Course notebook 1
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- salviPPO.zip +3 -0
- salviPPO/_stable_baselines3_version +1 -0
- salviPPO/data +94 -0
- salviPPO/policy.optimizer.pth +3 -0
- salviPPO/policy.pth +3 -0
- salviPPO/pytorch_variables.pth +3 -0
- salviPPO/system_info.txt +7 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -440.34 +/- 126.76
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbff48fe3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbff48fe430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbff48fe4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbff48fe550>", "_build": "<function ActorCriticPolicy._build at 0x7fbff48fe5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbff48fe670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbff48fe700>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbff48fe790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbff48fe820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbff48fe8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbff48fe940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbff48fc1e0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670388639899760323, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMjAT323YU/rz+bPfuI275jGT89Wq24vQAAAAAAAAAATUFnPS8QyD/hjhY++XgUviiFoL1lAge+AAAAAAAAAADmnUk+mH2vPy7+MD8Rqsi9h/ZrvlOIsbwAAAAAAAAAAAC4Wru5T7M/jWwzvdX6Eb2i+ze8C5sCvQAAAAAAAAAAMxRCPX6prD+eLfc+1Li9vqXsfb0iMBW+AAAAAAAAAAAA0Kg8pTCCP81AJj2uaB+/fedqvSENDL4AAAAAAAAAALOCPb3qrqA/OS+uvltcL788xMG83cBHvgAAAAAAAAAAABh1vRP8JT8yoWe9pOSEvw0yd75GJrm8AAAAAAAAAADLJqq+cuJPPpO92DwitEW/7lMQvbItnj0AAAAAAAAAAE0VVL3AzqM/3l74vmWUEr+xkGY9MOyCPQAAAAAAAAAAAJTsPtd3uT5W0yE/IWiCv+46RD5OAeo+AAAAAAAAAAAzvZ09UoXDP50GIj6ervu9nyw9vAjwPz4AAAAAAAAAAI2n5z3B8p4/zKUQP231CL86o7C9FmSRPQAAAAAAAAAA7TeLPsRGaz9ivt897cADv4GkCr3jqVW+AAAAAAAAAAAz0/085vZdP/GzFD0UsCu/fJLvPddFvD0AAAAAAAAAABq+w70VaCs/VlHevZuzKr/9axK9pno8vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvwzGiERfUMCUhpRSlIwBbJRLRYwBdJRHQFvMyoGY8dR1fZQoaAZoCWgPQwjdByC1iWdHwJSGlFKUaBVLY2gWR0Bb0G0Re1KHdX2UKGgGaAloD0MIfentz0WbUcCUhpRSlGgVS4ZoFkdAW9CLbYbsGHV9lChoBmgJaA9DCJvG9lrQ0UjAlIaUUpRoFUuQaBZHQFvSrKvFFUh1fZQoaAZoCWgPQwgqj26ERb09wJSGlFKUaBVLjGgWR0Bb1OwxFiKBdX2UKGgGaAloD0MICDnv/+N6WcCUhpRSlGgVS1xoFkdAW9ZFNL127nV9lChoBmgJaA9DCPRqgNJQoFrAlIaUUpRoFUteaBZHQFvWc0+C9RJ1fZQoaAZoCWgPQwgOhc/WwatIwJSGlFKUaBVLZWgWR0Bb2JfD1oQGdX2UKGgGaAloD0MI/u+ICtXFN8CUhpRSlGgVS5RoFkdAW9oBdUsFuHV9lChoBmgJaA9DCBFwCFVqzEvAlIaUUpRoFUtpaBZHQFvaEidJ8OV1fZQoaAZoCWgPQwgucHmsGZNDwJSGlFKUaBVLomgWR0Bb45x7zCk5dX2UKGgGaAloD0MI+Ki/XmE9UcCUhpRSlGgVS5JoFkdAW+Z2q1gH/3V9lChoBmgJaA9DCKCH2jaMzkfAlIaUUpRoFUtoaBZHQFvm3Ov+wTx1fZQoaAZoCWgPQwjlYgys45tWwJSGlFKUaBVLbWgWR0Bb54MWoFV1dX2UKGgGaAloD0MIgJ4GDJIWI8CUhpRSlGgVS4NoFkdAW+eMZP2wmnV9lChoBmgJaA9DCI3ROqqabEXAlIaUUpRoFUttaBZHQFvqWeHzpX91fZQoaAZoCWgPQwiqDONuEJ5QwJSGlFKUaBVLZmgWR0Bb7CF49ovjdX2UKGgGaAloD0MIUn+9woLJQMCUhpRSlGgVS0VoFkdAW+zQdCE6DHV9lChoBmgJaA9DCOz7cJAQD2DAlIaUUpRoFUteaBZHQFvuVbA1vVF1fZQoaAZoCWgPQwjO/kC5behVwJSGlFKUaBVLjWgWR0Bb7y4OMERrdX2UKGgGaAloD0MIECTvHMp4QcCUhpRSlGgVS3xoFkdAW/HXYlIEsHV9lChoBmgJaA9DCKSqCaLucxdAlIaUUpRoFUtwaBZHQFv0+ZgG8mN1fZQoaAZoCWgPQwg58kBkkVBVwJSGlFKUaBVLk2gWR0Bb+tnwob4rdX2UKGgGaAloD0MI7rH0oQvXVsCUhpRSlGgVS4ZoFkdAW/1hlUZNwnV9lChoBmgJaA9DCMB3mzdOhVLAlIaUUpRoFUtNaBZHQFv9Bu4wyqN1fZQoaAZoCWgPQwg0EMtmDh1KwJSGlFKUaBVLUmgWR0Bb/cwtapxWdX2UKGgGaAloD0MIGckeoWaqT8CUhpRSlGgVS0JoFkdAW/6j/MnqmnV9lChoBmgJaA9DCH8vhQfN4VjAlIaUUpRoFUtbaBZHQFwAA3kxREZ1fZQoaAZoCWgPQwhnfcoxWVhJwJSGlFKUaBVLjWgWR0BcAODzyz5XdX2UKGgGaAloD0MIamluhbAESsCUhpRSlGgVS51oFkdAXAGFN+LFXXV9lChoBmgJaA9DCDgteNFXZkzAlIaUUpRoFUtwaBZHQFwCvSMLncN1fZQoaAZoCWgPQwiXkA96NitRwJSGlFKUaBVLUGgWR0BcB/GuLaVVdX2UKGgGaAloD0MIDi2yne/DNMCUhpRSlGgVS15oFkdAXAjxCpm29nV9lChoBmgJaA9DCLA5B8+EDkLAlIaUUpRoFUt2aBZHQFwKiWE9Mbp1fZQoaAZoCWgPQwgRVmMJa2RWwJSGlFKUaBVLXWgWR0BcDhbbDdgwdX2UKGgGaAloD0MIsn+eBgyQUsCUhpRSlGgVS41oFkdAXA4pDu0CzXV9lChoBmgJaA9DCAR0X85svUTAlIaUUpRoFUtUaBZHQFwRmmce8wp1fZQoaAZoCWgPQwhpU3WP7FZtwJSGlFKUaBVLjGgWR0BcFNMCcPOIdX2UKGgGaAloD0MIHHxhMlV2UcCUhpRSlGgVS11oFkdAXBa5CngpB3V9lChoBmgJaA9DCCkHswkwIkbAlIaUUpRoFUtVaBZHQFwX9deIEbJ1fZQoaAZoCWgPQwjZtb3dkhxQwJSGlFKUaBVLVGgWR0BcGICEHt4SdX2UKGgGaAloD0MIsvUM4Zh3Q8CUhpRSlGgVS1BoFkdAXBjSYw7DEXV9lChoBmgJaA9DCD86deWz5D7AlIaUUpRoFUtvaBZHQFwbYQrc0tR1fZQoaAZoCWgPQwg6kPXU6ksswJSGlFKUaBVLsmgWR0BcHd2Pkq+bdX2UKGgGaAloD0MIXMgjuJHGW8CUhpRSlGgVS3ZoFkdAXB7kCFK02XV9lChoBmgJaA9DCMGpDyTvTl3AlIaUUpRoFUtcaBZHQFwhV2zOX3R1fZQoaAZoCWgPQwiCjIAKR2gmwJSGlFKUaBVLXmgWR0BcJJD3M6ikdX2UKGgGaAloD0MIE7cKYqBLN8CUhpRSlGgVS1hoFkdAXCZ5KODJ2nV9lChoBmgJaA9DCLA5B8+EB1PAlIaUUpRoFUuVaBZHQFwmbSZ0CBB1fZQoaAZoCWgPQwhz9zk+WuVawJSGlFKUaBVLe2gWR0BcKvkJa7mMdX2UKGgGaAloD0MIggLv5NPrV8CUhpRSlGgVS0poFkdAXCsWCVbA13V9lChoBmgJaA9DCA1Uxr/PvlTAlIaUUpRoFUuiaBZHQFwsODJ2dNF1fZQoaAZoCWgPQwi1bK0vEphMwJSGlFKUaBVLU2gWR0BcMho7FKkEdX2UKGgGaAloD0MIYymSrwT8QMCUhpRSlGgVS2loFkdAXDT5O8Cgb3V9lChoBmgJaA9DCAhZFkz8/0XAlIaUUpRoFUuAaBZHQFw1l3hXKbN1fZQoaAZoCWgPQwhoQL0ZNc85wJSGlFKUaBVLd2gWR0BcNnKOktVadX2UKGgGaAloD0MIBfhu88YqYMCUhpRSlGgVS5JoFkdAXDcwrUb1iHV9lChoBmgJaA9DCKck63B0S03AlIaUUpRoFUtzaBZHQFw41zQu27Z1fZQoaAZoCWgPQwjymeyfp/1IwJSGlFKUaBVLb2gWR0BcPMxsVLzxdX2UKGgGaAloD0MI9Bd6xOixV8CUhpRSlGgVS4NoFkdAXD0AdXDFZXV9lChoBmgJaA9DCARxHk5gD1XAlIaUUpRoFUtcaBZHQFw+dcSoOx11fZQoaAZoCWgPQwheDybFx71DwJSGlFKUaBVLdGgWR0BcQZ6dDpkgdX2UKGgGaAloD0MIiIOEKF/mQ8CUhpRSlGgVS1loFkdAXEOoybhFVnV9lChoBmgJaA9DCFml9Ewvr0zAlIaUUpRoFUtgaBZHQFxGs2eg+Ql1fZQoaAZoCWgPQwh2w7ZFmVlPwJSGlFKUaBVLeGgWR0BcR6sdT5wgdX2UKGgGaAloD0MIbsST3cwWRsCUhpRSlGgVS2poFkdAXEhkSVW0Z3V9lChoBmgJaA9DCOzeisQECTzAlIaUUpRoFUtPaBZHQFxKn6VMVUN1fZQoaAZoCWgPQwggskgT73BGwJSGlFKUaBVLWmgWR0BcSu1ndweedX2UKGgGaAloD0MIIVfqWRBONsCUhpRSlGgVS6VoFkdAXExcQiA2AHV9lChoBmgJaA9DCLVTc7nBzlbAlIaUUpRoFUtZaBZHQFxNxIatLct1fZQoaAZoCWgPQwgotRfRdo5QwJSGlFKUaBVLYGgWR0BcUvrKNhmYdX2UKGgGaAloD0MIy/RLxFtWVMCUhpRSlGgVS6poFkdAXFWVmjCYTnV9lChoBmgJaA9DCOnuOhvydU3AlIaUUpRoFUt9aBZHQFxZHy3CsOp1fZQoaAZoCWgPQwjmkqrtJiwwwJSGlFKUaBVLaGgWR0BcWVN5+pfhdX2UKGgGaAloD0MIJuFCHsG3RcCUhpRSlGgVS4loFkdAXFu2d/axo3V9lChoBmgJaA9DCMu9wKxQuEvAlIaUUpRoFUtXaBZHQFxe2kSElE91fZQoaAZoCWgPQwizl22nLcFswJSGlFKUaBVLf2gWR0BcYURnOB1+dX2UKGgGaAloD0MIdsHgmjvUQ8CUhpRSlGgVS3xoFkdAXGZXU6PsA3V9lChoBmgJaA9DCOv822W/yFrAlIaUUpRoFUtyaBZHQFxowEyLyc11fZQoaAZoCWgPQwjJO4cyVFVGwJSGlFKUaBVLnWgWR0BcaLPD50r9dX2UKGgGaAloD0MI8SkAxjOtWMCUhpRSlGgVS3doFkdAXGmqebutwXV9lChoBmgJaA9DCEXWGkrt0UrAlIaUUpRoFUtvaBZHQFxt9ytFKCh1fZQoaAZoCWgPQwhgkzXqIYo5wJSGlFKUaBVLnmgWR0Bcbsn3L3bmdX2UKGgGaAloD0MI73TnieeCQcCUhpRSlGgVS2FoFkdAXG95VwPy1HV9lChoBmgJaA9DCJ5A2ClWP1XAlIaUUpRoFUtcaBZHQFxwu5z5oGp1fZQoaAZoCWgPQwj+YOC598NRwJSGlFKUaBVLUGgWR0BccWMCLdeqdX2UKGgGaAloD0MIPZl/9E1MV8CUhpRSlGgVS5loFkdAXHdtSAH3UXV9lChoBmgJaA9DCNNrs7ESdlHAlIaUUpRoFUtraBZHQFx5ThYNiH91fZQoaAZoCWgPQwinQdE8gPdCwJSGlFKUaBVLomgWR0BceoAKfFrEdX2UKGgGaAloD0MImpmZmZkJVcCUhpRSlGgVS2hoFkdAXHso4MnZ03V9lChoBmgJaA9DCJgVinQ/I0bAlIaUUpRoFUttaBZHQFx/mDUVi4J1fZQoaAZoCWgPQwhSRIZVvCktwJSGlFKUaBVLT2gWR0BcgIx+KCQLdX2UKGgGaAloD0MIOxqH+l1UO8CUhpRSlGgVS7VoFkdAXIFRYRujynV9lChoBmgJaA9DCHoYWp2cD0vAlIaUUpRoFUtFaBZHQFyCcEvCdjJ1fZQoaAZoCWgPQwiNDkjCvi5VwJSGlFKUaBVLSmgWR0BchIQWepXIdX2UKGgGaAloD0MI/u4dNSbYV8CUhpRSlGgVS0xoFkdAXIdhF3IMjXV9lChoBmgJaA9DCP93RIXqykrAlIaUUpRoFUtXaBZHQFyKHBDXvph1fZQoaAZoCWgPQwg6kst/yFViwJSGlFKUaBVLcWgWR0Bcill5GBnSdX2UKGgGaAloD0MIpMNDGD8gVcCUhpRSlGgVS3poFkdAXIrw6QvHtHV9lChoBmgJaA9DCLVwWYXNjVbAlIaUUpRoFUtwaBZHQFyK9Htnf2t1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
replay.mp4
ADDED
Binary file (63.4 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -440.3416174243437, "std_reward": 126.76126033757052, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T04:53:39.705493"}
|
salviPPO.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0ce3664b4ae7f6faf7142d84e74796683e177fa51c0669241c0188817b305be
|
3 |
+
size 147006
|
salviPPO/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
salviPPO/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbff48fe3a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbff48fe430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbff48fe4c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbff48fe550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbff48fe5e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbff48fe670>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbff48fe700>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbff48fe790>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbff48fe820>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbff48fe8b0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbff48fe940>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fbff48fc1e0>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
26 |
+
"dtype": "float32",
|
27 |
+
"shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 131072,
|
46 |
+
"_total_timesteps": 100000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670388639899760323,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMjAT323YU/rz+bPfuI275jGT89Wq24vQAAAAAAAAAATUFnPS8QyD/hjhY++XgUviiFoL1lAge+AAAAAAAAAADmnUk+mH2vPy7+MD8Rqsi9h/ZrvlOIsbwAAAAAAAAAAAC4Wru5T7M/jWwzvdX6Eb2i+ze8C5sCvQAAAAAAAAAAMxRCPX6prD+eLfc+1Li9vqXsfb0iMBW+AAAAAAAAAAAA0Kg8pTCCP81AJj2uaB+/fedqvSENDL4AAAAAAAAAALOCPb3qrqA/OS+uvltcL788xMG83cBHvgAAAAAAAAAAABh1vRP8JT8yoWe9pOSEvw0yd75GJrm8AAAAAAAAAADLJqq+cuJPPpO92DwitEW/7lMQvbItnj0AAAAAAAAAAE0VVL3AzqM/3l74vmWUEr+xkGY9MOyCPQAAAAAAAAAAAJTsPtd3uT5W0yE/IWiCv+46RD5OAeo+AAAAAAAAAAAzvZ09UoXDP50GIj6ervu9nyw9vAjwPz4AAAAAAAAAAI2n5z3B8p4/zKUQP231CL86o7C9FmSRPQAAAAAAAAAA7TeLPsRGaz9ivt897cADv4GkCr3jqVW+AAAAAAAAAAAz0/085vZdP/GzFD0UsCu/fJLvPddFvD0AAAAAAAAAABq+w70VaCs/VlHevZuzKr/9axK9pno8vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.3107200000000001,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvwzGiERfUMCUhpRSlIwBbJRLRYwBdJRHQFvMyoGY8dR1fZQoaAZoCWgPQwjdByC1iWdHwJSGlFKUaBVLY2gWR0Bb0G0Re1KHdX2UKGgGaAloD0MIfentz0WbUcCUhpRSlGgVS4ZoFkdAW9CLbYbsGHV9lChoBmgJaA9DCJvG9lrQ0UjAlIaUUpRoFUuQaBZHQFvSrKvFFUh1fZQoaAZoCWgPQwgqj26ERb09wJSGlFKUaBVLjGgWR0Bb1OwxFiKBdX2UKGgGaAloD0MICDnv/+N6WcCUhpRSlGgVS1xoFkdAW9ZFNL127nV9lChoBmgJaA9DCPRqgNJQoFrAlIaUUpRoFUteaBZHQFvWc0+C9RJ1fZQoaAZoCWgPQwgOhc/WwatIwJSGlFKUaBVLZWgWR0Bb2JfD1oQGdX2UKGgGaAloD0MI/u+ICtXFN8CUhpRSlGgVS5RoFkdAW9oBdUsFuHV9lChoBmgJaA9DCBFwCFVqzEvAlIaUUpRoFUtpaBZHQFvaEidJ8OV1fZQoaAZoCWgPQwgucHmsGZNDwJSGlFKUaBVLomgWR0Bb45x7zCk5dX2UKGgGaAloD0MI+Ki/XmE9UcCUhpRSlGgVS5JoFkdAW+Z2q1gH/3V9lChoBmgJaA9DCKCH2jaMzkfAlIaUUpRoFUtoaBZHQFvm3Ov+wTx1fZQoaAZoCWgPQwjlYgys45tWwJSGlFKUaBVLbWgWR0Bb54MWoFV1dX2UKGgGaAloD0MIgJ4GDJIWI8CUhpRSlGgVS4NoFkdAW+eMZP2wmnV9lChoBmgJaA9DCI3ROqqabEXAlIaUUpRoFUttaBZHQFvqWeHzpX91fZQoaAZoCWgPQwiqDONuEJ5QwJSGlFKUaBVLZmgWR0Bb7CF49ovjdX2UKGgGaAloD0MIUn+9woLJQMCUhpRSlGgVS0VoFkdAW+zQdCE6DHV9lChoBmgJaA9DCOz7cJAQD2DAlIaUUpRoFUteaBZHQFvuVbA1vVF1fZQoaAZoCWgPQwjO/kC5behVwJSGlFKUaBVLjWgWR0Bb7y4OMERrdX2UKGgGaAloD0MIECTvHMp4QcCUhpRSlGgVS3xoFkdAW/HXYlIEsHV9lChoBmgJaA9DCKSqCaLucxdAlIaUUpRoFUtwaBZHQFv0+ZgG8mN1fZQoaAZoCWgPQwg58kBkkVBVwJSGlFKUaBVLk2gWR0Bb+tnwob4rdX2UKGgGaAloD0MI7rH0oQvXVsCUhpRSlGgVS4ZoFkdAW/1hlUZNwnV9lChoBmgJaA9DCMB3mzdOhVLAlIaUUpRoFUtNaBZHQFv9Bu4wyqN1fZQoaAZoCWgPQwg0EMtmDh1KwJSGlFKUaBVLUmgWR0Bb/cwtapxWdX2UKGgGaAloD0MIGckeoWaqT8CUhpRSlGgVS0JoFkdAW/6j/MnqmnV9lChoBmgJaA9DCH8vhQfN4VjAlIaUUpRoFUtbaBZHQFwAA3kxREZ1fZQoaAZoCWgPQwhnfcoxWVhJwJSGlFKUaBVLjWgWR0BcAODzyz5XdX2UKGgGaAloD0MIamluhbAESsCUhpRSlGgVS51oFkdAXAGFN+LFXXV9lChoBmgJaA9DCDgteNFXZkzAlIaUUpRoFUtwaBZHQFwCvSMLncN1fZQoaAZoCWgPQwiXkA96NitRwJSGlFKUaBVLUGgWR0BcB/GuLaVVdX2UKGgGaAloD0MIDi2yne/DNMCUhpRSlGgVS15oFkdAXAjxCpm29nV9lChoBmgJaA9DCLA5B8+EDkLAlIaUUpRoFUt2aBZHQFwKiWE9Mbp1fZQoaAZoCWgPQwgRVmMJa2RWwJSGlFKUaBVLXWgWR0BcDhbbDdgwdX2UKGgGaAloD0MIsn+eBgyQUsCUhpRSlGgVS41oFkdAXA4pDu0CzXV9lChoBmgJaA9DCAR0X85svUTAlIaUUpRoFUtUaBZHQFwRmmce8wp1fZQoaAZoCWgPQwhpU3WP7FZtwJSGlFKUaBVLjGgWR0BcFNMCcPOIdX2UKGgGaAloD0MIHHxhMlV2UcCUhpRSlGgVS11oFkdAXBa5CngpB3V9lChoBmgJaA9DCCkHswkwIkbAlIaUUpRoFUtVaBZHQFwX9deIEbJ1fZQoaAZoCWgPQwjZtb3dkhxQwJSGlFKUaBVLVGgWR0BcGICEHt4SdX2UKGgGaAloD0MIsvUM4Zh3Q8CUhpRSlGgVS1BoFkdAXBjSYw7DEXV9lChoBmgJaA9DCD86deWz5D7AlIaUUpRoFUtvaBZHQFwbYQrc0tR1fZQoaAZoCWgPQwg6kPXU6ksswJSGlFKUaBVLsmgWR0BcHd2Pkq+bdX2UKGgGaAloD0MIXMgjuJHGW8CUhpRSlGgVS3ZoFkdAXB7kCFK02XV9lChoBmgJaA9DCMGpDyTvTl3AlIaUUpRoFUtcaBZHQFwhV2zOX3R1fZQoaAZoCWgPQwiCjIAKR2gmwJSGlFKUaBVLXmgWR0BcJJD3M6ikdX2UKGgGaAloD0MIE7cKYqBLN8CUhpRSlGgVS1hoFkdAXCZ5KODJ2nV9lChoBmgJaA9DCLA5B8+EB1PAlIaUUpRoFUuVaBZHQFwmbSZ0CBB1fZQoaAZoCWgPQwhz9zk+WuVawJSGlFKUaBVLe2gWR0BcKvkJa7mMdX2UKGgGaAloD0MIggLv5NPrV8CUhpRSlGgVS0poFkdAXCsWCVbA13V9lChoBmgJaA9DCA1Uxr/PvlTAlIaUUpRoFUuiaBZHQFwsODJ2dNF1fZQoaAZoCWgPQwi1bK0vEphMwJSGlFKUaBVLU2gWR0BcMho7FKkEdX2UKGgGaAloD0MIYymSrwT8QMCUhpRSlGgVS2loFkdAXDT5O8Cgb3V9lChoBmgJaA9DCAhZFkz8/0XAlIaUUpRoFUuAaBZHQFw1l3hXKbN1fZQoaAZoCWgPQwhoQL0ZNc85wJSGlFKUaBVLd2gWR0BcNnKOktVadX2UKGgGaAloD0MIBfhu88YqYMCUhpRSlGgVS5JoFkdAXDcwrUb1iHV9lChoBmgJaA9DCKck63B0S03AlIaUUpRoFUtzaBZHQFw41zQu27Z1fZQoaAZoCWgPQwjymeyfp/1IwJSGlFKUaBVLb2gWR0BcPMxsVLzxdX2UKGgGaAloD0MI9Bd6xOixV8CUhpRSlGgVS4NoFkdAXD0AdXDFZXV9lChoBmgJaA9DCARxHk5gD1XAlIaUUpRoFUtcaBZHQFw+dcSoOx11fZQoaAZoCWgPQwheDybFx71DwJSGlFKUaBVLdGgWR0BcQZ6dDpkgdX2UKGgGaAloD0MIiIOEKF/mQ8CUhpRSlGgVS1loFkdAXEOoybhFVnV9lChoBmgJaA9DCFml9Ewvr0zAlIaUUpRoFUtgaBZHQFxGs2eg+Ql1fZQoaAZoCWgPQwh2w7ZFmVlPwJSGlFKUaBVLeGgWR0BcR6sdT5wgdX2UKGgGaAloD0MIbsST3cwWRsCUhpRSlGgVS2poFkdAXEhkSVW0Z3V9lChoBmgJaA9DCOzeisQECTzAlIaUUpRoFUtPaBZHQFxKn6VMVUN1fZQoaAZoCWgPQwggskgT73BGwJSGlFKUaBVLWmgWR0BcSu1ndweedX2UKGgGaAloD0MIIVfqWRBONsCUhpRSlGgVS6VoFkdAXExcQiA2AHV9lChoBmgJaA9DCLVTc7nBzlbAlIaUUpRoFUtZaBZHQFxNxIatLct1fZQoaAZoCWgPQwgotRfRdo5QwJSGlFKUaBVLYGgWR0BcUvrKNhmYdX2UKGgGaAloD0MIy/RLxFtWVMCUhpRSlGgVS6poFkdAXFWVmjCYTnV9lChoBmgJaA9DCOnuOhvydU3AlIaUUpRoFUt9aBZHQFxZHy3CsOp1fZQoaAZoCWgPQwjmkqrtJiwwwJSGlFKUaBVLaGgWR0BcWVN5+pfhdX2UKGgGaAloD0MIJuFCHsG3RcCUhpRSlGgVS4loFkdAXFu2d/axo3V9lChoBmgJaA9DCMu9wKxQuEvAlIaUUpRoFUtXaBZHQFxe2kSElE91fZQoaAZoCWgPQwizl22nLcFswJSGlFKUaBVLf2gWR0BcYURnOB1+dX2UKGgGaAloD0MIdsHgmjvUQ8CUhpRSlGgVS3xoFkdAXGZXU6PsA3V9lChoBmgJaA9DCOv822W/yFrAlIaUUpRoFUtyaBZHQFxowEyLyc11fZQoaAZoCWgPQwjJO4cyVFVGwJSGlFKUaBVLnWgWR0BcaLPD50r9dX2UKGgGaAloD0MI8SkAxjOtWMCUhpRSlGgVS3doFkdAXGmqebutwXV9lChoBmgJaA9DCEXWGkrt0UrAlIaUUpRoFUtvaBZHQFxt9ytFKCh1fZQoaAZoCWgPQwhgkzXqIYo5wJSGlFKUaBVLnmgWR0Bcbsn3L3bmdX2UKGgGaAloD0MI73TnieeCQcCUhpRSlGgVS2FoFkdAXG95VwPy1HV9lChoBmgJaA9DCJ5A2ClWP1XAlIaUUpRoFUtcaBZHQFxwu5z5oGp1fZQoaAZoCWgPQwj+YOC598NRwJSGlFKUaBVLUGgWR0BccWMCLdeqdX2UKGgGaAloD0MIPZl/9E1MV8CUhpRSlGgVS5loFkdAXHdtSAH3UXV9lChoBmgJaA9DCNNrs7ESdlHAlIaUUpRoFUtraBZHQFx5ThYNiH91fZQoaAZoCWgPQwinQdE8gPdCwJSGlFKUaBVLomgWR0BceoAKfFrEdX2UKGgGaAloD0MImpmZmZkJVcCUhpRSlGgVS2hoFkdAXHso4MnZ03V9lChoBmgJaA9DCJgVinQ/I0bAlIaUUpRoFUttaBZHQFx/mDUVi4J1fZQoaAZoCWgPQwhSRIZVvCktwJSGlFKUaBVLT2gWR0BcgIx+KCQLdX2UKGgGaAloD0MIOxqH+l1UO8CUhpRSlGgVS7VoFkdAXIFRYRujynV9lChoBmgJaA9DCHoYWp2cD0vAlIaUUpRoFUtFaBZHQFyCcEvCdjJ1fZQoaAZoCWgPQwiNDkjCvi5VwJSGlFKUaBVLSmgWR0BchIQWepXIdX2UKGgGaAloD0MI/u4dNSbYV8CUhpRSlGgVS0xoFkdAXIdhF3IMjXV9lChoBmgJaA9DCP93RIXqykrAlIaUUpRoFUtXaBZHQFyKHBDXvph1fZQoaAZoCWgPQwg6kst/yFViwJSGlFKUaBVLcWgWR0Bcill5GBnSdX2UKGgGaAloD0MIpMNDGD8gVcCUhpRSlGgVS3poFkdAXIrw6QvHtHV9lChoBmgJaA9DCLVwWYXNjVbAlIaUUpRoFUtwaBZHQFyK9Htnf2t1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 40,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
salviPPO/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7b62926293508b4f4ddeecd2eae00dc21df88da90066aed40c4a79420dc3e47
|
3 |
+
size 87865
|
salviPPO/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5a183ceb0aac71b5cd9645c654ed7d50ddf44d65a4ec9c2cfd936d6df26b5c2
|
3 |
+
size 43201
|
salviPPO/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
salviPPO/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.17.3
|