{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7964bb74a830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7964bb74a8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7964bb74a950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7964bb74a9e0>", "_build": "<function ActorCriticPolicy._build at 0x7964bb74aa70>", "forward": "<function ActorCriticPolicy.forward at 0x7964bb74ab00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7964bb74ab90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7964bb74ac20>", "_predict": "<function ActorCriticPolicy._predict at 0x7964bb74acb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7964bb74ad40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7964bb74add0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7964bb74ae60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7964bb6ecb80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1725473633833041786, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1nX7324DS6KL+BOdZ0ojQYJ4U7glOZuAAAgD8AAIA/xqwGvrgJoLufVSC8EJRyuvQj8zzyn1A7AACAPwAAgD8zB+S8ChdoON9Ak7oBFB22dFSyO9dEsjkAAIA/AACAP2ZGTL3Pux28u3fZugEfjTzK9YI9jnNqvQAAgD8AAIA/ALusPIaVjD8uRDS8obK0vtvLPz0iPgy9AAAAAAAAAADNpM47XDs3urIVors7TjM18NxKO1B0o7QAAIA/AACAP03X1b1SgJO5mAzYOmb2wrMbRo+7bfcAugAAgD8AAIA/ZlahvI9+Rrrzzs66mrgstjIiujpGOvE5AACAPwAAgD8AgHw67GnUuQbpSzlR7Myz5JJIuh68b7gAAIA/AACAP4Bj/70UsNW6dvk5vPpoR7nMi2Q7ZkItOgAAgD8AAIA/gJBePRSYn7r9VDI6xm4aNTm7mzktX025AACAPwAAgD8zITa94cSMumbtTDpVMzE2WRxBO4pMbrkAAIA/AACAP4CnZL1In426W8JUuyGjezjXNG06ePwuOQAAgD8AAIA/zQOHvI/ec7q9zjS61WAgtRf6Srsun1M5AACAPwAAgD9m2uo7uJ62t6NtbbgBJYazUwzLO3qukTcAAIA/AACAPzNVC74cY2A97k8SPtEnU75mQ649ljo4PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGEdBaLXL/2MAWyUTegDjAF0lEdAliYzmr8zh3V9lChoBkdAZiKDr7fpEGgHTegDaAhHQJYmgOtnwod1fZQoaAZHQE7gxSHdoFpoB00QAWgIR0CWKxIMBp6AdX2UKGgGR0A5xI3R5TqCaAdL22gIR0CWKyBRQ79ydX2UKGgGR0BQMMeKbaysaAdNAAFoCEdAli/qzu4PPXV9lChoBkdAZb2iTMaCMGgHTegDaAhHQJYxldcB2fV1fZQoaAZHQGN