
type: Clustering
|
2282 |
+
dataset:
|
2283 |
+
type: mteb/stackexchange-clustering-p2p
|
2284 |
+
name: MTEB StackExchangeClusteringP2P
|
2285 |
+
config: default
|
2286 |
+
split: test
|
2287 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2288 |
+
metrics:
|
2289 |
+
- type: v_measure
|
2290 |
+
value: 36.159589881679736
|
2291 |
+
- task:
|
2292 |
+
type: Reranking
|
2293 |
+
dataset:
|
2294 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2295 |
+
name: MTEB StackOverflowDupQuestions
|
2296 |
+
config: default
|
2297 |
+
split: test
|
2298 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2299 |
+
metrics:
|
2300 |
+
- type: map
|
2301 |
+
value: 53.0605499476397
|
2302 |
+
- type: mrr
|
2303 |
+
value: 53.91594516594517
|
2304 |
+
- task:
|
2305 |
+
type: Summarization
|
2306 |
+
dataset:
|
2307 |
+
type: mteb/summeval
|
2308 |
+
name: MTEB SummEval
|
2309 |
+
config: default
|
2310 |
+
split: test
|
2311 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2312 |
+
metrics:
|
2313 |
+
- type: cos_sim_pearson
|
2314 |
+
value: 30.202718009067
|
2315 |
+
- type: cos_sim_spearman
|
2316 |
+
value: 31.136199912366987
|
2317 |
+
- type: dot_pearson
|
2318 |
+
value: 30.66329011927951
|
2319 |
+
- type: dot_spearman
|
2320 |
+
value: 30.107664909625107
|
2321 |
+
- task:
|
2322 |
+
type: Retrieval
|
2323 |
+
dataset:
|
2324 |
+
type: trec-covid
|
2325 |
+
name: MTEB TRECCOVID
|
2326 |
+
config: default
|
2327 |
+
split: test
|
2328 |
+
revision: None
|
2329 |
+
metrics:
|
2330 |
+
- type: map_at_1
|
2331 |
+
value: 0.209
|
2332 |
+
- type: map_at_10
|
2333 |
+
value: 1.712
|
2334 |
+
- type: map_at_100
|
2335 |
+
value: 9.464
|
2336 |
+
- type: map_at_1000
|
2337 |
+
value: 23.437
|
2338 |
+
- type: map_at_3
|
2339 |
+
value: 0.609
|
2340 |
+
- type: map_at_5
|
2341 |
+
value: 0.9440000000000001
|
2342 |
+
- type: mrr_at_1
|
2343 |
+
value: 78.0
|
2344 |
+
- type: mrr_at_10
|
2345 |
+
value: 86.833
|
2346 |
+
- type: mrr_at_100
|
2347 |
+
value: 86.833
|
2348 |
+
- type: mrr_at_1000
|
2349 |
+
value: 86.833
|
2350 |
+
- type: mrr_at_3
|
2351 |
+
value: 85.333
|
2352 |
+
- type: mrr_at_5
|
2353 |
+
value: 86.833
|
2354 |
+
- type: ndcg_at_1
|
2355 |
+
value: 74.0
|
2356 |
+
- type: ndcg_at_10
|
2357 |
+
value: 69.14
|
2358 |
+
- type: ndcg_at_100
|
2359 |
+
value: 53.047999999999995
|
2360 |
+
- type: ndcg_at_1000
|
2361 |
+
value: 48.577
|
2362 |
+
- type: ndcg_at_3
|
2363 |
+
value: 75.592
|
2364 |
+
- type: ndcg_at_5
|
2365 |
+
value: 72.509
|
2366 |
+
- type: precision_at_1
|
2367 |
+
value: 78.0
|
2368 |
+
- type: precision_at_10
|
2369 |
+
value: 73.0
|
2370 |
+
- type: precision_at_100
|
2371 |
+
value: 54.44
|
2372 |
+
- type: precision_at_1000
|
2373 |
+
value: 21.326
|
2374 |
+
- type: precision_at_3
|
2375 |
+
value: 80.667
|
2376 |
+
- type: precision_at_5
|
2377 |
+
value: 77.2
|
2378 |
+
- type: recall_at_1
|
2379 |
+
value: 0.209
|
2380 |
+
- type: recall_at_10
|
2381 |
+
value: 1.932
|
2382 |
+
- type: recall_at_100
|
2383 |
+
value: 13.211999999999998
|
2384 |
+
- type: recall_at_1000
|
2385 |
+
value: 45.774
|
2386 |
+
- type: recall_at_3
|
2387 |
+
value: 0.644
|
2388 |
+
- type: recall_at_5
|
2389 |
+
value: 1.0290000000000001
|
2390 |
+
- task:
|
2391 |
+
type: Retrieval
|
2392 |
+
dataset:
|
2393 |
+
type: webis-touche2020
|
2394 |
+
name: MTEB Touche2020
|
2395 |
+
config: default
|
2396 |
+
split: test
|
2397 |
+
revision: None
|
2398 |
+
metrics:
|
2399 |
+
- type: map_at_1
|
2400 |
+
value: 2.609
|
2401 |
+
- type: map_at_10
|
2402 |
+
value: 8.334999999999999
|
2403 |
+
- type: map_at_100
|
2404 |
+
value: 14.604000000000001
|
2405 |
+
- type: map_at_1000
|
2406 |
+
value: 16.177
|
2407 |
+
- type: map_at_3
|
2408 |
+
value: 4.87
|
2409 |
+
- type: map_at_5
|
2410 |
+
value: 6.3149999999999995
|
2411 |
+
- type: mrr_at_1
|
2412 |
+
value: 32.653
|
2413 |
+
- type: mrr_at_10
|
2414 |
+
value: 45.047
|
2415 |
+
- type: mrr_at_100
|
2416 |
+
value: 45.808
|
2417 |
+
- type: mrr_at_1000
|
2418 |
+
value: 45.808
|
2419 |
+
- type: mrr_at_3
|
2420 |
+
value: 41.497
|
2421 |
+
- type: mrr_at_5
|
2422 |
+
value: 43.231
|
2423 |
+
- type: ndcg_at_1
|
2424 |
+
value: 30.612000000000002
|
2425 |
+
- type: ndcg_at_10
|
2426 |
+
value: 21.193
|
2427 |
+
- type: ndcg_at_100
|
2428 |
+
value: 34.97
|
2429 |
+
- type: ndcg_at_1000
|
2430 |
+
value: 46.69
|
2431 |
+
- type: ndcg_at_3
|
2432 |
+
value: 24.823
|
2433 |
+
- type: ndcg_at_5
|
2434 |
+
value: 22.872999999999998
|
2435 |
+
- type: precision_at_1
|
2436 |
+
value: 32.653
|
2437 |
+
- type: precision_at_10
|
2438 |
+
value: 17.959
|
2439 |
+
- type: precision_at_100
|
2440 |
+
value: 7.4079999999999995
|
2441 |
+
- type: precision_at_1000
|
2442 |
+
value: 1.537
|
2443 |
+
- type: precision_at_3
|
2444 |
+
value: 25.85
|
2445 |
+
- type: precision_at_5
|
2446 |
+
value: 22.448999999999998
|
2447 |
+
- type: recall_at_1
|
2448 |
+
value: 2.609
|
2449 |
+
- type: recall_at_10
|
2450 |
+
value: 13.63
|
2451 |
+
- type: recall_at_100
|
2452 |
+
value: 47.014
|
2453 |
+
- type: recall_at_1000
|
2454 |
+
value: 83.176
|
2455 |
+
- type: recall_at_3
|
2456 |
+
value: 5.925
|
2457 |
+
- type: recall_at_5
|
2458 |
+
value: 8.574
|
2459 |
+
- task:
|
2460 |
+
type: Classification
|
2461 |
+
dataset:
|
2462 |
+
type: mteb/toxic_conversations_50k
|
2463 |
+
name: MTEB ToxicConversationsClassification
|
2464 |
+
config: default
|
2465 |
+
split: test
|
2466 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2467 |
+
metrics:
|
2468 |
+
- type: accuracy
|
2469 |
+
value: 72.80239999999999
|
2470 |
+
- type: ap
|
2471 |
+
value: 15.497911013214791
|
2472 |
+
- type: f1
|
2473 |
+
value: 56.258411577947285
|
2474 |
+
- task:
|
2475 |
+
type: Classification
|
2476 |
+
dataset:
|
2477 |
+
type: mteb/tweet_sentiment_extraction
|
2478 |
+
name: MTEB TweetSentimentExtractionClassification
|
2479 |
+
config: default
|
2480 |
+
split: test
|
2481 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2482 |
+
metrics:
|
2483 |
+
- type: accuracy
|
2484 |
+
value: 61.00452744765139
|
2485 |
+
- type: f1
|
2486 |
+
value: 61.42228624410908
|
2487 |
+
- task:
|
2488 |
+
type: Clustering
|
2489 |
+
dataset:
|
2490 |
+
type: mteb/twentynewsgroups-clustering
|
2491 |
+
name: MTEB TwentyNewsgroupsClustering
|
2492 |
+
config: default
|
2493 |
+
split: test
|
2494 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2495 |
+
metrics:
|
2496 |
+
- type: v_measure
|
2497 |
+
value: 50.00516915962345
|
2498 |
+
- task:
|
2499 |
+
type: PairClassification
|
2500 |
+
dataset:
|
2501 |
+
type: mteb/twittersemeval2015-pairclassification
|
2502 |
+
name: MTEB TwitterSemEval2015
|
2503 |
+
config: default
|
2504 |
+
split: test
|
2505 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2506 |
+
metrics:
|
2507 |
+
- type: cos_sim_accuracy
|
2508 |
+
value: 85.62317458425225
|
2509 |
+
- type: cos_sim_ap
|
2510 |
+
value: 72.95115658063823
|
2511 |
+
- type: cos_sim_f1
|
2512 |
+
value: 66.78976523344764
|
2513 |
+
- type: cos_sim_precision
|
2514 |
+
value: 66.77215189873418
|
2515 |
+
- type: cos_sim_recall
|
2516 |
+
value: 66.80738786279683
|
2517 |
+
- type: dot_accuracy
|
2518 |
+
value: 85.62317458425225
|
2519 |
+
- type: dot_ap
|
2520 |
+
value: 73.10385271517778
|
2521 |
+
- type: dot_f1
|
2522 |
+
value: 66.94853829427399
|
2523 |
+
- type: dot_precision
|
2524 |
+
value: 61.74242424242424
|
2525 |
+
- type: dot_recall
|
2526 |
+
value: 73.11345646437995
|
2527 |
+
- type: euclidean_accuracy
|
2528 |
+
value: 85.65893783155511
|
2529 |
+
- type: euclidean_ap
|
2530 |
+
value: 72.87428208473992
|
2531 |
+
- type: euclidean_f1
|
2532 |
+
value: 66.70919994896005
|
2533 |
+
- type: euclidean_precision
|
2534 |
+
value: 64.5910551025451
|
2535 |
+
- type: euclidean_recall
|
2536 |
+
value: 68.97097625329816
|
2537 |
+
- type: manhattan_accuracy
|
2538 |
+
value: 85.59933241938367
|
2539 |
+
- type: manhattan_ap
|
2540 |
+
value: 72.67282695064966
|
2541 |
+
- type: manhattan_f1
|
2542 |
+
value: 66.67537215983286
|
2543 |
+
- type: manhattan_precision
|
2544 |
+
value: 66.00310237849017
|
2545 |
+
- type: manhattan_recall
|
2546 |
+
value: 67.36147757255937
|
2547 |
+
- type: max_accuracy
|
2548 |
+
value: 85.65893783155511
|
2549 |
+
- type: max_ap
|
2550 |
+
value: 73.10385271517778
|
2551 |
+
- type: max_f1
|
2552 |
+
value: 66.94853829427399
|
2553 |
+
- task:
|
2554 |
+
type: PairClassification
|
2555 |
+
dataset:
|
2556 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2557 |
+
name: MTEB TwitterURLCorpus
|
2558 |
+
config: default
|
2559 |
+
split: test
|
2560 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2561 |
+
metrics:
|
2562 |
+
- type: cos_sim_accuracy
|
2563 |
+
value: 88.69096130709822
|
2564 |
+
- type: cos_sim_ap
|
2565 |
+
value: 85.30326978668063
|
2566 |
+
- type: cos_sim_f1
|
2567 |
+
value: 77.747088683189
|
2568 |
+
- type: cos_sim_precision
|
2569 |
+
value: 75.4491451753115
|
2570 |
+
- type: cos_sim_recall
|
2571 |
+
value: 80.189405605174
|
2572 |
+
- type: dot_accuracy
|
2573 |
+
value: 88.43870066363954
|
2574 |
+
- type: dot_ap
|
2575 |
+
value: 84.62999949222983
|
2576 |
+
- type: dot_f1
|
2577 |
+
value: 77.3074661963551
|
2578 |
+
- type: dot_precision
|
2579 |
+
value: 73.93871239808828
|
2580 |
+
- type: dot_recall
|
2581 |
+
value: 80.99784416384355
|
2582 |
+
- type: euclidean_accuracy
|
2583 |
+
value: 88.70066363953894
|
2584 |
+
- type: euclidean_ap
|
2585 |
+
value: 85.34184508966621
|
2586 |
+
- type: euclidean_f1
|
2587 |
+
value: 77.76871756856931
|
2588 |
+
- type: euclidean_precision
|
2589 |
+
value: 74.97855917667239
|
2590 |
+
- type: euclidean_recall
|
2591 |
+
value: 80.77456113335386
|
2592 |
+
- type: manhattan_accuracy
|
2593 |
+
value: 88.68319944114566
|
2594 |
+
- type: manhattan_ap
|
2595 |
+
value: 85.3026464242333
|
2596 |
+
- type: manhattan_f1
|
2597 |
+
value: 77.66561049296294
|
2598 |
+
- type: manhattan_precision
|
2599 |
+
value: 74.4665818849795
|
2600 |
+
- type: manhattan_recall
|
2601 |
+
value: 81.15183246073299
|
2602 |
+
- type: max_accuracy
|
2603 |
+
value: 88.70066363953894
|
2604 |
+
- type: max_ap
|
2605 |
+
value: 85.34184508966621
|
2606 |
+
- type: max_f1
|
2607 |
+
value: 77.76871756856931
|
2608 |
+
---
|
2609 |
+
<h1 align="center">GIST small Embedding v0</h1>
|
2610 |
+
|
2611 |
+
*GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning*
|
2612 |
+
|
2613 |
+
The model is fine-tuned on top of the [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) using the [MEDI dataset](https://github.com/xlang-ai/instructor-embedding.git) augmented with mined triplets from the [MTEB Classification](https://huggingface.co/mteb) training dataset (excluding data from the Amazon Polarity Classification task).
|
2614 |
+
|
2615 |
+
The model does not require any instruction for generating embeddings. This means that queries for retrieval tasks can be directly encoded without crafting instructions.
|
2616 |
+
|
2617 |
+
Technical paper: [GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning](https://arxiv.org/abs/2402.16829)
|
2618 |
+
|
2619 |
+
|
2620 |
+
# Data
|
2621 |
+
|
2622 |
+
The dataset used is a compilation of the MEDI and MTEB Classification training datasets. Third-party datasets may be subject to additional terms and conditions under their associated licenses. A HuggingFace Dataset version of the compiled dataset, and the specific revision used to train the model, is available:
|
2623 |
+
|
2624 |
+
- Dataset: [avsolatorio/medi-data-mteb_avs_triplets](https://huggingface.co/datasets/avsolatorio/medi-data-mteb_avs_triplets)
|
2625 |
+
- Revision: 238a0499b6e6b690cc64ea56fde8461daa8341bb
|
2626 |
+
|
2627 |
+
The dataset contains a `task_type` key, which can be used to select only the mteb classification tasks (prefixed with `mteb_`).
|
2628 |
+
|
2629 |
+
The **MEDI Dataset** is published in the following paper: [One Embedder, Any Task: Instruction-Finetuned Text Embeddings](https://arxiv.org/abs/2212.09741).
|
2630 |
+
|
2631 |
+
The MTEB Benchmark results of the GIST embedding model, compared with the base model, suggest that the fine-tuning dataset has perturbed the model considerably, which resulted in significant improvements in certain tasks while adversely degrading performance in some.
|
2632 |
+
|
2633 |
+
The retrieval performance for the TRECCOVID task is of note. The fine-tuning dataset does not contain significant knowledge about COVID-19, which could have caused the observed performance degradation. We found some evidence, detailed in the paper, that thematic coverage of the fine-tuning data can affect downstream performance.
|
2634 |
+
|
2635 |
+
# Usage
|
2636 |
+
|
2637 |
+
The model can be easily loaded using the Sentence Transformers library.
|
2638 |
+
|
2639 |
+
```Python
|
2640 |
+
import torch.nn.functional as F
|
2641 |
+
from sentence_transformers import SentenceTransformer
|
2642 |
+
|
2643 |
+
revision = None # Replace with the specific revision to ensure reproducibility if the model is updated.
|
2644 |
+
|
2645 |
+
model = SentenceTransformer("avsolatorio/GIST-small-Embedding-v0", revision=revision)
|
2646 |
+
|
2647 |
+
texts = [
|
2648 |
+
"Illustration of the REaLTabFormer model. The left block shows the non-relational tabular data model using GPT-2 with a causal LM head. In contrast, the right block shows how a relational dataset's child table is modeled using a sequence-to-sequence (Seq2Seq) model. The Seq2Seq model uses the observations in the parent table to condition the generation of the observations in the child table. The trained GPT-2 model on the parent table, with weights frozen, is also used as the encoder in the Seq2Seq model.",
|
2649 |
+
"Predicting human mobility holds significant practical value, with applications ranging from enhancing disaster risk planning to simulating epidemic spread. In this paper, we present the GeoFormer, a decoder-only transformer model adapted from the GPT architecture to forecast human mobility.",
|
2650 |
+
"As the economies of Southeast Asia continue adopting digital technologies, policy makers increasingly ask how to prepare the workforce for emerging labor demands. However, little is known about the skills that workers need to adapt to these changes"
|
2651 |
+
]
|
2652 |
+
|
2653 |
+
# Compute embeddings
|
2654 |
+
embeddings = model.encode(texts, convert_to_tensor=True)
|
2655 |
+
|
2656 |
+
# Compute cosine-similarity for each pair of sentences
|
2657 |
+
scores = F.cosine_similarity(embeddings.unsqueeze(1), embeddings.unsqueeze(0), dim=-1)
|
2658 |
+
|
2659 |
+
print(scores.cpu().numpy())
|
2660 |
+
```
|
2661 |
+
|
2662 |
+
# Training Parameters
|
2663 |
+
|
2664 |
+
Below are the training parameters used to fine-tune the model:
|
2665 |
+
|
2666 |
+
```
|
2667 |
+
Epochs = 40
|
2668 |
+
Warmup ratio = 0.1
|
2669 |
+
Learning rate = 5e-6
|
2670 |
+
Batch size = 16
|
2671 |
+
Checkpoint step = 102000
|
2672 |
+
Contrastive loss temperature = 0.01
|
2673 |
+
```
|
2674 |
+
|
2675 |
+
|
2676 |
+
# Evaluation
|
2677 |
+
|
2678 |
+
The model was evaluated using the [MTEB Evaluation](https://huggingface.co/mteb) suite.
|
2679 |
+
|
2680 |
+
|
2681 |
+
# Citation
|
2682 |
+
|
2683 |
+
Please cite our work if you use GISTEmbed or the datasets we published in your projects or research. 🤗
|
2684 |
+
|
2685 |
+
```
|
2686 |
+
@article{solatorio2024gistembed,
|
2687 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
2688 |
+
author={Aivin V. Solatorio},
|
2689 |
+
journal={arXiv preprint arXiv:2402.16829},
|
2690 |
+
year={2024},
|
2691 |
+
URL={https://arxiv.org/abs/2402.16829}
|
2692 |
+
eprint={2402.16829},
|
2693 |
+
archivePrefix={arXiv},
|
2694 |
+
primaryClass={cs.LG}
|
2695 |
+
}
|
2696 |
+
```
|
2697 |
+
|
2698 |
+
# Acknowledgements
|
2699 |
+
|
2700 |
+
This work is supported by the "KCP IV - Exploring Data Use in the Development Economics Literature using Large Language Models (AI and LLMs)" project funded by the [Knowledge for Change Program (KCP)](https://www.worldbank.org/en/programs/knowledge-for-change) of the World Bank - RA-P503405-RESE-TF0C3444.
|
2701 |
+
|
2702 |
+
The findings, interpretations, and conclusions expressed in this material are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
|
config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"layer_norm_epsilon": 1e-12,
|
5 |
+
"multi_query_attention": false,
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbd5ef825e9c99e4a552f31967baf4dc6088c4011c15b3b004eb5e029cdb99e0
|
3 |
+
size 34433909
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocabulary.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|