8e7L+xW1oB03oA2gIR0CWMzT238XOdX2UKGgGR0BjfpbdJrckaAdN6ANoCEdAljTV4LThHnV9lChoBkdAW21mBe5WimgHTegDaAhHQJY6pgjQiRp1fZQoaAZHQGcOBXCCSRtoB03oA2gIR0CWPkyMUAT7dX2UKGgGR0Bbkgz1schlaAdN6ANoCEdAlkGvub7TD3V9lChoBkdAYdHKcurZJ2gHTegDaAhHQJZE8h/y5I91fZQoaAZHQGCbVqFh5PdoB03oA2gIR0CWR2+DOC5FdX2UKGgGR0Bhal0o0ALiaAdN6ANoCEdAlmsf/rB0p3V9lChoBkdAXM5qbjLjgmgHTegDaAhHQJZrcjfNzKd1fZQoaAZHQGaTSSmqHXVoB03oA2gIR0CWccZ8KG+LdX2UKGgGR0Bj3EAq/dqMaAdN6ANoCEdAlnwWDcuannV9lChoBkdAYpDvoePq92gHTegDaAhHQJZ8gTewcHZ1fZQoaAZHQGO8vicXm/5oB03oA2gIR0CWgj5oGpuNdX2UKGgGR0Bh822oegctaAdN6ANoCEdAloJO6VdHD3V9lChoBkdAYQLA+IMz/WgHTegDaAhHQJaH+1QZXMh1fZQoaAZHQGdwllsguAZoB03oA2gIR0CWievAGjbjdX2UKGgGR0BkAWg13t8eaAdN6ANoCEdAlouo9gWrO3V9lChoBkdAYX/JRO1v22gHTegDaAhHQJaNXa8Hv+h1fZQoaAZHQGNtgNwzch1oB03oA2gIR0CWkjiu+yqudX2UKGgGR0Bkb2sYEW69aAdN6ANoCEdAlpTZcLSeAnV9lChoBkdAZG8S2Yv38GgHTegDaAhHQJaXQQ8OkLx1fZQoaAZHQGYy+xnnMdNoB03oA2gIR0CWmcTbnHNpdX2UKGgGR0BguhHI6r/9aAdN6ANoCEdAlpwNorWiDnV9lChoBkdAWtKd3B55aGgHTegDaAhHQJbA9iWmgrZ1fZQoaAZHQGdEK20AtFtoB03oA2gIR0CWwTtkFwDOdX2UKGgGR0Bji4p+c6NmaAdN6ANoCEdAlsW8hLXcxnV9lChoBkdAXBJlK9PDYWgHTegDaAhHQJbOfYao/A11fZQoaAZHQGW5pE6T4cpoB03oA2gIR0CWzt7/GVAzdX2UKGgGR0BkNjxEv0yyaAdN6ANoCEdAltUW3vx6OnV9lChoBkdAX1YslLOAy2gHTegDaAhHQJbVKRp1zQx1fZQoaAZHQGEi4e9zwMJoB03oA2gIR0CW3KPPcBU8dX2UKGgGR0BmJsOskpqiaAdN6ANoCEdAlt5Yg3cYZXV9lChoBkdAURoLy+YdAGgHS99oCEdAlt9GB4D9wXV9lChoBkdAZqPNlAeJYWgHTegDaAhHQJbf+gvlEJB1fZQoaAZHQGYo8Cgbp/xoB03oA2gIR0CW4X6ciGFjdX2UKGgGR0BcMbbg0j1PaAdN6ANoCEdAluWbyhBZ6nV9lChoBkdAZ64T9KmKqGgHTegDaAhHQJboAmXw9aF1fZQoaAZHQEYZtj0+TvBoB0vaaAhHQJbpd7gKnel1fZQoaAZHQGVyDUd7v5RoB03oA2gIR0CW6kjTrmhedX2UKGgGR0AyTxt52QnyaAdL7mgIR0CW6/LApKBedX2UKGgGR0BeE9w71ZkkaAdN6ANoCEdAluyaG+K0lnV9lChoBkdAZnmsEq2BrmgHTegDaAhHQJbuvBl+Vkd1fZQoaAZHQGRWk7wKBupoB03oA2gIR0CXE1K2rn1WdX2UKGgGR0Bjas6q814xaAdN6ANoCEdAlxObksBhhHV9lChoBkdAZEsM3IdU82gHTegDaAhHQJcYIAXEZR91fZQoaAZHQGSj7+cYqG1oB03oA2gIR0CXIW1A7gbZdX2UKGgGR0Bh6uF36hxpaAdN6ANoCEdAlyfFgDzRQnV9lChoBkdAY0kxs2vSt2gHTegDaAhHQJcn1jLB9Cx1fZQoaAZHQGNx9xIatLdoB03oA2gIR0CXLepn6EamdX2UKGgGR0Bhuu5c1O0taAdN6ANoCEdAlzEOnQ6ZIHV9lChoBkdAY9qcd5prUWgHTegDaAhHQJc0BVyWAwx1fZQoaAZHQD2hAeJYT0xoB0vhaAhHQJc3BZB9kSV1fZQoaAZHQDF1uZTho/RoB0v1aAhHQJc4YAlv60p1fZQoaAZHQF0V3Gn4wh5oB03oA2gIR0CXOfn9NvfkdX2UKGgGR0BoQjc0tRNzaAdN6ANoCEdAlz3tZ/0/W3V9lChoBkdAYqdC7btZ3mgHTegDaAhHQJdAUxZdOZd1fZQoaAZHQGIIG0mdAgRoB03oA2gIR0CXQXi9IwuedX2UKGgGR0BgcD0pVjqfaAdN6ANoCEdAl0O1Yp2ECnV9lChoBkdAZwKIQe3hGmgHTegDaAhHQJdEVppN9IB1fZQoaAZHQGOjSpJf6XVoB03oA2gIR0CXRmhz/6wddX2UKGgGR0Ax0S0Sh8IBaAdL92gIR0CXZVm+j/ModX2UKGgGR0BdAp9Aood/aAdN6ANoCEdAl2kQood+5XV9lChoBkdAYqYaCL/CImgHTegDaAhHQJdpXQ8fV7R1fZQoaAZHQGH23VbzK9xoB03oA2gIR0CXbwzXjENwdX2UKGgGR0BcOfT1CgK4aAdN6ANoCEdAl3pNd/rjYXV9lChoBkdAN5PGVAzHj2gHS9toCEdAl3syOearm3V9lChoBkdAYae3PRiPQ2gHTegDaAhHQJeGZvFWGRF1fZQoaAZHQGJRq8Djin5oB03oA2gIR0CXiXUxEfDDdX2UKGgGR0BmIyaiKziTaAdN6ANoCEdAl4xQg1WKdnV9lChoBkdAYl/vUBnzx2gHTegDaAhHQJePNk6Lfk51fZQoaAZHQGGM/PX05ENoB03oA2gIR0CXkIWhRIjGdX2UKGgGR0Bh0XA6+36RaAdN6ANoCEdAl5GUvkBCD3V9lChoBkdAYTvmkFfReGgHTegDaAhHQJeUOtihFmZ1fZQoaAZHQGTT3iJfplloB03oA2gIR0CXldPoFFDwdX2UKGgGR0BjAvgYP5HmaAdN6ANoCEdAl5amVeKKpHV9lChoBkdAXg0SXdCVr2gHTegDaAhHQJeYSuW8h9t1fZQoaAZHQGZrAJTl1bJoB03oA2gIR0CXmwHB1s+FdX2UKGgGR0BiIhbhWHUMaAdN6ANoCEdAl7tMPnSv1XV9lChoBkdAZL63EQ5FPWgHTegDaAhHQJe+Sr+5vtN1fZQoaAZHQGhDakhzNlloB03oA2gIR0CXwrTTOPeYdX2UKGgGR0BhuCLbYbsGaAdN6ANoCEdAl8sxltj0+XV9lChoBkdAYLRZmqYJFGgHTegDaAhHQJfL62F36hx1fZQoaAZHQGIjNw71ZkloB03oA2gIR0CX1x1Bt1p1dX2UKGgGR0BkFohOgxrSaAdN6ANoCEdAl9rwN9YwI3V9lChoBkdAYPFs0HhS+GgHTegDaAhHQJfeCtITXat1fZQoaAZHQGffeFlCkXVoB03oA2gIR0CX4JWN3np0dX2UKGgGR0BjPaZhKDkEaAdN6ANoCEdAl+G7qY7aI3V9lChoBkdAZRqPV/c32mgHTegDaAhHQJfisXhwVCZ1fZQoaAZHQF7IMFUyYXxoB03oA2gIR0CX5SI4VARkdX2UKGgGR0Bfvs8HObAlaAdN6ANoCEdAl+aJXU6PsHV9lChoBkdAYAP54W1twmgHTegDaAhHQJfnX19ORDF1fZQoaAZHQGOnSQYDT0BoB03oA2gIR0CX6NjWCmMwdX2UKGgGR0BjwPiPyTY/aAdN6ANoCEdAl+tLux8lX3V9lChoBkdASv3mJWNm2GgHS+xoCEdAl/JRRhttRHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |